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Abstract. We give a bound on the expected reconstruction error for
a general coding method where data in a Hilbert space are represented
by finite dimensional coding vectors. The result can be specialized to K-
means clustering, nonnegative matrix factorization and the sparse coding
techniques introduced by Olshausen and Field.

1 Introduction

We consider the generalization performance of a general class of K-dimensional
coding schemes for data drawn from a distribution µ on the unit ball of a Hilbert
space H. These schemes encode a data point x ∼ µ as a vector ŷ ∈ RK , according
to the formula

ŷ = arg min
y∈A

(
‖x− Ty‖2 + g (y)

)
,

where A ⊆ RK is some set of codes (which we can always assume to span RK)
and g : RK → R+ is some regularizing function used to encourage or discourage
the use of certain codes, but g may also be chosen zero. The pair (A, g) defines
the particular coding scheme.

T : RK → H is a linear map, which defines a particular implementation of
the coding scheme. It embeds the set A of codes in H and yields the set T (A)
of exactly codable patterns. If ŷ is the code found for x then x̂ = T ŷ is the
reconstructed data point. The quantity

fT (x) = min
y∈A

(
‖x− Ty‖2 + g (y)

)
is the (regularized) reconstruction error.

Given a coding scheme (A, g) and a finite number of independent observations
x1, ..., xm ∈ H, a common sense approach searches for an implementation Topt

which is optimal on average over the observed points, that is

Topt = arg min
T∈C

1
m

m∑
i=1

fT (xi) , (1)



2

where C denotes some class of linear embeddings T : RK → H. As we shall
see, this framework is general enough to include principal component analysis,
K-means clustering, non-negative matrix factorization [9] and the sparse coding
schemes as proposed in [12].

To give a justification of this approach (which can be regarded as empirical
risk minimization) we require that the class of sets {T (A) : T ∈ C} is uniformly
bounded, or, equivalently, that the quantity

‖C‖A = sup
T∈C

‖T‖A = sup
T∈C

sup
y∈A

‖Ty‖

is finite. We then have the following high probability bound on the expected
reconstruction error, uniformly valid for all T ∈ C.

Theorem 1. Assume that K > 1, ‖C‖A ≥ 1, that the functions fT for T ∈ C,
when restricted to the unit ball of H, have range contained in [0, b], and that the
measure µ is supported on the unit ball of H. Fix δ > 0.

Then with probability at least 1− δ in the observed data x ∼ µm we have for
every T ∈ C that

Ex∼µfT (x)− 1
m

m∑
i=1

fT (xi) ≤
K√
m

(
20 ‖C‖A +

b

2

√
ln
(
16m ‖C‖2

A

))
+b

√
ln 1/δ

2m
.

If ‖C‖A < ∞ and b < ∞ our result immediately implies convergence in
probability, uniform in all possible implementations of the respective coding
scheme. We are not aware of other comparable results for nonnegative matrix
factorization [9] or the sparse coding techniques as in [12].

Before providing a proof of Theorem 1 we illustrate its implications in some
specific cases of interest.

2 Examples of coding schemes

Several coding schemes can be expressed in our framework. We briefly describe
these methods and how our result applies.

2.1 Principal component analysis

This classical method (PCA) seeks the K-dimensional orthogonal projection
which maximizes the projected variance and then uses this projection to encode
future data. Let TP be an isometry which maps RK to the range of a projection
P . Since

‖Px‖2 = ‖x‖2 − min
y∈RK

‖x− TP y‖2
,

finding P to maximize the true or empirical expectation of ‖Px‖2 is equivalent
to finding T to minimize the corresponding expectation of miny∈RK ‖x− Ty‖2. If
we use the projection P to encode a given x ∈ H then Px = TP ŷ where ŷ ∈ RK
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is the minimizer ‖x− TP y‖2. We see that PCA is described by our framework
upon the identifications A = RK , g ≡ 0 where C is restricted to the class of
isometries T : RK → H. Given T ∈ C and x ∈ H the reconstruction error is

fT (x) = min
y∈RK

‖x− Ty‖2
.

