GI01/4C55: Supervised Learning

1. Introduction

October 3, 2005

Massimiliano Pontil

Course information

1. When: Mondays, 14:00–17:00
 Where: Room 105, 24 Gordon Square

2. Course webpage:
 http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-SL05.htm

3. Mailing list: gi01@cs.ucl.ac.uk

4. Office: 8.05, CS Building, Malet Place
Assessment

1. Homework (40%) and Exam (60%)

2. 5 homework assignments
 (deliver them on-time, penalty otherwise)

3. To pass the course, you must obtain at least 40% on the homework component and an average of at least 50% when the homework and exam components are weighted together

Material

• Lecture notes
 – http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-SL05.htm

• Reference book

• Additional material (see webpage for more info)
 – General: Duda, Hart & Stork; Mitchell; Bishop; ...
 – Bayesian methods in ML: Mackay; ...
 – Kernel methods: Shawe-Taylor & Cristianini; Schölkopft & Smola; ...
 – Learning theory: Devroye, Lugosi, & Gyorfi; Vapnik; ...
Prerequisites

- Calculus (real-valued functions, limits, derivatives, Taylor series, integrals,...)
- Elements of probability theory (random variables, expectation, variance, conditional probabilities, Bayes rule,...)
- Fundamentals of linear algebra (vectors, angles, matrices, eigenvectors/eigenvalues,...),
- A bit of optimization theory (convex functions, Lagrange multipliers)

Course outline

- (Weeks 1,2) Key concepts (probabilistic formulation of learning from examples, error functionals; loss function, Bayes rule, learning algorithm, overfitting and underfitting, model selection, cross validation); Some basic learning algorithms (linear regression, k-NN, linear discriminant analysis, logistic regression); Discriminative vs. Generative approach
- (Week 3) Hypothesis spaces (Linear models, kernels, neural nets, trees), Optimization algorithms
- (Week 4) Elements of Learning Theory (PAC-learning, Complexity of hypothesis space, VC-bounds)
- (Week 5) Regularization, Kernels
Course outline (cont.)

- (Week 6) Support vector machines, Gaussian processes
- (Week 7) Decision trees, Boosting
- (Week 8) Online learning
- (Week 9) Semi-supervised learning
- (Week 10) Multi-task learning

Acknowledgments: Some lectures use material from last year course. Thanks to Fernando Perez-Cruz, Iain Murray and Ed Snelson of the Gatsby Unit at UCL for preparing this!

Today plan

- Supervised learning problem
- Regression and classification
- Two learning algorithms: least squares and k-NN
- Probabilistic model, error functional, optimal solutions
- Hypothesis space, overfitting and underfitting
- Choice of the learning algorithm (Model selection)
Supervised learning problem

Given a set of **input/output** pairs (**training set**) we wish to compute the functional relationship between the input and the output

\[x \rightarrow f \rightarrow y \]

- **Ex1** (people detection) given an image we wish to say if it depicts a person or not
 The output is one of 2 possible categories

- **Ex2** (pose estimation) we wish to predict the pose of a face image
 The output is a continuous number (here a real number describing the face rotation angle)

In both problems the input is a high dimensional vector \(x \) representing pixel intensity/color
People detection example (cont.)

Data are sparse! Risk for overfitting!

Notation

- \mathcal{X}: input space (e.g., $\mathcal{X} \subseteq \mathbb{R}^d$), with elements x, x', x_i, \ldots
- \mathcal{Y}: output space, with elements y, y', y_i, \ldots
 - Classification (qualitative output) $\mathcal{Y} = \{c_1, \ldots, c_k\}$
 - Binary classification: $k = 2$
 - Regression (quantitative output) $\mathcal{Y} \subseteq \mathbb{R}$
- $S = \{(x_i, y_i)\}_{i=1}^m$: training set (set of I/O examples)

Supervised learning problem: compute a function which “best describes” I/O relationship
Learning algorithm

Training set: \(S = \{ (x_i, y_i)_{i=1}^m \} \subseteq \mathcal{X} \times \mathcal{Y} \)

A **learning algorithm** is a mapping \(S \mapsto f_S \)

A new input \(x \) is predicted as \(f_S(x) \)

In the course we mainly deal with deterministic algorithms but we'll also comment on some randomized ones

Today: we describe two simple learning algorithms:
linear regression and \(k \)-nearest neighbors

