Advanced Topics in Machine Learning
(2010, Part II)

2. Regularization / Kernels Review

Massimiliano Pontil
Today’s Plan

• Representer theorem

• Obtaining problems with a limited number of variables

• Kernels
Previous Lecture

We studied the problems

\[
\min_{w \in \mathbb{R}^d} \sum_{i=1}^{m} (y_i - w^\top x_i)^2 + \gamma \|w\|^2 \quad \text{(Ridge Regression)}
\]

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to \(y_i(w^\top x_i) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad \text{for } i = 1, \ldots, m \) \quad \text{(SVM)}

We showed that they are special cases of \textit{regularization}

\[
\min_{w \in \mathbb{R}^d} \sum_{i=1}^{m} E(w^\top x_i, y_i) + \gamma \|w\|^2 \quad \text{(R3)}
\]
Optimality Conditions

• For SVM, recall how the primal and dual variables are related (by KKT conditions):
 \[\hat{w} = \sum_{i=1}^{m} \hat{\alpha}_i y_i x_i \]
 \hspace{1cm} (1) \]

• For ridge regression, the solution is
 \[\hat{w} = (XX^\top + \gamma I_d)^{-1} X y \implies (XX^\top + \gamma I_d)\hat{w} = X y \implies \]
 \[\hat{w} = \frac{1}{\gamma} X (y - X^\top \hat{w}) \implies \hat{w} = \sum_{i=1}^{m} c_i x_i \]
 \hspace{1cm} (2) \]

where \(c_i = \frac{1}{\gamma} (y_i - x_i^\top \hat{w}) \)
Optimality Conditions (contd.)

• In general, can we get an optimality condition like (1), (2) for the regularization problem (\mathcal{R})?

• Indeed, in many of these problems one may set the gradient of the Lagrangian wrt. w to zero. The resulting equation is of the form

$$\hat{w} = \sum_{i=1}^{m} c_i x_i$$

where $c_1, \ldots, c_m \in \mathbb{R}$

• This very useful fact is known in ML as the **Representer Theorem**
Theorem 1. There exists a solution \hat{w} of problem (R) that has the form

$$\hat{w} = \sum_{i=1}^{m} c_i x_i$$ \hspace{1cm} (3)

for some $c_1, \ldots, c_m \in \mathbb{R}$.

- In different words, there is a solution of (R) which lies in the linear span of the vectors x_1, \ldots, x_m. If $d \gg m$, this span is a subspace of \mathbb{R}^d with much smaller dimensionality; thus the problem reduces to one in much fewer variables.
Representer Theorem (contd.)

Proof (in the case that E is differentiable). Let \hat{w} be a solution. Setting the derivative wrt. w to zero, we have

$$\sum_{i=1}^{m} E' (\hat{w}^\top x_i, y_i) x_i + 2\gamma \hat{w} = 0$$

where E' is the partial derivative of E wrt. its first argument. Selecting

$$c_i = -\frac{1}{2\gamma} E' (\hat{w}^\top x_i, y_i)$$

we obtain (3). □

- Note: this proof in fact shows that, if E is differentiable, any solution of (\mathcal{R}) is of the form (3)
Representer Theorem (contd.)

Proof (general). Let \(\hat{w} \) be a solution of \((R)\). We can write \(\hat{w} \) as

\[
\hat{w} = \sum_{i=1}^{m} c_i x_i + n
\]

where \(c_1, \ldots, c_m \in \mathbb{R} \) and \(n \in \mathbb{R}^d \) is such that \(n^\top x_i = 0 \) for \(i = 1, \ldots, m \). In other words, we decompose \(\hat{w} \) in two terms, one in the subspace spanned by the \(x_i \) and one that is orthogonal to this subspace. Then

\[
\| \hat{w} \|^2 = \left\| \sum_{i=1}^{m} c_i x_i \right\|^2 + 2n^\top \sum_{i=1}^{m} c_i x_i + \| n \|^2 = \left\| \sum_{i=1}^{m} c_i x_i \right\|^2 + \| n \|^2 \geq \left\| \sum_{i=1}^{m} c_i x_i \right\|^2.
\]

Also, \(\hat{w}^\top x_j = (\sum_{i=1}^{m} c_i x_i)^\top x_j + n^\top x_j = (\sum_{i=1}^{m} c_i x_i)^\top x_j \) for every \(j \); hence the error term does not change. Thus, \(\sum_{i=1}^{m} c_i x_i \) is a solution of \((R)\). \(\square \)
Representer Theorem (contd.)