If the data are constrained to be in the unit ball of H, as we generally assume,
then it is easily seen that we can take A to be the unit ball of RK without
changing any of the encodings. We can therefore apply our result with ‖C‖A = 1
and b = 1. This is besides the point however, because in the simple case of PCA
much better bounds are available ([13], [17]). In fact we will prove a bound of
order

√
K/m in the course of the proof of Theorem 1 (see Lemma 4 below).

In [17] local Rademacher averages are used to give faster rates under certain
circumstances.

An objection to PCA is, that generic codes have K nonzero components,
while for practical and theoretical reasons sparse codes with much less than K
nonzero components are preferable.

2.2 K-means clustering or vector quantization

Here A = {e1, ..., eK}, where the ek form an orthonormal basis of RK and
g ≡ 0. An implementation T now defines a set of centers {Te1, ..., T eK}, the
reconstruction error is minK

k=1 ‖x− Tek‖2 and a data point x is coded by the ek

such that Tek is nearest to x. The algorithm (1) becomes

Topt = arg min
T∈C

1
m

m∑
i=1

K
min
k=1

‖x− Tek‖2
.

It is clear that every center Tek has at most unit norm, so that ‖C‖A = 1. Since
all data points are in the unit ball we have ‖x− Tek‖2 ≤ 4 so we can set b = 4
and the bound on the estimation error becomes(

20 + 2
√

ln (16m)
) K√

m
+

√
8 ln (1/δ)

m
.

The order of this bound matches up to
√

lnm the order given in [3] or [14].
To illustrate our method we will also prove the bound

√
18π

K√
m

+

√
8 ln (1/δ)

m

(Theorem 5), which is slightly better than those in [3] or [14]. There is a lower
bound of order

√
K/m in [2], and it is unknown which of the two bounds (upper

or lower) is tight.
In K-means clustering every code has only one nonzero component, so that

sparsity is enforced in a maximal way. On the other hand this results in a weaker
approximation capability of the coding scheme.
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2.3 Nonnegative matrix factorization

Here A is the cone A =
{∑K

k=1 λkek : λi ≥ 0
}

and g ≡ 0. A chosen embedding
T generates a cone T (A) ⊂ H onto which incoming data is projected. In the
original formulation by Lee and Seung [9] it is postulated that both the data and
the vectors Tek be contained in the positive orthant of some finite dimensional
space, but we can drop most of these restrictions, keeping only the requirement
that 〈Tek, T el〉 ≥ 0 for 1 ≤ k, l ≤ K.

No coding will change if we require that ‖Tek‖ = 1 for all 1 ≤ k ≤ K by a
suitable normalization. The set C is then given by

C = {T : RK → H : ‖Tek‖ = 1, 〈Tek, T el〉 ≥ 0, 1 ≤ k, l ≤ K}.

We can restrict A to its intersection with the unit ball in RK (see Lemma 2
below) and set ‖C‖A =

√
K. From Theorem 1 we obtain the bound

K√
m

(
20
√

K +
1
2

√
ln (16mK)

)
+

√
ln (1/δ)

2m

on the estimation error. We do not know of any other generalization bounds for
this coding scheme.

Nonnegative matrix factorization appears to encourage sparsity, but cases
have been reported where sparsity was not observed [10]. In fact this undesir-
able behaviour should be generic for exactly codable data. Various authors have
therefore proposed additional constraints ([10], [6]). It is clear that additional
constraints on C can only improve generalization and that the passage from A
to a subset can only improve our bounds.

