Advanced Topics in Machine Learning (Part II)

4. Sparsity Methods

Massimiliano Pontil
Today’s Plan

• Sparsity in linear regression

• Formulation as a convex program – Lasso

• Group Lasso

• Matrix estimation problems (Collaborative Filtering, Multi-task Learning, Inverse Covariance, Sparse Coding, etc.)

• Structure Sparsity

• Dictionary Learning / Sparse Coding

• Nonlinear extension
L1-regularization

Least absolute shrinkage and selection operator (LASSO):

\[
\min_{\|w\|_1 \leq \alpha} \frac{1}{2} \| y - Xw \|_2^2
\]

where \(\|w\|_1 = \sum_{j=1}^{d} |w_j| \)

- equivalent problem: \(\min_{w \in \mathbb{R}^d} \frac{1}{2} \| y - Xw \|_2^2 + \lambda \|w\|_1 \)

- can be rewritten as a QP:

\[
\min_{w^+, w^- \geq 0} \frac{1}{2} \| y - X(w^+ - w^-) \|_2^2 + \lambda e^T(w^+ + w^-)
\]
L1-norm regularization encourages sparsity

Consider the case \(X = I \):

\[
\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \| \mathbf{w} - \mathbf{y} \|_2^2 + \lambda \| \mathbf{w} \|_1
\]

Lemma: Let \(H_\lambda(t) = (|t| - \lambda)_+ \text{sgn}(t), \ t \in \mathbb{R} \). The solution \(\hat{\mathbf{w}} \) is given by

\[
\hat{w}_i = H_\lambda(y_i), \ i = 1, \ldots, d
\]

Proof: First note that the problem decouples: \(\hat{w}_i = \text{argmin} \left\{ \frac{1}{2} (w_i - y_i)^2 + \lambda |w_i| \right\} \).

By symmetry \(\hat{w}_i y_i \geq 0 \), thus w.l.o.g. we can assume \(y_i \geq 0 \). Now, if \(\hat{w}_i > 0 \) the objective function is differentiable and setting the derivative to zero gives \(\hat{w}_i = y_i - \lambda \). Since the minimum is unique we conclude that \(\hat{w}_i = (y_i - \lambda)_+ \).
Minimal norm interpolation

If the linear system \(Xw = y \) of equations admits a solution, when \(\lambda \to 0 \) the L1-regularization problem reduces to:

\[
\min \{ \|w\|_1 : Xw = y \} \quad (\text{MNI})
\]

which is a linear program (exercise)

- the solution is in general not unique

- suppose that the \(y = Xw^* \); under which condition \(w^* \) is also the unique solution to (MNI)?
Restricted isometry property

Without further assumptions there is no hope that $\hat{w} = w^*$

The following condition are sufficient:

- **Sparsity**: $\text{card}\{j : |w_j^*| \neq 0\} \leq s$, with $s \ll d$

- **X** satisfies the restricted isometry property (RIP): there is a $\delta_s \in (0, 1)$ such that, for every $w \in \mathbb{R}^d$ with $\text{card}\{j : w_j \neq 0\} \leq s$, it holds that

\[
(1 - \delta_s)\|w\|_2^2 \leq \|Xw\|_2^2 \leq (1 + \delta_s)\|w\|_2^2
\]
Optimality conditions

Directional derivative of a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ at w in the direction d:

$$D^+ f(w; d) := \lim_{\epsilon \to 0^+} \frac{f(w + \epsilon d) - f(w)}{\epsilon}$$

- when f is convex, the limit is always well defined and finite

Theorem 1: $\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w)$ iff $D^+ f(\hat{w}; d) \geq 0 \ \forall d \in \mathbb{R}^d$

- if f is differentiable at w then $D^+ f(w; d) = d^T \nabla f(w)$ and Theorem 1 says that \hat{w} is a solution iff $\nabla f(\hat{w}) = 0$
Optimality conditions (cont.)