Some important questions

- How is the data **collected**? (need assumptions!)
- How do we **represent** the inputs? (may require preprocessing step)
- How **accurate** is \(f_S \) on new data (study of **generalization error**) / How do we **evaluate performance** of the learning algorithm on unseen data?
- How “**complex”** is a learning task? (computational complexity, sample complexity)
- Given two different learning algorithms, \(f_S \) and \(f'_S \) which one should we choose? (**model selection** problem)
Some difficulties/aspects of the learning process

- New inputs **differ** from the ones in the training set (look up tables do not work!)
- Inputs are measured with **noise**
- Output is **not deterministically** obtained by the input
- Input is **high dimensional** but some components/variables may be irrelevant
- Whenever **prior knowledge** is available it should be used

More examples / applications

- Optical digit recognition (useful for identifying the numbers in a ZIP code from a digitalized image) (Computer Vision)
- Predicting house prices based on sq. feet, number of rooms, distance from central London,... (Marketing)
- Estimate amount of glucose in the blood of a diabetic person (Medicine)
- Detect spam emails (Information retrieval)
- Predict protein functions / structures (Bioinformatics)
- Speaker identification / sound recognition (Speech recognition)
Binary classification: an example

We describe two basic learning algorithms/models for classification which can be easily adapted to regression as well. We choose: $\mathcal{X} = \mathbb{R}^2$, $x = (x_1, x_2)$ and $\mathcal{Y} = \{green, red\}$

Our first learning algorithm computes a **linear function** (perceptron), $w^T x + b$ and classifies an input x as

$$f(x) = \begin{cases}
red & w^T x + b > \frac{1}{2} \\
green & w^T x + b \leq \frac{1}{2}
\end{cases}$$

Least squares

How do we compute the parameters w and b?

We do not lose generality if we set $b = 0$ (we can change the data representation as $x^T \rightarrow (x^T, 1)$ and $w^T \rightarrow (w^T, b)$)

We find w by minimizing the residual sum of squares on the data

$$R(w) = \sum_{i=1}^{m} (y_i - w^T x_i)^2$$

To compute the minimum we need to solve the system of equations

$$\nabla R(w) = 0 \quad \text{recall that : } \nabla = \left(\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2} \right)^T$$
Normal equations

\[R(w) = \sum_{i=1}^{m} (y_i - w^\top x_i)^2 \]

Note that:
\[\frac{\partial R}{\partial w_k} = 2 \sum_{i=1}^{m} (w^\top x_i - y_i) \frac{\partial (w^\top x_i)}{\partial w_k} = 2 \sum_{i=1}^{m} (w^\top x_i - y_i) x_{ik} \]

Hence, to find \(w = (w_1, w_2)^\top \) we need to solve the linear system of equations
\[\sum_{i=1}^{m} (x_{ik} x_1 w_1 + x_{ik} x_2 w_2) = \sum_{i=1}^{m} x_{ik} y_i, \quad k = 1, 2 \]

Normal equations (cont.)

In vector notations:
\[\sum_{i=1}^{m} x_i x_i^\top w = \sum_{i=1}^{m} x_i y_i \]

In matrix notation:
\[X^\top Xw = X^\top y \]

where
\[X^\top = \begin{bmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{d1} & \cdots & x_{dm} \end{bmatrix} \equiv [x_1, \cdots, x_m], \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \]

Note: here \(d = 2 \) but, clearly, the result holds for any \(d \in \mathbb{N} \)
Least square solution

\[X^\top Xw = X^\top y \]

For the time being we will assume that the matrix \(X^\top X \) is invertible, so we conclude that

\[w = (X^\top X)^{-1}X^\top y \]

Otherwise, the solution may not be unique... (we will deal with the case that \(X^\top X \) is not invertible later)

Going back to \textit{“b”}

Substituting \(x^\top \) by \((x^\top, 1) \) and \(w^\top \) by \((w^\top, b) \), the above system of equations can be expressed in matrix form as (exercise):

\[
\begin{align*}
(X^\top X)w + X^\top 1b &= X^\top y \\
1^\top Xw + mb &= 1^\top y
\end{align*}
\]

that is

\[
\begin{bmatrix}
X^\top X & X^\top 1 \\
1^\top X & m
\end{bmatrix}
\begin{bmatrix}
w \\
b
\end{bmatrix} =
\begin{bmatrix}
X^\top y \\
1^\top y
\end{bmatrix}
\]

where \(1 = (1, 1, \ldots, 1)^\top \), \(m \times 1 \) vector of \textit{“ones”}
A different approach: k–nearest neighbors