2.4 Sparse coding of Olshausen and Field

In the original formulation [12] A = RK but g is one of the functions g (y) =
−λ
∑

i e−y2
i , g (y) = λ

∑
i ln
(
1 + y2

i

)
or g (y) = λ

∑
i |yi| and λ > 0 is a regular-

ization parameter which controls how strongly sparsity is to be encouraged. To
see how our result applies, we focus on the last and most conventional regularizer
g (y) = λ ‖y‖1. If ŷ is a minimizer for ‖x− Ty‖2 + λ ‖y‖1 with ‖x‖ ≤ 1 then

λ ‖ŷ‖ ≤ λ ‖ŷ‖1 ≤ ‖x− T ŷ‖2 + λ ‖ŷ‖1

≤ ‖x− T0‖2 + λ ‖0‖1 = ‖x‖2 ≤ 1,

so ‖ŷ‖ ≤ λ−1, which shows that we can equivalently set A to be the ball of
radius λ−1 in the definition of this coding scheme. We let C = {T : RK → H :
‖T‖∞ ≤ c}. Then we have ‖C‖A ≤ λ−1c. By the same argument as above all
fT have range contained in [0, 1], so the Theorem can be applied with b = 1 to
yield the bound

K√
m

(
20c

λ
+

1
2

√
ln
(
16mλ−2c

))
+

√
ln (1/δ)

2m
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on the estimation error. It is interesting to observe that increasing the regular-
ization parameter λ, both encourages sparsity and improves estimation. With
similar but more complicated methods the Theorem can also be applied to the
other regularizers.

The method of Olshausen and Field [12] approximates with a compromise
of geometric proximity and sparsity and our result asserts that the observed
value of this compromise generalizes to unseen data if enough data have been
observed.

3 Proofs

We first introduce some notation, conventions and auxiliary results. Then we set
about to prove our main result.

3.1 Notation, definitions and auxiliary results

Throughout H denotes a Hilbert space. The term norm and the notation ‖·‖
and 〈·, ·〉 always refer to the euclidean norm and inner product on RK or on H.
Other norms are characterized by subscripts. If H1 and H2 are any Hilbert spaces
L (H1,H2) denotes the vector space of bounded linear transformations from H1

to H2. If H1 = H2 we just write L (H1) = L (H1,H1). With U (H1,H2) we
denote the set of isometries in L (H1,H2), that is maps U satisfying ‖Ux‖ = ‖x‖
for all x ∈ H1.

We use L2 (H) for the set of Hilbert-Schmidt operators on H, which be-
comes itself a Hilbert space with the inner product 〈T, S〉2 =tr(T ∗S) and the
corresponding (Frobenius-) norm ‖·‖2.

For x ∈ H the operator Qx is defined by Qxz = 〈z, x〉. For any T ∈ L2 (H)
the identity

〈T ∗T,Qx〉2 = ‖Tx‖2 (2)

is easily verified.
Suppose that A ⊆ RK spans RK , that H ′ is any Hilbert space (which could

also be RK). It is easily verified that the quantity

‖T‖A = sup
y∈A

‖Ty‖

defines a norm on L
(
RK ,H ′).

We use the following well known result on covering numbers (e.g. Proposition
5 in [4]).

Proposition 1. Let B be a ball of radius r in an N -dimensional Banach space
and ε > 0. There exists a subset Bε ⊂ B such that |Bε| ≤ (4r/ε)N and ∀z ∈
B,∃z′ ∈ Bε with d (z, z′) ≤ ε, where d is the metric of the Banach space.

The following concentration inequality, known as the bounded difference in-
equality [11], goes back to the work of Hoeffding [5].
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Theorem 2. Let µi be a probability measure on a space Ωi, for i = 1, ...,m.
Let Ω =

∏m
i=1 Ωi and µ = ⊗m

i=1µi be the product space and product measure
respectively. Suppose the function Ψ : Ω → R satisfies

|Ψ (x)− Ψ (x′)| ≤ ci

whenever x and x′ differ only in the i-th coordinate. Then

Pr
x∼µ

{Ψ (x)− Ex′∼µΨ (x′) ≥ t} ≤ exp
(

−2t2∑m
i=1 c2

i

)
.

