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Abstract. We give a lower bound for the error of any unitarily invari-
ant algorithm learning half-spaces against the uniform or related distri-
butions on the unit sphere. The bound is uniform in the choice of the
target half-space and has an exponentially decaying deviation probability
in the sample. The technique of proof is related to a proof of the John-
son Lindenstrauss Lemma. We argue that, unlike previous lower bounds,
our result is well suited to evaluate the benefits of multi-task or transfer
learning, or other cases where an expense in the acquisition of domain
knowledge has to be justified.

1 Introduction

We will prove the following lower bound for half-space learning from the uniform
distribution σ on the unit sphere S in RN .

Theorem 1. Let m < N and suppose that f : Sm × {−1, 1}m → S is any
learning algorithm such that

f (V x,y) = V f (x,y) , ∀unitary V on RN . (1)

Then for every u ∈ S

Pr
x∼σm

{
errσ,u (f (x, u (x))) <

1
π

√
N −m

N
− t

}
≤ e−N(tπ)2 .

Here u ∈ S defines the target function u (x) = sign〈u, x〉, x ∈ S and
f (x, u (x)) is the hypothesis returned from the algorithm trained on the sample
x = (x1, ..., xm) labeled by u, where u (x) = (u (x1) , ..., u (xm)). The classifica-
tion error errσ,u (f (x, u (x))) is the σ-measure of the set of points x ∈ S where
the sign of 〈u, x〉 and that of 〈f (x, u (x)) , x〉 disagree.

The symmetry condition (1) plays an important role in the interpretation of
our result. For the proof we only use the fact that symmetry of f implies that
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f (x,y) lies in the subspace spanned by the sample x. Clearly equation (1) is
satisfied by all kernel-based algorithms which only depend on the Gramian of x.

Our bound appears weaker than existing lower bounds in [4] and [6] in the
sense that it only applies to symmetric algorithms. In another sense it is stronger,
because it applies uniformly to all target functions, not just to a target function
mischievously designed to make the algorithm f fail. It is precisely because of
these differences that our bound is suitable for the evaluation of transfer learning
or other methods to obtain domain knowledge, where the previous bounds in
[4] and [6] are not applicable. A lower bound which holds for all algorithms
cannot be used to justify the choice of any algorithm. A lower bound which holds
for all symmetric algorithms can justify the use of an asymmetric algorithm if
symmetry-breaking side information is available at a tolerable cost. This will be
explained in detail in Section 5.

Theorem 1 is weaker and stronger than the results in [4] and [6] in two other
respects. It is weaker, because it is restricted to small sample sizes m < N .
When we expect small sample sizes and high-dimensional phenomena, this is
not a problem. On the other hand Theorem 1 exhibits an exponential concentra-
tion property. If the ambient dimensionN is large, the quantity

√
(N −m) /N/π

becomes an effective performance barrier, as smaller errors have neglegible prob-
ability.

A simple technique adapts our result to the case when the input marginal µ
is not equal to, but absolutely continuous with respect to σ. If the corresponding
density function η satisfies 0 < a ≤ η (x) ≤ b for almost all x ∼ σ, then the above
bound reads

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− t

}
≤ exp

(
−N

(
tπ

a

)2

+m ln b

)
,

which reduces to the bound in Theorem 1 for η = 1, i.e. µ = σ. We will prove
this more general version below (Theorem 2).

We introduce some notation in the next section and give a proof of Theorem
1 in Section 3. Sections 4 and Section 5 briefly discuss previous work and the
application to the evaluation of domain knowledge.

2 Notation

We will work in the space RN with euclidean inner product 〈·, ·〉, norm ‖x‖ =√
〈x, x〉 and euclidean metric d (x, y) = ‖x− y‖. For x ∈ RN and F ⊆ RN we

write d (x, F ) = inf {d (x, y) : y ∈ F} and we denote with F⊥ the subspace F⊥ =
{x : 〈x, y〉 = 0,∀y ∈ F}. We write GN,m for the set of all linear m-dimensional
subspaces of RN . If M is a subspace of RN then PM is the orthogonal projection
operator onto M .

With S we denote the unit sphere in RN , that is S =
{
x ∈ RN : ‖x‖ = 1

}
.

If u, v ∈ S we denote with ρ (u, v) the (shortest) angle between u and v, so
that ρ (·, ·) is the geodesic metric on S. There is a unique unitarily invariant
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probability measure σ (called the Haar measure) on S. If γ is a standard Gaussian
random variable (zero mean and unit variance), then σ is defined by

Ex∼σ [ψ (x)] = Ex∼γNψ

(
x

‖x‖

)
for every Borel function ψ on S.