Let $N(x; k)$ be the set of k nearest training inputs to x and $I_x = \{i : x_i \in N(x; k)\}$ the corresponding index set

$$f(x) = \begin{cases}
\text{red} & \text{if } \frac{1}{k} \sum_{i \in I_x} y_i > \frac{1}{2} \\
\text{green} & \text{if } \frac{1}{k} \sum_{i \in I_x} y_i \leq \frac{1}{2}
\end{cases}$$

- Closeness is measured using a metric (e.g., Euclidean dist.)
- Local rule (compute local majority vote)
- Decision boundary is non-linear

Note: for regression we set $f(x) = \frac{1}{k} \sum_{i \in I_x} y_i$ (a “local mean”)

k–NN: the effect of k

- The smaller k the more irregular the decision boundary

![Images](k=15.png) ![Images](k=1.png)

- How to choose k? later...
Linear regression vs. k-NN (informal)

- Global vs. local
- Linear vs. non-linear
- Bias / variance considerations:
 - LR relies heavily on linear assumption (may have large bias) k-NN does not
 - LR is stable (solution does not change much if data are perturbed) 1-NN isn’t!
- k-NN sensitive to input dimension d: if d is high, the inputs tends to be far away from each other!

Supervised learning model (back to Q1)

We assume that the data is obtained by sampling i.i.d. from a fixed but unknown probability density $P(x, y)$

Expected error:

$$
\mathcal{E}(f) := \mathbb{E} \left[(y - f(x))^2 \right] = \int (y - f(x))^2 dP(x, y)
$$

Our goal is to minimize \mathcal{E}

Optimal solution: $f^* := \text{argmin}_f \mathcal{E}(f)$

But: in order to compute f^* we need to know P!

Note: for binary classification with $\mathcal{Y} = \{0, 1\}$ and $f : \mathcal{X} \to \mathcal{Y}$, $\mathcal{E}(f)$ counts the average number of mistakes of f (aka expected misclassification error)
Regression function...

Let us compute the optimal solution f^* for regression ($\mathcal{Y} = \mathbb{R}$) and binary classification ($\mathcal{Y} = \{0, 1\}$).

Using the decomposition $P(y, x) = P(y|x)P(x)$ we have

$$\mathcal{E}(f) = \int_X \left\{ \int_{\mathcal{Y}} (y - f(x))^2 dP(y|x) \right\} dP(x)$$

so we see that

- for regression, f^* (called the regression function) is

$$f^*(x) = \arg\min_{c \in \mathbb{R}} \int_{\mathcal{Y}} (y - c)^2 dP(y|x) = (\text{exercise}) = \int_{\mathcal{Y}} ydP(y|x)$$

... and Bayes classifier

- for binary classification, f^* (called the Bayes classifier) is

$$f^*(x) = \begin{cases} 1 & \text{if } P(1|x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

To see this note, as before, that

$$f^*(x) = \arg\min_{c \in \{0, 1\}} \left\{ \int_{\mathcal{Y}} (y - c)^2 dP(y|x) = (1 - c)^2 P(1|x) + c^2 P(0|x) \right\}$$

and use

$$P(0|x) + P(1|x) = 1$$
k-NN revised

k-NN attempts to estimate/approximate $P(1|x)$ as $\frac{1}{k} \sum_{i \in I_x} y_i$

- Expectation is replaced by averaging over sample data

- Conditioning at x is relaxed to conditioning on some region close to x

One can show that $\mathcal{E}(f_S) \to \mathcal{E}(f^*)$ as $m \to \infty$ provided that: $k(m) \to \infty$ and $\frac{k(m)}{m} \to 0$

Weakness: the approximation (rate of convergence) depends critically on the input dimension...

Least squares revisited

$P(x, y)$ is unknown \Rightarrow cannot compute $f^* = \arg\min_f \mathcal{E}(f)$

We are only given a sample (training set) from P

A natural approach: we approximate the expected error $\mathcal{E}(f)$ by the empirical error

$$\mathcal{E}_{\text{emp}}(f) := \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

- If we minimize \mathcal{E}_{emp} over all possible functions, we can always find a function with zero empirical error!

