GI01/4C55: Supervised Learning

2. Discriminative and Generative Models

October 10, 2005

Massimiliano Pontil

Today’s plan

- Discriminative vs. generative models
- Linear and quadratic discriminant analysis
- Logistic regression
- Naive Bayes classifier

Bibliography: These lecture notes are available at:
http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-SL05.htm
Lectures are in part based on Chapter 4 of Hastie, Tibshirani, & Friedman
Summary from last class

Last week we have discussed two SL approaches:

- Empirical error minimization: look for a function in hypothesis space \(\mathcal{H} \) (eg, \(\mathcal{H} \equiv \text{all linear functions} \)) which minimizes the empirical error

- \(k \)-NN: classify by majority vote amongst the \(k \) nearest neighbors (of the input we wish to classify)

We emphasized differences between the two methods (parametric vs. non parametric, global vs. local, etc.)

Discriminative vs. generative methods

A common aspect of \(k \)-NN and RSS is that they both directly compute a function \(f : \mathcal{X} \rightarrow \mathcal{Y} \) (or \(P(y|x) \) as we’ll see later) from available data without estimating the underlying probability model

Generative models approach (aka Statistical Decision Theory):

- first compute class conditional probabilities, \(P(x|y) \) \(y \in \mathcal{Y} \) and class probabilities \(P(y) \)

- then extract \(P(y|x) \) by Bayes rule (we’ll see how to extract a classifier \(f \) in a moment)

\[
P(y|x) = \frac{P(x|y)P(y)}{P(x)}
\]
Generative models

Consider the binary classification problem, $\mathcal{Y} = \{0, 1\}$

- Compute $P(x|0)$ and $P(x|1)$ within some model class via maximum likelihood

- Compute $P(0) = \frac{m_0}{m}$, where m_0 = #data in class 0

- Use Bayes rule to compute $P(0|x) = \frac{P(x|0)P(0)}{P(x)}$

where $P(x) = \sum_{y \in \mathcal{Y}} P(x|y)P(y) = P(x|0)P(0) + P(x|1)(1 - P(0))$

Generative models (cont.)

Once we know $P(0|x)$ we classify x using the Bayes classifier:

$$f(x) = \begin{cases}
0 & \text{if } P(0|x) > \frac{1}{2} \\
1 & \text{otherwise}
\end{cases}$$

We can also write this as

$$f(x) = \arg\max_{y \in \mathcal{Y}} \frac{P(x|y)P(y)}{P(x)} = \arg\max_{y \in \mathcal{Y}} P(x|y)P(y)$$

- Note that $P(x)$ is not important for classification
Discriminant function

Alternatively, we can introduce the **discriminant functions**

\[g_k(x) = \log P(k|x), \quad k = 0, 1 \]

we classify \(x \) as 0 if \(g(x) := g_0(x) - g_1(x) > 0 \) and 1 otherwise.

That is

\[f(x) = \arg\max_{k=0,1} \{g_k(x)\} \]

- Decision regions:
 \[R_0 = \{x : g_0(x) > g_1(x)\}, \quad R_1 = \{x : g_1(x) > g_0(x)\} \]

- Decision boundary: \(\{x : g_0(x) = g_1(x)\} \)

Multiclass extension

The above can be extended naturally to more than two classes (say \(\mathcal{Y} = \{c_1, \ldots, c_K\} \)). We use the notation \(P(k|x) = P(y = c_k|x) \)

\[g_k(x) = \log P(k|x), \quad k = 1, \ldots, K \]

(actually only \(K - 1 \) discriminant f.ons need to be specified because probabilities must sum to one)

\[f(x) = \arg\max_{k=1}^{K} \{g_k(x)\} \]
Multiclass extension (cont.)

\[f(x) = \arg\max_{k=1}^{K} g_k(x) \]

- Decision regions: \(R_k = \{ x : g_k(x) > g_{\ell}(x), \text{ for all } k \neq \ell \} \)

- Decision boundaries: \(\{ x : g_k(x) = g_{\ell}(x), k \neq \ell, g_k(x) \geq g_q(x) \text{ for all } q \} \)

(roughly speaking, there is a decision boundary between class \(k \) and \(\ell \) if “ties occurs” among those classes)

9

Multiclass example

We introduce discriminant functions \(g_k(x) \) for each class \(k = 1, \ldots, K \) and use the classification rule:

\[f(x) = \arg\max_{k=1}^{K} g_k(x) \]
Multiclass example (cont.)