An m-tuple x = (x1, . . . , xm) ∈ Sm is called a sample. A labeled sample is
a member (x,y) ∈ Sm × {−1, 1}m. If x = (x1, . . . , xm) is a sample then we use
[x] to denote the linear span {x1, . . . , xm}, and if V is a unitary transformation
on RN , we denote with V x the sample V x = (V x1, . . . , V xm).

For labeling we use the sign function

sgn (t) =
{

1 if t > 0,
−1 otherwise

which differs from the usual definition, but this will simplify notation and oth-
erwise be immaterial in the following. If u, x ∈ S we let u (x) = sgn(〈u, x〉). The
target function u (·) defines the open half-space

{x : u (x) = 1} = {x : 〈u, x〉 > 0} .

If x ∈ Sm is a sample then we denote

u (x) = (u (x1) , . . . , u (xm)) ∈ {−1, 1}m .

Every u ∈ S induces a labeled sample (x, u (x)).
A learning algorithm is a function f : Sm × {−1, 1}m → S, which assigns to

every labeled sample (x,y) the hypothesis f (x,y) ∈ S. A learning algorithm is
called symmetric if

f (V x,y) = V f (x,y)

for all unitary V . A symmetric algorithm has no preferred coordinate system.
Note that all kernel-based algorithms are symmetric.

For u, v ∈ S we denote

∆ (u, v) = {x : u (x) 6= v (x)} ⊆ S.

If µ is a probability measure on S and u, v ∈ S then

errµ,u (v) = µ (∆ (u, v))

is the error probability for the hypothesis v when the true half-space is u and
the underlying input probability is µ.

3 Proofs

In this section we prove the results announced in the introduction.
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The idea is the following: The expected error of any hypothesis v is equal
to the geodesic distance from v to the target u, divided by π. The hypothesis
generated by a symmetric algorithm lies in [x] , the span of the data, so the
error of this hypothesis is lower bounded by the euclidean distance from u to
[x], divided by π. This distance is sharply concentrated at

√
(N −m) /N , as

follows from a result of Dasgupta and Gupta [3], given in their proof of the
Johnson-Lindenstrauss Lemma.

Proposition 1. Let µ be a probability measure on S, such that dµ (x) = η (x) dσ (x)
with 0 < a ≤ η (x) ≤ b for almost all x ∼ σ. Then for every symmetric learning
algorithm f , every u ∈ S and every t > 0 we have

Pr
x∼µm

{errµ,u (f (x, u (x))) < t} ≤ bm sup
M∈GN,m

Pr
w∼σ

{
d (w,M) <

tπ

a

}
.

Proof. For any v ∈ S we have

errµ,u (v) =
∫

∆(u,v)

ηdσ ≥ a σ (∆ (u, v)) .

Since σ is invariant under rotations in the u-v-plane, it is easily seen that
σ (∆ (u, v)) is just the angle between u and v in radians, divided by π, that
is σ (∆ (u, v)) = ρ (u, v) /π. Since ρ (u, v) ≥ d (u, v), it follows that

errµ,u (v) ≥ d (u, v)
a

π
. (2)

Let (x,y) be an arbitrary labeled sample and let V be the unitary map V = I on
[x] and V = −I on [x]⊥. By symmetry of f we must have f (x,y) = f (V x,y) =
V f (x,y), which clearly implies that f (x,y) ∈ [x]. Combining this observation
with (2), we have that

errµ,u (f (x, u (x))) ≥ d (u, [x])
a

π
.

We then have

Pr
x∼µm

{errµ,u (f (x, u (x))) < t} ≤ Pr
x∼µm

{
d (u, [x]) <

tπ

a

}
(3)

≤ bm Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
,

where we used the upper bound on the density function η in the second inequal-
ity.
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We now use the unitary symmetry of the Haar measure σ. For any w ∈ S we
denote with Vw→u the rotation which takes w to u and Vu→w its inverse. Then

Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
= Ew∼σ Pr

x∼σm

{
d (u, Vw→u [x]) <

tπ

a

}
= Ew∼σ Pr

x∼σm

{
d (Vu→wu, [x]) <

tπ

a

}
= Ew∼σEx∼σm1

{
d (w, [x]) <

tπ

a

}
.

Exchanging the two expectations and bounding the expectation in x by a supre-
mum gives

Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
≤ sup

M∈GN,m

Pr
w∼σ

{
d (w,M) <

tπ

a

}
,

which, together with (3), gives the conclusion. ut

In their proof of the Johnson-Lindenstrauss Theorem Dasgupta and Gupta
[3, Lemma 2.2] give the following lemma.