If f is convex its subdifferential at w is defined as

$$
\partial f(w) = \{ u : f(v) \geq f(w) + u^\top(v - w), \forall v \in \mathbb{R}^d \}
$$

- a set-valued function!
- always a closed convex set
- the elements of $\partial f(w)$ are called the subgradients of f at w
- intuition: $u \in \partial f(w)$ if the affine function $f(w) + u^\top(v - w)$ is a global underestimator of f

Theorem 2: $\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w)$, iff $0 \in \partial f(\hat{w})$ (easy to proof)
Optimality conditions (cont.)

Theorem 2: \(\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w) \), iff \(0 \in \partial f(\hat{w}) \)

- if \(f \) is differentiable then \(\partial f(w) = \{ \nabla f(w) \} \) and Theorem 2 says that \(\hat{w} \) is a solution iff \(\nabla f(\hat{w}) = 0 \)

Some properties of gradients are still true for subgradients, e.g:

- \(\partial (af)(w) = af(w) \), for all \(a \geq 0 \)

- If \(f \) and \(g \) are convex then \(\partial (f + g)(w) = \partial f(w) + \partial g(w) \)
Optimality conditions for Lasso

\[
\min \|y - Xw\|_2^2 + \lambda \|w\|_1
\]

- by Theorem 2 and the properties of subgradients, \(w\) is a optimal solution iff

 \[X^\top(y - Xw) \in \lambda \partial \|w\|_1\]

- to compute \(\partial \|w\|_1\) use the sum rule and the subgradient of the absolute value: \(\partial |t| = \{\text{sgn}(t)\}\) if \(t \neq 0\) and \(\partial |t| = \{u : |u| \leq 1\}\) if \(t = 0\)

Case \(X = I\): \(\hat{w}\) is a solution iff, for every \(i = 1, \ldots, d\), \(y_i - \hat{w}_i = \lambda \text{sgn}(\hat{w}_i)\) if \(\hat{w}_i \neq 0\) and \(|y_i - \hat{w}_i| \leq \lambda\) otherwise (verify that these formulae yield the soft thresholding solution on page 4)
General learning method

In generally we will consider optimization problems of the form

$$\min_{w \in \mathbb{R}^d} F(w), \quad \text{where } F(w) = f(w) + g(w)$$

Often f will be a data term: $f(w) = \sum_{i=1}^{m} E(w^\top x_i, y_i)$, and g a convex penalty function (non necessarily smooth, e.g. the L1-norm).

Next week we will discuss a general and efficient method to solve the above problem under the assumptions that f has some smoothness property and g is “simple”, in the sense that the following problem is easy to solve

$$\min_{w} \frac{1}{2} \|w - y\|^2 + g(w)$$
Group Lasso

Enforce sparsity across a-priori known groups of variables:

$$\min_{W \in \mathbb{R}^d} f(w) + \lambda \sum_{\ell=1}^{N} \|w|_{J_\ell}\|_2$$

where J_1, \ldots, J_N are prescribed subsets of $\{1, \ldots, n\}$

- In the original formulation (Yuan and Lin, 2006) the groups form a partition of the index set $\{1, \ldots, n\}$

- Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010): hierarchical structures such as DAGS

Example: $J_1 = \{1, 2, \ldots, d\}, J_2 = \{2, 3, \ldots, n\}, \ldots, J_n = \{n\}$
Multi-task learning

- Learning multiple linear regression or binary classification tasks simultaneously

- Formulate as a matrix estimation problem ($W = [w_1, \ldots, w_T]$)

\[
\min_{W \in \mathbb{R}^{d \times T}} \sum_{t=1}^{T} \sum_{i=1}^{m} E(w^\top x_{ti}, y_{ti}) + \lambda g(W)
\]

- Relationships between tasks modeled via sparsity constraints on W

- Few common important variables (special case of Group Lasso):

\[
g(W) = \sum_{j=1}^{d} \|w^j\|_2
\]
Structured Sparsity

- The above regularizer favors matrices with many zero rows (few features shared by the tasks)

\[g(W) = \sum_{j=1}^{d} \sqrt{\sum_{t=1}^{T} w_{tj}^2} \]
2. Structured Sparsity (cont.)