If the discriminant functions are linear, f partitions the input space in piecewise linear regions

$$R_k = \{x : g_k(x) > g_\ell(x), k \neq \ell\}$$

The decision boundaries are the lines (hyperplanes in \mathbb{R}^d) of the type $\{x : g_k(x) = g_\ell(x), k \neq \ell\}$ (for some k and ℓ, not all!)

Some well studied generative models

A generative model is identified by choosing a parameterized family of densities $P(x|y)$ such as:

- Gaussians
- Mixture of Gaussians
- Naive Bayes: based on assumption $P(x|y) = \prod_{i=1}^{d} P_i(x_i|y)$
- Some more general non-parametric densities
Gaussian densities

We will assume that $P(x|0)$, $P(x, 1)$ are Gaussians with different means and covariances. The Gaussian density is defined as

$$G(x; \mu, \Sigma) := \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu) \right\}$$

where $|\Sigma|$ is the determinant of matrix Σ.

Recall two important properties of the Gaussian:

- μ is the mean of x: $E[x] = \mu$
- Σ is the covariance of x: $E[(x - \mu)(x - \mu)^\top] = \Sigma$

Linear and quadratic discriminant analysis

We compute the parameters $\theta = \{\mu_0, \mu_1, \Sigma_0, \Sigma_1, \pi_0\}$ via maximum likelihood (we use the notation $\pi_0 := P(y = 0)$):

$$L(\theta; S) = \prod_{i=1}^m P(x_i, y_i; \theta) = \prod_{i=1}^m P(x_i|y_i; \theta) P(y_i)$$

The minus log likelihood is

$$-\log L = \frac{1}{2} \sum_{i:y_i=0} (x_i - \mu_0)^\top \Sigma_0^{-1}(x_i - \mu_0) + \frac{1}{2} \sum_{i:y_i=1} (x_i - \mu_1)^\top \Sigma_1^{-1}(x_i - \mu_1) + \frac{m_0}{2} \log |\Sigma_0| + \frac{m_1}{2} \log |\Sigma_1| + m_0 \log \pi_0 + m_1 \log (1 - \pi_0) + \text{const.}$$

- $\{\mu_0, \Sigma_0\}$, $\{\mu_1, \Sigma_1\}$ and π_0 can be separately computed!
- LDA: Σ_0 and Σ_1 constrained to be equal, QDA: $\Sigma_0 \neq \Sigma_1$
Univariate case: ML solution

In this case we have (we use the notation $\Sigma = \sigma^2$)

$$-\log L = \frac{1}{2} \sum_{i \in C(0)} \frac{(x_i - \mu_0)^2}{\sigma_0^2} + \frac{1}{2} \sum_{i \in C(1)} \frac{(x_i - \mu_1)^2}{\sigma_1^2}$$

$$+ m_0 \log |\sigma_0| + m_1 \log |\sigma_1| + m_0 \log \pi_0 + m_1 \log (1 - \pi_0) + \text{const.}$$

Solving for $\nabla \log L = 0$ we obtain (please verify this):

- $\pi_0 = \frac{m_0}{m}$
- $\mu_0 = \frac{1}{m_0} \sum_{i:y_i=0} x_i$, $\sigma_0^2 = \frac{1}{m_0} \sum_{i:y_i=0} (x_i - \mu_0)^2$
- $\mu_1 = \frac{1}{m_1} \sum_{i:y_i=1} x_i$, $\sigma_1^2 = \frac{1}{m_1} \sum_{i:y_i=1} (x_i - \mu_1)^2$

Univariate case: discriminant function

$$P(x|0) = \frac{1}{\sqrt{2\pi\sigma_0}} \exp \left\{ -\frac{(x - \mu_0)^2}{2\sigma_0^2} \right\}, \quad P(x|1) = \frac{1}{\sqrt{2\pi\sigma_1}} \exp \left\{ -\frac{(x - \mu_1)^2}{2\sigma_1^2} \right\},$$

Recalling that $g_k(x) = \log P(k|x) = \log P(x|k)P(k)$ (minus an unimportant $\log P(x)$), we obtain

$$g_k(x) = -\frac{x^2}{2\sigma_k^2} + \frac{\mu_k x}{\sigma_k^2} - \frac{\mu_k^2}{2\sigma_k^2} + \log \frac{\pi_k}{\sqrt{2\pi\sigma_k}}, \quad k = 0, 1$$
Univariate case: discriminant function

\[g_k(x) = -\frac{x^2}{2\sigma_k^2} + \frac{\mu_k x}{\sigma_k^2} - \frac{\mu_k^2}{2\sigma_k^2} + \log \frac{\pi_k}{\sqrt{2\pi\sigma_k}} \]