- Plugging eq. (3) in the rhs. of eq. (4), we obtain a set of equations for the coefficients

\[c_i = -\frac{1}{2\gamma} E' \left(\sum_{j=1}^{m} c_j x_j \top x_i, y_i \right) \quad i = 1, \ldots, m \]

These are necessary conditions for the coefficients \(c_i \) to be optimal (in the case that \(E \) is differentiable).
Equivalent Problems

• The Representer Theorem provides a way to obtain a problem equivalent to a general regularization problem

 – Write a solution \hat{w} in the form (3)
 – Substitute for w in (R)

• In this way we obtain an equivalent problem in m variables c_1, \ldots, c_m

• The advantage is that if $d \gg m$ the equivalent problem can be solved in much less time than solving the original problem
Ridge Regression

• Substituting (3) in the ridge regression problem gives

\[
\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{m} c_j x_j^\top x_i \right)^2 + \gamma \left\| \sum_{i=1}^{m} c_i x_i \right\|_2^2 \iff \\
\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{m} c_j x_j^\top x_i \right)^2 + \gamma \sum_{i=1}^{m} c_i x_i^\top \sum_{j=1}^{m} c_j x_j
\]

• Define the \(m \times m \) matrix \(G \) as

\[
G_{ij} = x_i^\top x_j
\]

It is called the Gram matrix and it is symmetric
• Then (5) becomes

$$\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{m} c_j G_{ij} \right)^2 + \gamma \sum_{i,j=1}^{m} c_i c_j G_{ij}$$

or

$$\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} (y_i - c^\top g_i)^2 + \gamma c^\top G c$$

where g_i denotes the i-th column of matrix G.

• The term $c^\top G c$ is a quadratic form
Ridge Regression (contd.)

• To derive the solution, we follow the same approach as for the original problem (i.e. set the derivative to zero)

• There may be infinite solutions, depending on whether the input vectors \(x_i \) are *linearly independent*, but they all generate *the same* \(\hat{w} \) (we skip the proof)

• The minimal norm solution for \(\hat{c} \) is

\[
\hat{c} = (G + \gamma I_m)^{-1} y
\]
Ridge Regression (contd.)

Algorithm

- Solve the $m \times m$ linear system
 \[(G + \gamma I_m)\hat{c} = y\]
- Compute $\hat{w} = \sum_{i=1}^{m} \hat{c}_i x_i$

- $O(m^3 + md)$ operations $+ O(m^2 d)$ to generate the Gram matrix
- Contrast with $O(d^3 + d^2 m)$ operations if we solved the primal
SVM

- Substituting (3) in the SVM problem gives

\[
\min_{c \in \mathbb{R}^m} \frac{1}{2} \left\| \sum_{i=1}^{m} c_i x_i \right\|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to

\[
y_i \sum_{j=1}^{m} c_j x_j^\top x_i \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad \text{for } i = 1, \ldots, m \iff
\]

\[
\min_{c \in \mathbb{R}^m} \frac{1}{2} \sum_{i=1}^{m} c_i x_i^\top \sum_{j=1}^{m} c_j x_j + C \sum_{i=1}^{m} \xi_i
\]

subject to

\[
y_i \sum_{j=1}^{m} c_j G_{ij} \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad \text{for } i = 1, \ldots, m \iff
\]
SVM (contd.)

\[
\min_{c \in \mathbb{R}^m} \frac{1}{2} c^\top G c + C \sum_{i=1}^{m} \xi_i
\]

subject to \(y_i(c^\top g_i) \geq 1 - \xi_i, \ \xi_i \geq 0, \) for \(i = 1, \ldots, m \)

• This is a quadratic program similar to the SVM primal (P) from the previous lecture. Following a similar approach through the Lagrangian, we obtain the same dual problem (D)

\[
\max_{\alpha \in \mathbb{R}^m} -\frac{1}{2} \alpha^\top A \alpha + \sum_{i=1}^{m} \alpha_i
\]

subject to \(0 \leq \alpha_i \leq C, \) for \(i = 1, \ldots, m \)

where \(A \) is the \(m \times m \) matrix \(A = (y_i y_j G_{ij})_{i,j=1}^{m} \)
SVM (contd.)