Throughout σi will denote a sequence of mutually independent random vari-
ables, uniformly distributed on {−1, 1} and γi, γij will be (multipled indexed)
sequences of mutually independent Gaussian random variables, with zero mean
and unit standard deviation.

If F is a class of real functions on a space X and µ a probability measure on
X then for m ∈ N the Rademacher and Gaussian complexities of F w.r.t. µ are
defined ([8],[1]) as

Rm (F , µ) =
2
m

Ex∼µmEσ sup
f∈F

m∑
i=1

σif (xi) ,

Γm (F , µ) =
2
m

Ex∼µmEγ sup
f∈F

m∑
i=1

γif (xi)

repectively.
Appropriately scaled Gaussian complexities can be substituted for Rademacher

complexities, by virtue of the next Lemma. For a proof see, for example, [8, p.
97].

Lemma 1. For A ⊆ Rk we have R (A) ≤
√

π/2 Γ (A).

The next result is known as Slepian’s lemma ([15], [8]).

Theorem 3. Let Ω and Ξ be mean zero, separable Gaussian processes indexed
by a common set S, such that

E (Ωs1 −Ωs2)
2 ≤ E (Ξs1 −Ξs2)

2 for all s1, s2 ∈ S.

Then
E sup

s∈S
Ωs ≤ E sup

s∈S
Ξs.

The following result, which generalizes Theorem 8 in [1], plays a central role
in our proof.

Theorem 4. Let {Fn : 1 ≤ n ≤ N} be a finite collection of [0, b]-valued function
classes on a space X , and µ a probability measure on X . Then ∀δ ∈ (0, 1) we
have with probability at least 1− δ that

max
n≤N

sup
f∈Fn

[
Ex∼µf (x)− 1

m

m∑
i=1

f (xi)

]
≤ max

n≤N
Rm (Fn, µ) + b

√
lnN + ln (1/δ)

2m
.
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Proof. Denote with Ψn the function on Xm defined by

Ψn (x) = sup
f∈Fn

[
Ex∼µf (x)− 1

m

m∑
i=1

f (xi)

]
, x ∈ Xm.

By standard symmetrization (see [16]) we have Ex∼µmΨn (x) ≤ Rm (Fn, µ) ≤
maxn≤N Rm (Fn, µ). Modifying one of the xi can change the value of any Ψn (x)
by at most b/m, so that by a union bound and the bounded difference inequality
(Theorem 2)

Pr
{

max
n≤N

Ψn > max
n≤N

Rm (Fn, µ) + t

}
≤
∑

n

Pr {Ψn > EΨn + t} ≤ Ne−2m(t/b)2 .

Solving δ = Ne−2m(t/b)2 for t gives the result. ut

The following lemma was used in Section 2.3.

Lemma 2. Suppose ‖x‖ ≤ 1, ‖ck‖ = 1, 〈ck, cl〉 ≥ 0, y ∈ RK , yi ≥ 0. If y
minimizes

h (y) =

∥∥∥∥∥x−
K∑

k=1

ykck

∥∥∥∥∥
2

,

then ‖y‖ ≤ 1.

Proof. Assume that y is a minimzer of h and ‖y‖ > 1.Then∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

= ‖y‖2 +
∑
k 6=l

ykyl 〈ck, cl〉 > 1.

Let the real function f be defined by f (t) = h (ty). Then

f ′ (1) = 2

∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

−

〈
x,

K∑
k=1

ykck

〉
≥ 2

∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

−

∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥


= 2

(∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥− 1

)∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
> 0.

So f cannot have a minimum at 1, whence y cannot be a minimizer of h. ut



8

3.2 Proof of the main results

We now fix a spanning set A ⊆ RK and a ”regularizer” g : A → R+. Recall that,
for T ∈ L

(
RK ,H

)
, we had introduced the notation

fT (x) = inf
y∈A

(
‖x− Ty‖2 + g (y)

)
, x ∈ H.