Compare matrices W favored by different norms (green = 0, blue = 1):

$$\#\text{rows} = 13 \quad 5 \quad 3$$

$$g(W) = 19 \quad 12 \quad 8$$

$$\sum_{tj} |w_{tj}| = 29 \quad 29 \quad 29$$
Estimation of a low rank matrix

\[
\min_{W \in \mathbb{R}^{d \times T}} \left\{ \sum_{i=1}^{m} (y_i - \langle W, X_i \rangle)^2 : \text{rank}(W) \leq k \right\}
\]

- Multi-task learning: choose \(X_i = x_i e_{c_i}^\top \), hence \(\langle W, X_i \rangle = w_{c_i}^\top x_i \)

- Collaborative filtering: choose \(X_i = e_{r_i} e_{c_i}^\top \), hence \(\langle W, X_i \rangle = W_{r_i c_i} \), where \(r_i \in \{1, \ldots, d\} \) and \(c_i \in \{1, \ldots, T\} \) (rows / columns indices)

Relax the rank with the trace (or nuclear) norm: \(\|W\|_* = \min(d, T) \sum_{i=1}^{\min(d, T)} \sigma_i(W) \)
Trace norm regularization

\[
\min_{W \in \mathbb{R}^{d \times T}} \sum_{i=1}^{m} (y_i - \langle W, X_i \rangle)^2 + \lambda \|W\|_*
\]

- complete data case: \[
\min_{W \in \mathbb{R}^{d \times T}} \|Y - W\|_F^2 + \lambda \|W\|_*
\]

- if \(Y = U \text{diag}(\sigma)V^\top \) then the solution is (recall \(H_\lambda \) from page 4):

\[
\hat{W} = U \text{diag}(H_\lambda(\sigma))V^\top
\]

Proof uses von Neumann’s Theorem: \(\text{tr}(Y^\top W) \leq \sigma(Y)^\top \sigma(W) \) and equality holds iff \(Y \) and \(W \) have the same ordered system of singular vectors.
Sparse Inverse Covariance Selection

Let \(x_1, \ldots, x_m \sim p \), where

\[
p(x) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)} e^{-(x-\mu)^\top \Sigma^{-1} (x-\mu)}
\]

Maximum likelihood estimate for the covariance

\[
\hat{\Sigma} = \arg \max_{\Sigma \succ 0} \prod_{i=1}^{d} p(x_i) = \arg \max_{\Sigma \succ 0} \prod_{i=1}^{d} \log p(x_i)
\]

\[
= \arg \max_{\Sigma \succ 0} \left\{ -\log \det(\Sigma) - \langle S, \Sigma^{-1} \rangle \right\}
\]

where \(S = \frac{1}{m} \sum_{i=1}^{m} \langle x_i - \mu, x_i - \mu \rangle \)

- The solution is \(\hat{\Sigma} = S \) (show it as an exercise)
Inverse covariance provides information about the relationship between variables: \(\Sigma^{-1}_{i,j} = 0 \) iff \(x^i \) and \(x^j \) are conditionally independent.

\[
\hat{W} = \arg \max_{W > 0} \{ \log \det(W) - \langle S, W \rangle \} = \arg \min_{W > 0} \{ \langle S, W \rangle - \log \det(W) \}
\]

If we expect many pairs of variables to be conditionally independent we could solve the problem

\[
\min \{ \langle S, W \rangle - \log \det(W) : W > 0, \ \text{card}\{(i, j) : |W_{ij}| > 0\} \leq k \}
\]

which can be relaxed to the convex program

\[
\min \{ \langle S, W \rangle - \log \det(W) : W > 0, \ |W|_1 \leq k \}
\]
Dictionary Learning / Sparse Coding