• The α’s are the same as in the last lecture. Recall that

$$\hat{w} = \sum_{i=1}^{m} \hat{\alpha}_i y_i x_i$$

• So, the optimal c_i coefficients are

$$\hat{c}_i = y_i \hat{\alpha}_i$$

• As with ridge regression, there may be infinite solutions for the c_i, if the inputs x_i are not linearly independent

• We shall describe some algorithms for SVMs in the next lecture
Regularization

- More generally, which problem do we obtain from the problem

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{m} E(w^\top x_i, y_i) + \gamma \|w\|^2 \quad (\mathcal{R})$$

- Substituting the Representer Theorem (3) in (\mathcal{R}) yields

$$\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} E(c^\top g_i, y_i) + \gamma c^\top Gc \quad (\mathcal{C})$$
Remarks

- Problem \((C)\) does not involve the inputs \(x_i\) but instead it involves the Gram matrix \(G\)

- The Gram matrix needs to be computed \textit{once}, in \(O(dm^2)\) operations

- The number of variables in problem \((C)\) is \(m\); so, if \(d \gg m\) it is more efficient to solve \((C)\) than \((R)\)

- The function learned is equal to

\[
\hat{f}(x) = \hat{w}^\top x = \sum_{i=1}^{m} \hat{c}_i x_i^\top x
\]

which involves only \textit{inner products} in the input space
General Feature Map

• Alternatively, in the place of the inputs x_i we may have a linear or nonlinear feature map $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^N$

• $\phi(x)$ is called the feature vector and the space $\{\phi(x) : x \in \mathbb{R}^d\}$ the feature space

• That is, we fix ϕ and learn a function

$$f(x) = w^\top \phi(x)$$

• The feature space may be high-dimensional or even infinite-dimensional ($N = \infty$)
General Feature Map (contd.)

If we replace x_i with $\phi(x_i)$, we obtain the equivalent problem

$$\min_{c \in \mathbb{R}^m} \sum_{i=1}^m E(c^\top g_i, y_i) + \gamma c^\top Gc$$

where

$$G_{ij} = \phi(x_i)^\top \phi(x_j) \quad \text{for all } i, j = 1, \ldots, m$$

The function learned is

$$f(x) = \sum_{i=1}^m \hat{c}_i \phi(x_i)^\top \phi(x)$$

- **Key observation:** in this representation of f, we don’t need to know ϕ explicitly; we just need to know the inner product between any pair of feature vectors!
Example

• Suppose that \(\phi \) is such that
 \[
 \phi(x)\trans \phi(t) = e^{-\|x-t\|^2}
 \]
 \[
 \text{for all } x, t \in \mathbb{R}^d
 \]
 (Gaussian kernel)

• The feature map \(\phi \) is implicit and has to be infinite-dimensional

• The function we learn, \(f(x) = w\trans \phi(x) \), is nonlinear and may fit the data much better than without a feature map

• But the time cost of computing the Gram matrix and solving the equivalent problem \((C)\) depends only on \(d \), which can be reasonably small
Kernels

• Let us start directly with a function K and see when K can be expressed as an inner product in some feature space, i.e.

$$K(x, t) = \langle \phi(x), \phi(t) \rangle \quad \text{for all } x, t \in \mathbb{R}^d$$ \hspace{1cm} (6)

• **Question:** Given a function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, which properties of K guarantee that there exists a Hilbert space \mathcal{H} and a feature map $\phi : \mathbb{R}^d \to \mathcal{H}$ such that (6) holds?

• **Answer:** K should be a *positive semidefinite kernel*
• **Definition:** A function $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ is a **positive semidefinite kernel** if

- K is symmetric
- for every $m \in \mathbb{N}$ and every $x_1, \ldots, x_m \in \mathbb{R}^d$, the matrix $(K(x_i, x_j))_{i,j=1}^m$ is positive semidefinite
Before discussing kernels, let us derive the equivalent regularization problem in terms of the kernel.