Our principal object of study is the function class

F =
{

x 7→ inf
y∈A

(
‖x− Ty‖2 + g (y)

)
: T ∈ C

}
= {fT : T ∈ C} ,

restricted to the unit ball in H, when C ⊂ L
(
RK ,H

)
is some fixed set of candi-

date implementations of our coding scheme.
To illustrate our method we first consider the somewhat simpler special case

of K-means clustering, corresponding to the choices A = {e1, ..., eK}, g ≡ 0 and
C = {T : ‖T‖A ≤ 1}, equivalent to the requirement that ‖Tek‖ ≤ 1 for all T ∈ C
and all k ∈ {1, ...,K}. As already noted in Section 2.2 the vectors Tek define the
cluster centers.

Theorem 5. For every δ > 0 with probability greater 1−δ in the sample x ∼ µm

we have for all T ∈ C

Ex∼µ

K
min
k=1

‖x− Tek‖2 ≤ 1
m

m∑
i=1

K
min
k=1

‖xi − Tek‖2 + K

√
18π

m
+

√
8 ln (1/δ)

m
.

Proof. According to [1] we need to bound the Rademacher complexity of the
function class F . By Lemma 1 it suffices to bound the corresponding Gaussian
complexity, which we shall do using Slepian’s Lemma (Theorem 3). We have

R (F , µ) ≤
√

π

2
Γ (F , µ) =

√
π

2
2
m

Ex∼µmEγ sup
T∈C

m∑
i=1

γi

K
min
k=1

‖xi − Tek‖2
. (3)

Now we fix a sample x and define Gaussian processes Ω and Ξ indexed by C

ΩT =
m∑

i=1

γi

K
min
k=1

‖xi − Tek‖2 and ΞT =
m∑

i=1

K∑
k=1

γik ‖xi − Tek‖2 .

Using orthonormality of the γi and γik we obtain for T1, T2 ∈ C

E (ΩT1 −ΩT2)
2 =

m∑
i=1

(
min

k
‖xi − T1ek‖2 −min

k
‖xi − T2ek‖2

)2

≤
m∑

i=1

max
k

(
‖xi − T1ek‖2 − ‖xi − T2ek‖2

)2

≤
m∑

i=1

K∑
k=1

(
‖xi − T1ek‖2 − ‖xi − T2ek‖2

)2

(*)

= E (ΞT1 −ΞT2)
2 .
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By Slepian’s Lemma, the triangle inequality, Schwarz’ and Jensen’s inequalities

Eγ sup
T∈C

m∑
i=1

γi

K
min
k=1

‖xi − Tek‖2

= Eγ sup
T∈C

ΩT

≤ Eγ sup
T∈C

ΞT (Slepian)

= Eγ sup
T∈C

m∑
i=1

K∑
k=1

γik ‖xi − Tek‖2

≤ 2KEγ

∥∥∥∥∥
m∑

i=1

γixi

∥∥∥∥∥+ KEγ

∣∣∣∣∣
m∑

i=1

γi

∣∣∣∣∣ (triangle and Schwarz)

≤ 3K
√

m (Jensen).

Substitution in (3) yields R (F , µ) ≤ K
√

18π/m, which, using Theorem 4 with
N = 1 and b = 4 implies the result. ut

It is tempting to use the same technique in the general case. Unfortunately
an essential step in the application of Slepian’s Lemma, marked (*) above, is
impossible if A is infinite, so that a more devious path has to be chosen.

The idea is the following: Every implementing map T ∈ C can be factored as
T = U ◦ S, where S is a K ×K matrix, S ∈ L

(
RK
)
, and U is an isometry, U ∈

U(RK ,H). Suitably bounded K×K matrices form a compact, finite dimensional
set, the complexity of which can be controlled using covering numbers, while the
complexity arising from the set of isometries can be controlled with Rademacher
and Gaussian averages. Theorem 4 then combines these complexity estimates.

For fixed S ∈ L
(
RK
)

we denote

GS =
{
fUS : U ∈ U

(
RK ,H

)}
.