Note: Sometimes the (empirical) error is called (empirical) risk
Least squares revisited (cont.)

Proposed solution: we introduce a restrictive class of functions \mathcal{H} called **hypothesis space**

We minimize \mathcal{E}_{emp} within \mathcal{H}. That is, our learning algorithm is:

$$f_S = \arg \min_{f \in \mathcal{H}} \mathcal{E}_{\text{emp}}(f)$$

This approach is usually called **empirical error minimization**

Linear regression: $\mathcal{H} = \{ f(x) = w^T x + b : w \in \mathbb{R}^d, b \in \mathbb{R} \}$

31

Simplified scenario

Let us discuss the case that \mathcal{X} is a finite set, $\mathcal{X} = \{ t^{(1)}, \ldots, t^{(N)} \} \subset \mathbb{R}^d$, and $\mathcal{Y} = \{ 0, 1 \}$. Moreover, assume that

- $P(x)$ is the uniform distribution
- the I/O relationship is deterministic: $P(y|x) = \delta(y, f^*(x))$

$$\mathcal{E}(f) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (y - f(x))^2 P(x, y) = \frac{1}{N} \sum_{n=1}^{N} (f^*(t^{(n)}) - f(t^{(n)}))^2$$

f^* is the Bayes solution and the Bayes error, $\mathcal{E}(f^*)$, is zero

Note: we may write $x_i = t^{(n(i))}$ where $n(i) \in \{1, \ldots, N\}$

32
Simplified scenario (cont)

\[\mathcal{E}(f) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (y - f(x))^2 P(t(n), y) = \frac{1}{N} \sum_{n=1}^{N} (f^*(t^n) - f(x))^2 \]

\[\mathcal{E}_{\text{emp}}(f) = \sum_{i=1}^{m} (y_i - f(x_i))^2 \]

If hypothesis space \(\mathcal{H} \) is large, \(\mathcal{E}_{\text{emp}}(f) = 0 \) for many classifiers \(f \in \mathcal{H} \) but \(\mathcal{E}(f) \) may bounded away from zero! (risk for overfitting)

Warning: approximation \(\mathcal{E}_{\text{emp}}(f) \approx \mathcal{E}(f) \) may be too optimistic!

Summary

- Data \(S \) sampled i.i.d from \(P \) (fixed but unknown)
- \(f^* \) is what we want, \(f_S \) is what we get
- Different approaches to attempt to estimate/approximate \(f^* \):
 - Minimize \(\mathcal{E}_{\text{emp}} \) in some restricted space of functions (eg, linear)
 - Compute local approximation of \(f^* \) (\(k \)-NN)
 - Estimate \(P \) and then use Bayes rule... (we’ll discuss this next week)
Perspectives

Theoretical / methodological aspects involved in supervised learning

- Function representation and approximation – to describe H
- Optimization/numerical methods – to compute f_S
- Probabilistic methods – to study generalization error of f_S

Additive noise model

Consider the regression problem. Assume that the output is computed as

$$y = f(x) + \epsilon$$

where ϵ is a zero mean r.v. Hence we can write

$$P(y, x) = P(y|x)P(x) = P_\epsilon(y - f(x))P(x)$$

where $\mathbb{E}[\epsilon] = 0$

Noise free model: y deterministically computed from x ($\epsilon \equiv 0$)
Additive noise model (cont.)

\[y = f(x) + \epsilon \]

\[P(y, x) = P(y|x)P(x) = P_\epsilon(y - f(x))P(x) \]

The training data is obtained, for \(i = 1, \ldots, m \) as following

- sample \(x_i \) from \(P_x \)
- sample \(\epsilon_i \) from \(P_\epsilon \)
- set \(y_i = f(x_i) + \epsilon_i \)

Note: \(P(x) \equiv P_x(x) \) (just use different notation when needed)

Additive noise model (cont.)

\[P(y, x) = P(y|x)P_x(x) = P_\epsilon(y - f(x))P_x(x) \]

So, since \(\epsilon \) has zero mean, we have that

\[f^*(x) := \int ydP(y|x) = \int ydP_\epsilon(y - f(x)) = \int (f(x) + \epsilon)dP_\epsilon(\epsilon) = f(x) \]