Hence, in general, the discriminant functions need to be quadratic

However, if \(\sigma_0 = \sigma_1 = \sigma \) we can choose them to be linear (can drop term \(\frac{x^2}{2\sigma_k^2} \))

In this case the ML solution for \(\sigma \) is

\[\sigma^2 = \frac{1}{m} \left\{ \sum_{i:y_i=0} (x_i - \mu_0)^2 + \sum_{i:y_i=1} (x_i - \mu_1)^2 \right\} \]

Multivariate case

Similarly to the univariate case, we have

\[g(x) := \log \frac{P(0|x)}{P(1|x)} = \log \frac{P(x|0)P(0)}{P(x|1)P(1)} = g_0(x) - g_1(x) \]

where

\[g_k(x) = -\frac{1}{2} x^\top \Sigma_k^{-1} x + \mu_k^\top \Sigma_k^{-1} x + b_k, \quad b_k := -\frac{1}{2} \mu_k^\top \Sigma_k^{-1} \mu_k + \log \left(\frac{\pi_k}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \right) \]

In general, \(g \) is a multiquadric (we call this QDA)

However, if \(\Sigma_0 = \Sigma_1 = \Sigma \) then \(g(x) \) is linear in \(x \): (we call this LDA)

\[g(x) = (\mu_0 - \mu_1)^\top \Sigma^{-1} x - \frac{1}{2} (\mu_1 + \mu_0)^\top \Sigma^{-1} (\mu_0 - \mu_1) + \log \frac{\pi_0}{1 - \pi_0} \]
3 classes example: equal covariances

If $\Sigma_0 = \Sigma_1 = \Sigma_2$ then $g_k(x)$ are linear

\[g_k(x) = \mu_k^\top \Sigma^{-1} x - \frac{1}{2} \mu_k^\top \Sigma^{-1} \mu_k + \log \pi_k \]

3 classes example: linear vs. non-linear

Here is an example where using different covariances gives a better model...

...However:

- LDA: need to fit $(K - 1)(d + 1)$ parameters (since we need to compute $K - 1$ differences $g_k - g_\ell$ and each has $d + 1$ parameters)
- QDA: need to fit $(K - 1)\frac{d(d+2)}{2}$ parameters, so if d is high QDA may more easily overfit our data
Logistic regression (I)

Let's go back to the discriminative model approach. Assume that

\[\log \frac{P(0|x)}{P(1|x)} = -(w^\top x + b) \quad (\text{incorporate } b \text{ in } w...) \]

Using \(P(0|x) + P(1|x) = 1 \), a simple computation gives

\[P(1|x) \equiv p(x; w) = \frac{1}{1 + e^{-w^\top x}} \]

Note: for simplicity, we discuss only binary classification but all of what we say naturally extends to the multiclass case

Logistic regression (II)

Recall our notation from last class

\[
X = \begin{bmatrix} x_1^\top \\ \vdots \\ x_m^\top \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}
\]

We compute \(w \) by maximizing the conditional likelihood:

\[
L(w; y|X) = P(y|X; w) = \prod_{i=1}^{m} P(y_i|x_i; w)
\]
Logistic regression (III)

The log-likelihood is given by (modulo an additive constant term)

\[\ell(w) : = \log L(w; y|X) = \sum_{i=1}^{m} \left\{ y_i \log p(x_i; w) + (1 - y_i) \log (1 - p(x_i; w)) \right\} \]

The quantity

\[y \log p(x; w) + (1 - y) \log (1 - p(x; w)) \]

is called the cross entropy function. This is exactly the relative entropy (studied in information theory) between the binary probability functions \((y, 1 - y)\) and \((p(x; w), 1 - p(x; w))\)

Loss function

Thus maximizing the likelihood is equivalent to minimizing a generalized type of empirical error:

\[\mathcal{E}_{\text{emp}} = \sum_{i=1}^{m} V(y_i, f(x)), \quad f(x) = w^T x \]

where \(V : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}\) is called the loss function

- Least squares: \(V(y, f(x)) = (y - f(x))^2\)