Recall the notation ‖C‖A = supT∈C ‖T‖A = supT∈C supy∈A ‖Ty‖. With S we
denote the set of K ×K-matrices

S =
{
S ∈ L

(
RK
)

: ‖S‖A ≤ ‖C‖A

}
.

Lemma 3. Assume ‖C‖A ≥ 1, that the functions in F , when restricted to the
unit ball of H, have range contained in [0, b], and that the measure µ is supported
on the unit ball of H. Then with probability at least 1− δ for all T ∈ C

Ex∼µfT (x)− 1
m

m∑
i=1

fT (xi)

≤ sup
S∈S

Rm (GS , µ) +
bK

2

√√√√ ln
(
16m ‖C‖2

A

)
m

+
8 ‖C‖A√

m
+ b

√
ln (1/δ)

2m
.
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Proof. Fix ε > 0. The set S is the ball of radius ‖C‖A in the K2-dimensional
Banach space

(
L
(
RK
)
, ‖.‖A

)
so by Proposition 1 we can find a subset Sε ⊂

S, of cardinality |Sε| ≤ (4 ‖C‖A /ε)K2

such that every member of S can be
approximated by a member of Sε up to distance ε in the norm ‖.‖A.

We claim that for all T ∈ C there exist U ∈ U(RK ,H) and Sε ∈ Sε such that

|fT (x)− fUSε (x)| < 4 ‖C‖A ε,

for all x in the unit ball of H. To see this write T = US with U ∈ U(RK ,H)
and S ∈ L(RK). Then, since U is an isometry, we have

‖S‖A = sup
y∈A

‖Sy‖ = sup
y∈A

‖Ty‖ = ‖T‖A ≤ ‖C‖A

so that S ∈ S. We can therefore choose Sε ∈ Sε such that ‖Sε − S‖A < ε. Then
for x ∈ H, with ‖x‖ ≤ 1, we have

|fT (x)− fUSε
(x)| = inf

y∈A

(
‖x− USy‖2 + g (y)

)
− inf

y∈A

(
‖x− USεy‖2 + g (y)

)
≤ sup

y∈A

(
‖x− USy‖2 − ‖x− USεy‖2

)
= sup

y∈A
〈USεy − USy, 2x− (USy + USεy)〉

≤ (2 + 2 ‖C‖A) sup
y∈A

‖(Sε − S) y‖ ≤ 4 ‖C‖A ε.

Apply Theorem 4 to the finite collection of function classes {GS : S ∈ Sε} to see
that with probability at least 1− δ

sup
T∈C

Ex∼µfT (x)− 1
m

m∑
i=1

fT (xi)

≤ max
S∈Sε

sup
U∈U(RK ,H)

Ex∼µfUS (x)− 1
m

m∑
i=1

fUS (xi) + 8 ‖C‖A ε

≤ max
S∈Sε

Rm (GS , µ) + b

√
ln |Sε|+ ln (1/δ)

2m
+ 8 ‖C‖A ε

≤ sup
S∈S

Rm (GS , µ) +
bK

2

√√√√ ln
(
16m ‖C‖2

A

)
m

+
8 ‖C‖A√

m
+ b

√
ln (1/δ)

2m
,

where the last line follows from the known bound on |Sε|, subadditivity of the
square root and the choice ε = 1/

√
m. ut

To complete the proof of Theorem 1 we now fix some S ∈ S and focus on the
corresponding function class GS . Observe that for an isometry U ∈ U(RK ,H) the
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operator U∗U is the identity on RK and that UU∗ is the orthogonal projection
onto the range of U . We therefore have, for x ∈ H,

inf
y∈A

‖x− USy‖2 = ‖x− UU∗x‖2 + inf
y∈A

‖UU∗x− USy‖2

= ‖x‖2 − ‖UU∗x‖2 + inf
y∈A

‖U∗x− Sy‖2

so that GS = D + ES , where

D =
{

x 7→ ‖x‖2 − ‖UU∗x‖2 : U ∈ U
(
RK ,H

)}
ES =

{
x 7→ inf

y∈A
‖U∗x− Sy‖2 + g (y) : U ∈ U

(
RK ,H

)}
.