A common choice for the noise distribution \(P_\epsilon \) is a Gaussian:

\[P_\epsilon(\epsilon) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{\epsilon^2}{2\sigma^2} \right) \]
Maximum likelihood

What is the probability of the data S?

\[
P(S) = \prod_{i=1}^{m} P(y_i, x_i) = \prod_{i=1}^{m} P(y_i|x_i)P(x_i)
\]

\[
= \prod_{i=1}^{m} P(x_i) \prod_{i=1}^{m} P(y_i|x_i) = A \prod_{i=1}^{m} P(y_i|x_i)
\]

where

\[
A = \prod_{i=1}^{m} P(x_i) = P(x_1, \ldots, x_m)
\]

We define the likelihood of f as

\[
L(f; S) = P(S; f)
\]

Maximum likelihood (cont.)

Maximum likelihood principle: compute f by maximizing $L(f; S)$

If we use a linear functions and additive Gaussian noise, we have

\[
L(w; S) = A \prod_{i=1}^{m} \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp \left\{ \frac{-\left(y_i - w^\top x_i\right)^2}{2\sigma^2} \right\}
\]

In particular the log likelihood is (note: since the log function is strictly increasing maximization L or $\log L$ is the same)

\[
\log L(w; S) = -\frac{1}{2\sigma^2} \sum_{i=1}^{m} \left(y_i - w^\top x_i\right)^2 + \text{const}
\]

Hence maximizing the likelihood is equivalent to least squares!
Supervised learning as function approximation

Given the training data $y_i = f^*(x_i) + \epsilon_i$, the goal is to compute an “approximation” of f^* in some region of \mathbb{R}^d.

We look for an approximant of f^* within a prescribed hypothesis space \mathcal{H}

- Unless prior knowledge is available on f^* (eg, f^* is linear) we cannot expect $f^* \in \mathcal{H}$
- Choosing \mathcal{H} “very large” leads to overfitting! (we’ll see an example of this in a moment)

Polynomial fitting

As an example of hypothesis spaces of increasing “complexity” consider regression in one dimension

\[
H_0 = \left\{ f(x) = b : b \in \mathbb{R} \right\}
\]

\[
H_1 = \left\{ f(x) = ax + b : a, b \in \mathbb{R} \right\}
\]

\[
H_2 = \left\{ f(x) = a_1 x + a_2 x^2 + b : a_1, a_2, b \in \mathbb{R} \right\}
\]

\[\vdots\]

\[
H_n = \left\{ f(x) = \sum_{\ell=1}^{n} a_\ell x^\ell + b : a_1, \ldots, a_n, b \in \mathbb{R} \right\}
\]

Let us minimize the empirical error in \mathcal{H}_r ($r =$ polynomial degree)
Polynomial fitting (simulation)

\[r = 0, 1, 2, 3, 4, 5. \] As \(r \) increases the fit to the data improves (empirical error decreases)

Overfitting vs. underfitting

- Compare the empirical error (solid line) with expected error (dashed line)
 - \(r \) small: underfitting
 - \(r \) large: overfitting

- The larger \(r \) the lower the empirical error of \(f_5 \)
 \(\Rightarrow \) We cannot rely on the training error!
k-NN: the effect of k

- The smaller k the more irregular the decision boundary and the smaller the empirical error

\[k = 15 \quad k = 1 \]

$\frac{m}{k}$ large: overfitting

$\frac{m}{k}$ small: underfitting
Model selection

How to choose \(k \) in \(k \)-NN?

How to choose the degree \(r \) for polynomial regression?

The simplest approach is to use part of the training data (say 2/3) for training and the rest as a validation set.

Another approach is \(K \)-fold cross-validation: we split the data in \(K \) parts (of roughly equal sizes) and repeatedly train on \(K - 1 \) parts and test on the part “left out”

- We will discuss the model selection problem later in the course.

Other learning paradigms

Supervised learning is not the only learning setup!

- **Semi-supervised learning**: the ‘learning environment’ may give us access to many input examples but only few of them are labeled.

- **Active learning**: we are given many inputs and we can choose which ones to ask the label for.

- **Unsupervised learning**: We have only input examples. Here we may want to find data clusters, estimate the probability density of the data, find important features/variable (dimensionality reduction problem), detect anomalies, etc.