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Lectures 28-30: Eigenvalue methods for signal
representation and compression

Massimiliano Pontil

About these lectures

Theme: We introduce canonical correlation analysis (CCA), a
method for representing an input/output signal by a smaller di-
mensional vector which captures most correlations in the data.
When the data distribution is Gaussian, CCA is equivalent to
maximize the mutual information of the input and output. We
also discuss and contrast CCA to other eigenvalue methods such
as principal component analysis and partial least squares.




Outline

1. Canonical correlation analysis

2. Generalized eigenvalue problem

3. Principal component analysis

4. Partial least squares

5. Reduced rank regression

Statement of the problem

Consider two jointly input/output r.v. (X,Y) ~ p(x,y), where x € R!, y € RY.

We wish to find a description of both the input and output which
e can efficiently represent/compress these signals.
e reveal “interesting” relations/features among inputs and outputs.
e be used for supervised learning.

We focus on linear descriptions. The approaches we discuss consist in iter-
atively searching for a pair of vectors wy € RY, wy € R? which maximize an
objective function.




Correlation

We always assume X and Y have been preprocessed to have zero mean.

Our first method searches for a pair of vectors wyx € ]Rf, wy € IR? which
maximize

E[(wx"x)(wy 'y)]
VE[(wxx)?]E[(wy "y)?]

corr(wx ' X, Wy 'y) =

where corr(-,-) denotes the correlation between two r.v.. This is a number in
the interval [-1,1].

Remark: to simplify the notation, we have denoted by E[x] (and not E[X])
the average of a random variable X. Below, we also denote by wy and wy
the normalized unit vectors.

Mutual information

Suppose (X,Y) is normally distributed,

exp(—(x,y)C ' (x,y)")

1
p(x,y) = W

Cxx C
C = XX Xy .
[ Cyx Cyy ]

Then, the mutual information between X and Y is
1 Cx||C
I(X;Y)=Z1In [CdllOl )
2 IC|

To see this, use the formula for the differential entropy of a Gaussian dis-
tributed vector-valued r.v. with covariance K,

where

H(X) = %m ((2re)"|K|)  (here |K| = det(K))

and the property I(X;Y)=H(X)+ H(Y) - H(X,Y).




Correlation and mutual information (scalar case)

For scalar inputs/outputs (£ =¢ = 1), we have

o=[7 o]

where (remember X,Y are zero mean) o2 = E[X?], 02 = E[Y?], 0.y = E[XY].

In this case
E[XY] Oy

P = RIXPEY?] | 0e0y

is related to the mutual information of X and Y,
0252

1 1 1
IX;V)==-In| =———= ] ==In
2 oz, —a'gy 2 1-— pgy
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Thus maximizing the correlation is equivalent to maximize the mutual infor-

mation.

Canonical correlation analysis (CCA)

In practice p(x,y) is an unknown law of nature.

We wish to discover wy,wy based on a finite sample D of n i.i.d. pairs
x,y) ~p(x,¥),
D = {(Xlayl)a"'a(xnayn)}'

We can approximate (estimate) the above correlation by

E[(WXTX) (WyTY)] ~ Z?=1 (WXTXZ') (WyTyi) .
VE[W, x]\/E[wy y] \/Z?=1 (Wx %2 (wy Tys)?2

corr (WXTX, WyTy) =




Some algebra...

We denote by E the expectation w.r.t. the empirical distribution on the
sample D and observe that

E[(wx"x)(wy Ty)]
VE[(wx %)% E[(wy "y)?]

corr(wx X, Wy 'y) =~

wx ' Elxylwy Wy | CxyWy

\/(WXTE[XXT]WX) (WyTE[ny]Wy) - \/(WXTCXXWX) (WyTOyyWy)

Hence, the problem we wish to solve is

-
Wy ' CxyWy

maxX
W Wy \/(WXT C’xxvvx) (WyTnyWy)

Solution

We observe that the solution of (*) or (**) is not affected by rescaling wy
and/or wy. In order to have a unique solution we maximize the numerator
under a normalization constraint, that is

max{wx' CxyWy : Wx CuxWx =1, wy Cyywy = 1}
Wy, Wy
The corresponding Lagrangian function is

Ax A

and the Euler-Lagrange equations are

oL oL
= CxyWy — AxCxx Wy = 0,

Owx owy
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Solution (cont.)

Using
nyWy — AXCXXWX = 0 (1)
CyxWx — AyCyywy = 0 (2)
and the normalization constraints, we obtain
A = Ay =: A
Now, assuming Cyy is non-singular, (1) gives
C 0wy
y R ©)
and, placing (¢) in equation (2), we obtain
CxyCiy CyxWx = A*Cix W (o ©)
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Generalized eigenvalue problem

(o ©) is an example of generalized eigenvalue problem

e Let A, B be squared matrices and B positive definite. We are interested
in the problem

Aw = ABw

We can efficiently transform this problem into a standard eigenvalue
problem by setting B = R"R (e.g., using a Cholesky decomposition where
R is lower triangular) and u = Rw,

Aw =AR'Rw = AR 'Rw=AR"(Rw) = (R"H)TAR u= u

Thus, if we write Cyx = R}, Rxx and Ry, wy = u, ed. (o0) becomes
(R;)Q-)Tcxyc};_ylcyxR;;u = /\211
Once we have found wy, we simply compute wy by (¢).
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Generalized eigenvalue problem (cont)

The generalized eigenvalue problem is closely related to finding the optimal
points of the Rayleigh quotient

(w) w! Aw
r(w) = ——.
w ' Bw
In fact,

d 2
é:m(Aw—rBw)zo = Aw =rBw

which is like the generalized eigenvalue problem with r = A\.
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Generalized eigenvalue problem (cont.)