From \((C)\) and the definition \(G_{ij} = \phi(x_i)\top \phi(x_j)\), we obtain the problem

\[
\min_{c \in \mathbb{R}^m} \sum_{i=1}^{m} E((Kc)_i, y_i) + \gamma c\top Kc
\]

\((K)\)

where we use \(K\) to denote the \(m \times m\) kernel matrix – or Gram matrix– on the data

\[
K_{ij} := K(x_i, x_j) \text{ for all } i, j = 1, \ldots, m
\]
Regularization with Kernels (contd.)

• By the Representer Theorem, the function learned equals

\[f(x) = \sum_{i=1}^{m} \hat{c}_i K(x_i, x) \]

• So, we only need to find the solution \(\hat{c} \) of the problem \((\mathcal{K})\)

• The value \(f(x) \) at any point \(x \) can be computed fast as long as the kernel is easy to compute

• In the case of SVMs, the nonzero coefficients \(c_i \) correspond to the support vectors; in many situations there are few support vectors, which gives an easy to compute and interpretable solution
Linear Kernels

- The function $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ defined by
 $$K(x, t) = x^\top At$$
 for all $x, t \in \mathbb{R}^d$,
 where A is a $d \times d$ positive semidefinite matrix, is called a linear kernel.

- K is a psd. kernel

Proof. Since A is psd. we can write it in the form $A = R^\top R$ for some $d \times d$ matrix R. Thus K corresponds to the feature map $\phi(x) = Rx$.

Alternatively, K is obviously symmetric and note that, for every $m \in \mathbb{N}$, $x_1, \ldots, x_m \in \mathbb{R}^d$, $z \in \mathbb{R}^d$,

$$z^\top Kz = \sum_{i,j=1}^{d} z_i z_j x_i^\top A x_j = \sum_{i,j=1}^{d} z_i z_j (Rx_i)^\top (Rx_j) = \left\| \sum_{i=1}^{d} z_i Rx_i \right\|^2 \geq 0$$
Kernel Composition

• More generally, if $K : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ is a kernel and $g : \mathbb{R}^d \to \mathbb{R}^N$ is any function, then the function $\tilde{K} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R},$

$$\tilde{K}(x, t) = K(g(x), g(t))$$

for all $x, t \in \mathbb{R}^d$

is also a kernel.

Proof. Since K is symmetric, \tilde{K} is clearly symmetric too. The hypothesis that K is a kernel also implies that for every

$x_1, \ldots, x_m \in \mathbb{R}^d$ the matrix $(K(g(x_i), g(x_j)))_{i,j=1}^m$ is psd. \square

• In particular, the linear kernel is a special case, corresponding to

$K(x, t) = x^\top t$ and $g(x) = Rx$
Kernel Construction

• **Question:** If K_1, \ldots, K_q are kernels on \mathbb{R}^d and $F : \mathbb{R}^q \to \mathbb{R}$, when is the function

$$F(K_1(x, t), \ldots, K_q(x, t))$$

a kernel?

• We discuss some examples of functions F for which the answer to this question is YES.
Nonnegative Combination of Kernels

- If \(\mu_1, \ldots, \mu_q \geq 0 \), then \(\sum_{j=1}^{q} \mu_j K_j \) is a kernel.

- This fact is immediate (a nonnegative combination of psd. matrices is still psd.)

 Example: Let \(q = d \) and \(K_i(x,t) = x_i t_i \) (linear kernel with \(A = I_d \))

- In particular, this implies that
 - \(aK \) is a kernel if \(a \geq 0 \) and \(K \) is a kernel
 - \(K_1 + K_2 \) is a kernel if \(K_1, K_2 \) are kernels
Product of Kernels

- The pointwise product of two kernels K_1 and K_2

$$K(x, t) := K_1(x, t)K_2(x, t)$$

is a kernel.

Proof. We need to show that if A and B are $m \times m$ psd. matrices, so is $C = (A_{ij}B_{ij})_{i,j=1}^{m}$ (C is also called the Schur product of A and B). We write A and B in their singular value decomposition $A = U\Sigma U^\top$, $B = V\Lambda V^\top$ where U, V are orthogonal matrices and $\Sigma = \text{Diag}(\sigma_1, \ldots, \sigma_r)$, $\Lambda = \text{Diag}(\lambda_1, \ldots, \lambda_s)$, $r, s \leq m$. We have

$$\sum_{i,j=1}^{m} z_i z_j C_{ij} = \sum_{i,j=1}^{m} z_i z_j \sum_{k=1}^{r} \sigma_k U_{ik} U_{jk} \sum_{\ell=1}^{s} \lambda_\ell V_{i\ell} V_{j\ell} = \sum_{i,j=1}^{m} z_i z_j (U_{ik}U_{jk} \otimes V_{i\ell}V_{j\ell})$$
Product of Kernels (contd.)