Lemma 1. Let k < N and M be a k-dimensional subspace of RN and β ∈ (0, 1).
Then

Pr
x∼σ

{
‖PMx‖2 ≤ βk

N

}
≤ exp

(
k

2
(1− β + lnβ)

)
.

We bring this result into a weaker but simpler form which is better suited
for our purposes.

Lemma 2. Let k < N and M be a k-dimensional subspace of RN and t ∈(
0,
√

(N − k)/N
)
. Then

Pr
x∼σ

{
d (x,M) ≤

√
N − k

N
− t

}
≤ e−Nt2 .

Proof. For s ∈ (0, 1) let

g (s) = (1− s)2 − 1− 2 ln (1− s) .

Now, if h (s) = g (s) − 2s2, then h (0) = 0 and h′ (s) = 2s2/ (1− s) ≥ 0. This
shows that g (s) ≥ 2s2. Denote k′ = dimM⊥ = N − k and let s = t

√
N/k′.
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Then (1− s)2 ∈ (0, 1), so by Lemma 1 applied to M⊥ we get

Pr
x∼σ

{
d (x,M) ≤

√
k′

N
− t

}

= Pr
x∼σ

{
‖PM⊥x‖2 ≤ (1− s)2

k′

N

}
≤ exp

(
k′

2

(
1− (1− s)2 + 2 ln (1− s)

))
= exp

(
−k′g (s)

2

)
≤ e−k′s2

= e−Nt2 .

ut

Now we can state and prove our main result.

Theorem 2. Let µ be a probability measure on S, such that dµ (x) = η (x) dσ (x)
with 0 < a ≤ η (x) ≤ b for almost all x ∼ σ. Then for every symmetric learning
algorithm f and for every target u ∈ S

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− t

}
≤ exp

(
−N

(
tπ

a

)2

+m ln b

)
.

Proof. We have

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− a

π
t

}

≤ bm sup
M∈GN,m

Pr
w∼σ

{
d (w,M) <

√
N −m

N
− t

}
≤ bme−Nt2 ,

where we used Proposition 1 in the first and Lemma 2 in the second inequality.
The result follows. ut

4 Previous lower bounds

In learning theory a lot of attention has been devoted to upper error bounds for
learning algorithms, and comparatively little work has been done on lower error
bounds. For a deeper understanding of the foundations of the subject, however,
lower bounds are interesting and they can serve to establish the tightness of
upper bounds.

Ehrenfeucht, Haussler, Kearns and Valiant [4] gave a lower bound on the
sample complexity of distribution free PAC learning of a function class F of VC-
dimension d on a domain X . They showed that there is a probability distribution
µ on X such that any learning algorithm requires

Ω

(
d

ε
+

1
ε

ln
1
δ

)
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examples in order to learn every function in F , with an error at most ε (as
measured by µ) and probability at least 1− δ in the examples drawn i.i.d. from
µ. While this result is a milestone in statistical learning theory, the method
of proof, as in [4] or [1], constructs a special distribution µ concentrated in a
particularly mischievous way on a set shattered by F , and it can be expected that
the distributions underlying realistic learning problems are less pathological.

This deficiency motivated Phil Long [6] to prove the following result per-
taining to the learning of the class F of half-spaces in RN from the uniform
distribution σ on the unit sphere S ⊆ RN : For any learning algorithm it takes

Ω

(
N

ε
+

1
ε

ln
1
δ

)
examples in order to learn every half space on RN with an error at most ε (as
measured by µ) and probability at least 1− δ in the examples drawn i.i.d. from
σ. This result replaces the pathological distribution above by a particularly well
behaved one and is of considerable importance, because the notion of halfspace
learning is central to many learning techniques (support vector machines, per-
ceptron, etc.).

If the sample sizem is smaller than the asserted complexity, then these results
can be reformulated as follows: For every algorithm f there exists a target vector
u ∈ S such that the probability, that the error of f with respect to u is less than
ε, is upper bounded by δ. This is substantially different from our result, which
restricts f to be symmetric but holds uniformly for all target vectors.

5 Evaluation of domain knowledge

We now return to the case, where the marginal distribution of the data is given
by the Haar measure σ and describe circumstances under which our bound is
preferable to the results above.