The above observations tell us that the optimal values/points of the Rayleigh
quotient are the eigen-values/vectors of the generalized eigenvalue problem.

Let {(X\i;, w;)}; be such a system of eigen-values/vectors with A1 > Xo > ... >
An > 0. Then, it is easy to see that

e ) is a global maximum for r. If A1 > A2, this maximum is unique (modulo
a scale transformation).

e )\, is a global minimum for r. This is unique if A1 > A\n

e All extremum values for r except A1 and )\, are saddle points. This can
verified by inspecting the Hessian matrix

A?r

H=—.
" 8w,~8wj
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Finding the largest eigenvalue

A solution can be found by means of the following iterative algorithm
e Set w = w(® and choose 1 > 0.
e Fort=1,...,T
1. Compute Vr(w) = —>—(Aw — rBw).

2. Update witD = w® 4 nvr(w®).

If n is not too large and T large enough (maybe infinite?), this algorithm
converges to the largest eigenvalue A1 = maxy r(w) and w(® converges to a
corresponding eigenvector.

Alternatively, we can use the updating rule:
n(Aw — Bw).
In this case we also have that |[w®| — A1.
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Finding the next eigenvalues

The next eigenvalues/vectors can be found iteratively by applying the same
algorithm to a reduced matrix A.

Let A1 be the largest eigenvalue with adn wq a corresponding eigenvector.
Assume wj has norm 1 in the metric induced by B (ie, w{ Bw; = 1) and set
u; = RWl.

We subtract the contribution of the largest eigenvector to the eq. (R—l)TAR—luQ =
A2up, Obtaining

(RFHTAR™Y - (R"Y)TAR™! — Ajuquj.

Then, using u; = Rw;, after some algebra we see that this transformation is
equivalent to keeping B unchanged and transforming A as

A — A—X\1Bwiw] B.

Remark: It is also possible to write the above transformation using the

normalization ||wi|| = A1.
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Back to CCA

We got a full system of generalized eigenvectors wy; € ]RE, wy; € IR? and
eigenvalues A\; >0, j=1,...,N = min(4,q) such that

WxinyWyi = >\i7 A1 > A2 > 2 An >0
With wy;CxxWyj = Wy;CyyWy; = &5, 4,5 = 1,...,N (here §;; = 1 is the delta of
Kronecker).

® Wx1,Wy1 iS the solution to the CCA problem.

® Wy, Wy IS the solution to the same problem when the directions wyi, wy1
are deflated from the inputs and output respectively.

e In general, wy(t1), Wy(j+1) IS the solution when the data components
along the directions wyi,...,Wyx; and wyi,...,wy; are deflated from the
inputs and output respectively.
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Alternative formulation

Suppose we have found all canonical pairs wy;, wy,, 1 =1,...,5—1. Then, the
j—th canonical pair, (wx;, wy,), is the solution to the problem

maximize wy' CxyWy
subject to the constraint, for:=1,...,57 — 1, that

WyiCoWxj = 0, w,Cpywy; =0, i#]

T — T —
Wy CoxWii = 1, wy,Cyywy; = 1.
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CCA and mutual information

The canonical correlations are related to mutual information by the formula

Gy =5 1 <H (11 A?))

To see this, remember we saw before that

|Cxx||ny|>

1Y =3 ( Cl

and use the formula
|C| = |Cxxl |Cyy — CyxCriid Cy
to obtain
1 _ _
I(X;Y) = —5In (I = Cyyt CyxCiit Cuyl) -

where we assumed Cxx and Cy, are nonsingular.
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CCA and mutual information (cont.)

1
I(X;Y) = —In (I — Oyt CyxCiiit Ciy 1) -
We now notice that the eigenvalues of C!CyxClCxy are the squared canon-
ical correlations, \;, and, since the determmant of a matrix is invariant w.r.t.
orthogonal transformations, we obtain

1
I(X:Y) = —§|n|diag(1—>\§)\

— —%In (H(l Az)) (H (11—A2)>
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Regularization

If Cxx and/or Cyy are singular (or simply ill-conditioned) we can replace them
by Cxx + axI and Cyy + ayI, where ax,ay > 0 and I is the identity matrix with
the appropriate dimension.