\[
\sum_{k=1}^{r} \sum_{\ell=1}^{s} \sigma_k \lambda_\ell \sum_{i=1}^{m} z_i U_{ik} V_{i\ell} \sum_{j=1}^{m} z_j U_{jk} V_{j\ell} = \sum_{k=1}^{r} \sum_{\ell=1}^{s} \sigma_k \lambda_\ell \left(\sum_{i=1}^{m} z_i U_{ik} V_{i\ell} \right)^2 \geq 0
\]
Summary of Kernel Properties

The above results can be summarized as follows:

If K_1, K_2 are kernels on \mathbb{R}^d, $a \geq 0$, K a kernel on \mathbb{R}^N and $g : \mathbb{R}^d \rightarrow \mathbb{R}^N$ then the following functions are kernels on \mathbb{R}^d

1. $K_1(x, t) + K_2(x, t)$
2. $aK_1(x, t)$
3. $K_1(x, t)K_2(x, t)$
4. $K(g(x), g(t))$
Polynomial Kernels

• Let $F = p$ where $p : \mathbb{R}^q \to \mathbb{R}$ is a polynomial with nonnegative coefficients. By properties 1, 2 and 3 above we conclude that p is a valid function.

• In particular, for $q = 1$,

$$
\sum_{i=1}^{d} a_i (K(x, t))^i
$$

is a kernel if $a_1, \ldots, a_d \geq 0$
Polynomial Kernels (contd.)

- E.g., if $a \geq 0$, the following are valid polynomial kernels
 1. $(x^\top t)^s$
 2. $(a + x^\top t)^s$
 3. $\sum_{i=0}^{s} \frac{a^i}{i!} (x^\top t)^i$
'Infinite Polynomial' Kernel

- In the last equation, as $s \to \infty$ the series $\sum_{i=0}^{s} \frac{a^i}{i!} (x^\top t)^i$ converges everywhere uniformly to $e^{ax^\top t}$ showing that this function is also a kernel (dot product kernel)

- Assume for simplicity that $d = 1$. A feature map corresponding to the kernel $e^{ax^\top t}$ is

 $$\phi(x) = \left(1, \sqrt{a}x, \sqrt{\frac{a}{2}}x^2, \sqrt{\frac{a^3}{6}}x^3, \ldots\right) = \left(\sqrt{\frac{a^i}{i!}}x^i\right)_{i \in \mathbb{N}}$$

- The feature space has infinite dimensionality!
Translation Invariant and Radial Kernels

We say that a kernel \(K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) is

- **Translation invariant** if it has the form
 \[
 K(x, t) = H(x - t)
 \]
 where \(H : \mathbb{R}^d \to \mathbb{R} \) is a differentiable function.

- **Radial** if it has the form
 \[
 K(x, t) = h(\|x - t\|)
 \]
 where \(h : [0, +\infty) \to [0, +\infty) \) is a differentiable function

- **Note:** Clearly, additional conditions on \(H \) and \(h \) should be satisfied
The Gaussian Kernel

• An important example of a radial kernel is the Gaussian kernel

 \[K(x, t) = e^{-\beta \|x - t\|^2} \]

 where \(\beta > 0 \)

• It is a kernel because it is the product of two kernels

 \[K(x, t) = e^{-\beta (x^T x + t^T t)} e^{2\beta x^T t} \]

 (We saw before that \(\exp(2\beta x^T t) \) is a kernel. Clearly \(\exp(-\beta (x^T x + t^T t)) \) is a kernel with one dimensional feature map \(\phi(x) = \exp(-\beta x^T x) \))

• Exercise: Can you find a feature map representation for the Gaussian kernel in the case \(d = 1 \)?
Bibliography

Lectures available at:
http://www.cs.ucl.ac.uk/staff/a.argyriou/courses/index.html

See also Chapters 2 and 3 of Shawe-Taylor and Cristianini, Kernel Methods for Pattern Analysis, 2004.