Complete ignorance of the nature of potential target functions can be ex-
pressed as a maximal entropy assumption, which in our case corresponds to the
uniform prior σ and assigns the same a-priori probability to all halfspaces. Un-
der this assumption it is reasonable to use an algorithm f∗ which is optimal in
the sense that it minimizes the expected error of the hypotheses it generates,
on average over all training samples and target functions drawn from the uni-
form distribution. This algorithm, which would correspond to the Bayes-point
algorithm as in [5], should therefore minimize the functional

E (f) = Eu∼σEx∼σmerrσ,u (f (x, u (x))) .

For a labeled sample (x,y) ∈ Sm × {−1, 1}m we denote

C (x,y) = {u ∈ S : u (x) = y} .

C (x,y) is thus the set of all hypotheses consistent with (x,y), sometimes also
called the version-space. Observe that, given x and u, there is exactly one y such
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that y = u (x), that is u ∈ C (x,y). We therefore obtain

E (f) = π−1Eu∼σEx∼σmρ (f (x, u (x)) , u)

= π−1Ex∼σm

∑
y∈{−1,1}m

Eu∼σρ (f (x, u (x)) , u) 1C(x,y) (u)

= π−1Ex∼σm

∑
y∈{−1,1}m

Eu∼σρ (f (x,y) , u) 1C(x,y) (u) ,

and, so, the optimal algorithm is given by

f∗ (x,y) = arg min
w∈S

Eu∼σρ (w, u) 1C(x,y) (u) .

The minimizer exists and is unique [7], so that this algorithm is indeed well
defined. We also have, for any unitary matrix V , that

Eu∼σρ (w, u) 1C(V x,y) (u) = Eu∼σρ (w, u) 1C(x,y)

(
V −1u

)
= Eu∼σρ

(
V −1w, u

)
1C(x,y) (u) ,

so that f∗ (V x,y) = V f∗ (x,y). The optimal algorithm f∗ is therefore symmet-
ric and the lower bound in Theorem 1 applies.

In summary these considerations show that in the absence of domain knowl-
edge one is led to the use of a symmetric algorithm, with the limitations implied
by Theorem 1. These limitations then also imply lower bounds on the functional
E , valid for every algorithm f , for example

E (f) ≥ E (f∗) ≥ 1
2π

(
1− e−

N−m
4

)√N −m

N
,

as can be obtained by setting t = (1/2π)
√

(N −m) /N in Theorem 1. Similar
bounds cannot be derived from the results in [4] and [6], because they only hold
for single target functions constructed in response to the algorithm f .

We were led to the use of the symmetric algorithm f∗ by our ignorance of
the true distribution of target functions. Suppose now that this distribution,
rather than being uniform, is concentrated on a small subset M of the sphere.
An example would be the intersection of a low-dimensional subspace with the
sphere. As long as we do not know M the uniform prior still represents our
knowledge on the potential target functions, and therefore the optimal algorithm
is still given by f∗ as above. On the other hand, if we have knowledge of M , we
can adopt an algorithm f ′ which only searches M . Since M is small there will
be a considerable improvement incurred by replacing f∗ with f ′. A quantitative
guarantee on this improvement can be calculated by applying an upper error
bound (using standard techniques) to f ′, and by an application of Theorem 1
to f∗.
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As a simple example, suppose that M is finite. Theorem 1, a standard result
and a union bound show the following: For every target function u ∈ M , with
probability at least 1 − δ in x ∼ σm, the difference of the errors of the two
algorithms satisfies

errσ,u (f∗ (x, u (x)))−errσ,u (f ′ (x, u (x))) ≥ 1
π

√
N −m− 2 ln 2

δ

2N
−

ln |M |+ ln 2
δ

m
,

which can be rather large if ln |M | � m� N .
If M is infinite, similar high probability bounds for the difference between

the errors of the two algorithms can be derived using the VC-dimension of the
hypothesis class corresponding to M . Such results cannot be obtained from the
bounds in [4] and [6], because they do not hold for every u and may only be
valid for a target function outsideM . Observe also that the classical lower bounds
cannot distinguish between f∗ and f ′, while Theorem 1 holds only for f∗ but
not for f ′, which is not symmetric.

In practice the symmetry breaking knowledge of M will not come for free,
but at a sometimes considerable cost. A case in point is multi-task or transfer-
learning (as in [2]), where knowledge of M is obtained from a large number of
tasks, with corresponding target functions drawn from M , and the cost of the
acquired knowledge takes the form of the sampling burden for these tasks and
the increased computational complexity of the transfer learning algorithm.

To justify such an expense it is necessary to compute the savings made in
moving from f∗ to f ′. A rigorous computation of the guaranteed savings is
possible only by comparing an upper error bound for f ′ to a lower error bound
for f∗, as described above.
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