If the regularization parameters ax, ay are chosen with care (e.g. by cross-
validation) we will find interesting directions, that is directions which capture
not only high sample-correlations, but also true correlations

This fact can be justified using a probabilistic analysis...
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Principal component analysis (PCA)

This method seeks for directions along which the variance of an input signal
X is maximized,

Wy CyxWy
P= T
Wy ' Wy
This is a Rayleigh quotient with A = Cxx and B = 1.
Since Cyx is symmetric, we have

i

where Cxxu; = \ju; and \; > 0 since Cxx is positive definite.
Thus, if Ay > X\, 1 =2,...,n,

max p = A1, and argmaxp = uj.
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PCA (cont.)

The direction with maximum variance is also that one along which the mean
squared error is minimized

1 XCXX X
“E[|x — (x"Wx)Wx|?] = E[xTx — W xX Wx] = trace(Cyyx) — XV
2 Wi | Wx
By examining the updating rule we see that
W)((t+1) - W)((t) + n(cxxwx - WX)
We can also use a stochastic rule
W)((t+1) = W)((t) + n(xi(t)xiT(t)wx — Wx)
where i(t) is a randomly chosen sample at iteration ¢.
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PCA (cont.)

The second direction with largest variance which is orthogonal to wy is ob-
tained by subtracting the direction w1 from the data and applying the above
algorithm to it,

Cxx — Cxx - A]_W]_WI_
Problems with PCA:
e Mean squared error may be a bad “distortion measure’ .

e PCA is not a good approach to analyze input/output relations: If we
compute separate PCA for the inputs and outputs, then components with
high variance may be irrelevant in describing input/output statistics whilst
discarded directions with possibly very small variance may be informative.
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Partial least squares (PLS)

A better method, alternative to CCA, to describe joint sources is to find

simultaneously interesting input/output directions which maximize a joint
error measure.

Similarly to PCA, we choose a covariance error measure,

-
wy ' CxyW
p = E[W, xwy'y] = y xyTx

By differentiating w.r.t. wy and wy, we get the system of equations

CxyWy = pWwx
CyxWx = pwy
which, in turn, give
nynyWx - psz
CyxCxywy = PQWy-
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PLS (cont.)

It can be verified that PLS is a Rayleigh problem if we set

. 0 (O . 0 Cx | pxWx
a=la T]oe=la T ov=(08)
where%::i:l.

y

To find wx and wy, we can compute the SVD for Cyy,

n
Cy = ) _ Aiuguy;, or, in matrix notation, Ciy = UxAU,.
=1

Since the basis vectors are orthogonal, the problem of maximizing p is equiv-
alent to finding the largest singular value, A1, that is

Wy, Wy Wy, Wy
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Multivariate linear regression (MLR)

The last method we discuss, seeks for directions wx and wy which minimize
a rank-one mean squared regression error

€2 = min E[|ly — ax"wxWy||?].
a

The minimizing a is

~ T ~ - T ~ \2
_ W, OyWy 2 — grvT (Wy CxyWy)
a=_S——— = ¢ =EBlyy]l--—5_—
W, CxxWx W, CxxWx
which is equivalent to maximize
. Wy | CyyWy
p(WX7W}’) - T T .
\/ Wyx ' CxxWxWy ' Wy
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MLR (cont.)

As before we can differentiate the criterion p w.r.t wx,wy and, after some
algebra, we obtain

1 . _ 2~
C'xx CXyCwaX = p Wx

—1 ~ _ 2 .~
Cy CyxCxyWy = p“Wy.

This is equivalent to the Rayleigh problem with

[0 Cy _[C« O (W
=l S o=l = ()

where Z— = 41.
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MLR (cont.)

We can also compute an N-—rank regression by optimizing the regression

coefficients a = (a1,...,a,) along the N directions,
N
PN(VAVxl,VAVyl, v awaawyN) == main E[”y - ZaiXwaiV’\\/yi”Q].
=1

It can be verified that the solution are the first N eigenvectors corresponding
to the N largest eigenvalues of the function p above.
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From linear to nonlinear methods

e Linear projections are very restrictive. Often data are not Gaussian dis-
tributed!

Two possible ways to deal with nonlinearities are
1. Use neural networks.
2. Use kernel functions.
Let fx and f, the two neural networks
Ny ) Ny )
) =hO vahQ_whx), K G) =hO vk wihiy))

=1 =1
where h is an activation function.

The network parameters can for example be computed by maximizing their
mutual information. If there is not hidden layer this is like CCA. (for more
information, see the work of Becker and Hinton (1996))
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From linear to nonlinear methods (cont.)

The main idea in the second approach is to substitute x by a nonlinear vector-
valued function

0 R 5> H
and x{ x2 by K(x1,x2) = p(x1)Tp(x2). Here H is an euclidean space, possibly
infinite dimensional.

e This approach can still be seen as a generalized eigenvalue problem.

For example, if x = (z1,22), t = (t1,t2) then K(x,t) = (p+x"t)2 -1, x>0
corresponds to

p(x) = (\/5#931, \/§,uw2, w%, (L‘%, \/§w1w2).

Mathematically, this approach consists in replacing the spaces R and R? by
two reproducing kernel Hilbert spaces with kernels Ky and Kjy.
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