We will bound the Rademacher complexities of these two function classes in
turn.

Observe that the function class D is the class of reconstruction errors of PCA,
so the next lemma and an application of Theorem 4 with N = 1 and b = 1 also
give a generalization bound for PCA of order

√
K/m.

Lemma 4. R (D, µ) ≤ 2
√

K/m.

Proof. For z ∈ H define the outer product operator Qz by Qzx = 〈x, z〉 z. With
〈., .〉2 and ‖.‖2 denoting the Hilbert-Schmidt inner product and norm respectively
we have for ‖xi‖ ≤ 1

Eσ sup
f∈D

m∑
i=1

σif (xi) = Eσ sup
U∈U

m∑
i=1

σi

(
‖xi‖2 − ‖UU∗xi‖2

)
= Eσ sup

U∈U

〈
m∑

i=1

σiQxi , UU∗

〉
2

≤ Eσ

∥∥∥∥∥
m∑

i=1

σiQxi

∥∥∥∥∥
2

sup
U∈U

‖UU∗‖2

≤
√

mK,

since the Hilbert-Schmidt norm of a K-dimensional projection is
√

K. The result
follows upon multiplication with 2/m and taking the expectation in µm. ut

Lemma 5. For any S ∈ L
(
RK
)

we have

R (ES , µ) ≤
4 (1 + ‖S‖A) K√

m

√
π

2
.
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Proof. Let ‖xi‖ ≤ 1 and define Gaussian processes ΩU and ΞU indexed by
U(RK ,H)

ΩU =
m∑

i=1

γi inf
y∈A

(
‖U∗xi − Sy‖2 + g (y)

)
ΞU = 2 (1 + ‖S‖A)

K∑
k=1

m∑
i=1

γik 〈xi, Uek〉 ,

where the ek are the canonical basis of RK . For U1, U2 ∈ U(RK ,H) we have

E (ΩU1 −ΩU2)
2 ≤

m∑
i=1

sup
y∈A

〈U∗
1 xi − U∗

2 xi, U
∗
1 xi + U∗

2 xi − 2Sy〉2

≤
m∑

i=1

‖U∗
1 xi − U∗

2 xi‖2 sup
y∈A

‖U∗
1 xi + U∗

2 xi − 2Sy‖2

≤ 4 (1 + ‖S‖A)2
m∑

i=1

K∑
k=1

(〈xi, U1ek〉 − 〈xi, U2ek〉)2

= E (ΞU1 −ΞU2)
2
.

It follows from Lemma 1 and Slepians lemma (Theorem 3) that

Rm (ES , µ) ≤ Ex∼µm

2
m

√
π

2
Eγ sup

U
ΞU ,

so the result follows from the following inequalities, using Schwarz’ and Jensens
inequality, the orthonormality of the γik and the fact that ‖xi‖ ≤ 1 on the
support of µ.

Eγ sup
U

ΞU = 2 (1 + ‖S‖A) E sup
U

K∑
k=1

〈
m∑

i=1

γikxi, Uek

〉

≤ 2 (1 + ‖S‖A)
K∑

k=1

E

∥∥∥∥∥
m∑

i=1

γikxi

∥∥∥∥∥
≤ 2 (1 + ‖S‖A) K

√
m.

ut

Using the subadditivity of the Rademacher complexity, the last two results
give for K > 1 and ‖C‖A ≥ 1

sup
S∈S

Rm (GS , µ) ≤ Rm (D, µ) + sup
S∈S

Rm (ES , µ)

≤ 1√
m

(
2
√

K + 8K ‖C‖A

√
π

2

)
≤

12K ‖C‖A√
m

,

and substitution in Lemma 3 gives Theorem 1.
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