Given $x_1, \ldots, x_m \sim p$ find $d \times k$ matrix W which minimize the average reconstruction error:

$$\sum_{i=1}^{m} \min_{z \in Z} \|x_i - Wz\|_2^2$$

Can be seen as a constrained matrix factorization problem

$$\min \left\{ \|X - WZ\|_F^2 : W \in \mathcal{W}, Z \in \mathcal{Z} \right\}$$

where $X = [x_1, \ldots, x_m]$ and $\mathcal{W} \subseteq \mathbb{R}^{d \times k}$, $\mathcal{Z} \subseteq \mathbb{R}^{k \times m}$

Interpretation: the columns of W are some basis vectors (could be linearly dependent) and the columns of Z are the codes / coefficients used to reconstruct the inputs as a linear combination of the basis vectors
Examples

- PCA: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \mathbb{R}^{k \times m}$

- k-means clustering: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \{ Z : z_i \in \{ e_1, \ldots, e_k \} \}$

- Nonnegative matrix factorization

\[
\min_{W,Z \geq 0} \| X - WZ \|_F^2
\]

- Sparse coding: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \{ Z : \| z_i \|_0 \leq s \}$

 Can be relaxed to the problem: $\min \| X - WZ \|_{F_T}^2 + \lambda \| Z \|_1$
Nonlinear extension

The methods we have seen so far can be extended to a RKHS setting; for example the Lasso extends to the problem

$$\min \sum_{i=1}^{m} E \left(\sum_{\ell=1}^{N} f_{\ell}(x_i), y_i \right) + \lambda \sum_{\ell=1}^{N} \|f_{\ell}\|_{K_{\ell}} \quad (\ast)$$

- minimum is over functions f_1, \ldots, f_N, with $f_{\ell} \in H_{K_{\ell}}$, with K_1, \ldots, K_N some prescribed kernels
- feature space formulation (recall $K_{\ell}(x, t) = \langle \phi_{\ell}(x), \phi_{\ell}(t) \rangle$)

$$\min \sum_{i=1}^{m} E \left(\sum_{\ell=1}^{N} \phi_{\ell}(x_i)^{\top} \phi_{\ell}(x_i), y_i \right) + \lambda \sum_{\ell=1}^{N} \|w_{\ell}\|_{2}$$
Connection to Group Lasso

Two important “parametric” versions of the above formulation:

- **Lasso:** choose \(f_j(x) = w_j x_j, K_j(x, t) = x_j t_j \)

\[
\sum_{i=1}^{m} E(w^\top x_i, y_i) + \gamma \sum_{j=1}^{d} |w_j|
\]

- **Group Lasso:** choose \(f_j(x) = \sum_{j \in J_\ell} w_j x_j, K_j(x, t) = \langle x|_{J_\ell}, t|_{J_\ell} \rangle \), where \(\{J_\ell\}_{\ell=1}^{n} \) is a partition of index set \(\{1, \ldots, d\} \)

\[
\sum_{i=1}^{m} E(w^\top x_i, y_i) + \gamma \sum_{\ell=1}^{N} \|w|_{J_\ell}\|_2
\]
Representer theorem

Two reformulations of (*) as a finite dimension optimization problem

- Using the representer theorem:

\[
\min \sum_{i=1}^{m} E \left(\sum_{\ell=1}^{N} \sum_{j=1}^{m} K_\ell(x_i, x_j) \alpha_{\ell,j}, y_i \right) + \lambda \sum_{\ell=1}^{N} \sqrt{\alpha_\ell^\top K_\ell \alpha_\ell}
\]

- Using the formula \(\sum_{\ell} |t_\ell| = \inf_{z > 0} \frac{1}{2} \sum_{\ell} \frac{t_\ell^2}{z_\ell} + z_\ell \), rewrite the problem as

\[
\inf_{z > 0} \min \sum_{i=1}^{m} E(f(x_i), y_i) + \frac{\lambda}{2} \|f\|^2 \sum_{\ell} z_\ell K_\ell + \sum_{\ell} z_\ell
\]
Some references

- **L1-regularization / L1-MNI:**

- **Group Lasso:**
• **Multi-task learning:**

• **Low rank matrix estimation:**

• **Nonlinear Group Lasso / Multiple kernel learning:**
 - A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. COLT 2005
– C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR 2005

● **Sparse Coding:**