- Logistic regression:

\[V(y, f(x)) = y \log (1 + e^{-f(x)}) + (1 - y) \log (1 + e^{f(x)}) \]
Logistic regression (IV)

\[\ell(w) = \sum_{i=1}^{m} \left\{ y_i \log p(x_i; w) + (1 - y_i) \log \left(1 - p(x_i; w) \right) \right\} \]

Setting the derivatives to zero we obtain the nonlinear equations:

\[\nabla \ell(w) = \sum_{i=1}^{m} x_i (y_i - p(x_i; w)) = 0 \]

Compare to normal equations for least squares:

\[\sum_{i=1}^{m} x_i x_i^T w = \sum_{i=1}^{m} x_i y_i \quad \text{or} \quad \sum_{i=1}^{m} x_i (y_i - x_i^T w) = 0 \]

They look very similar! We’ll see next week how to solve those

Log-Reg versus LDA

Let’s go back to LDA. We assumed that \(P(x|0) \) and \(P(x|1) \) are Gaussians with the same covariance and estimated their mean and covariance (as well as the class probabilities) by ML.

It follows that \(P(x) \) is a **mixture of Gaussians**

More interestingly, it is easy to verify that

\[P(1|x) = \frac{1}{1 + e^{-w^T x}} \]

like in logistic regression!
Logistic regression vs. LDA (cont.)

However, in logistic regression, \(P(x) \) will not in general be a mixture of Gaussians!

- LDA based on stronger assumptions than Log-Reg
- Log-Reg leaves the marginal density of \(x \) arbitrary and fits parameter \(w \) by maximizing the conditional likelihood
- If \(P(x|0) \) and \(P(x|1) \) are indeed Gaussians then we should use LDA
- Otherwise Log-Reg should work better (more robust to the underlying \(P(x) \))

Naive Bayes classifier

Based on the following simple assumption:

\[
P(x|y) = \prod_{j=1}^{d} P(x_j|y)
\]

Meaning: the components of \(x \) are conditionally independent given \(y \):

\[
P(x = (x_1, \ldots, x_d)|y) = P(x_1|y)P(x_2|y, x_1) \cdots P(x_d|y, x_1, \ldots, x_{d-1})
\]

\[
= P(x_1|y)P(x_2|y) \cdots P(x_d|y) = \prod_{j=1}^{d} P(x_j|y)
\]
Naive Bayes (cont.)

Individual class conditional probabilities can be estimated independently!

Discriminant functions (recall \(\pi_k := P(y = c_k) \))

\[
g_k(x) = \log P(x|k) \pi_k = \sum_{j=1}^{d} \log P(x_j|k) + \log \pi_k
\]

As before if \(P(x_j|k) \) are Gaussians the discriminant functions are linear

- Naive Bayes is a very simple model! Yet, if \(d \) is very large it is a good choice to try

Naive Bayes: binary features

Example ("bag of words" representation for text documents) Assume \(x_j \) are binary variables and \(x_j = 1 \) if \(j \)-th word in our dictionary appears in document \(x \) and \(x_j = 0 \) otherwise

Define \(p_{jk} := P(x_j = 1|y = k) \) and \(\pi_k := P(y = k) \)

One can show (exercise) that the maximum likelihood estimate of \(p_{jk} \) and \(\pi_k \) is

\[
p_{jk} = \frac{\#\{(x, y) \in S : x_j = 1 \text{ and } y = k\}}{\#\{(x, y) \in S : y = k\}}
\]

\[
\pi_k = \frac{\#\{(x, y) \in S : y = k\}}{m}
\]
Dealing with rare words

Note that if, say, the h–th word is not in any training input data,

\[
p_{hk} = \frac{\#\{(x, y) \in S : x_h = 1 \text{ and } y = k\}}{\#\{(x, y) \in S : y = k\}} = \frac{0}{m_k} = 0, \quad \text{for all } k
\]

However, if a new document x contains the h–th word, we have: $p_{hk} = 0 \Rightarrow p(x|k) = 0 \Rightarrow P(x) = 0$. Hence

\[
P(k|x) = \frac{P(x|k)\pi_k}{P(x)} = \frac{0}{0}
\]

To avoid this pathological situation we introduce the following modified estimator

\[
p_{hk} = \frac{\#\{(x, y) \in S : x_h = 1 \text{ and } y = k\} + 1}{\#\{(x, y) \in S : y = k\} + K}
\]