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Lectures 25—27: Rate Distortion Theory

Massimiliano Pontil

About these lectures

Theme: We discuss the problem of representing random se-
quences by a finite number of codewords which minimize an
average distortion function. This problem is related to vector
quantization and k—mean clustering as used in Signal Processing
and Machine Learning. Information Theory provides a framework

to study this problem, using ideas similar to those encountered
in channel coding.
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Statement of the problem (informal)

Problem: given a source distribution and distortion measure,
what is the minimum average distortion achievable at a particular
coding rate?

We begin with an instance of this problem, where we wish to
represent a single random variable X with a finite number R
of bits, that is, we wish to find a set of centers ¢(1),...,t(M),
M = 2% and a function f: X CIR — {1,2,..., M} such that

> p(@) (@ — t(f(2)))?

reX
is minimized. We already encountered this problem when we
discussed uniform quantization of a continuous r.v..




Example

Let us analyze the case of a Gaussian r.v.: p(z) = N(O, o2).

e With one bit quantization, by symmetry, we obtain ¢(1) = —a
and t(2) = a, with a = E[X]|X > 0] (can you say why?), and

f(x) =2 if £ > 0 and f(x) = 1 otherwise. We also show
below that

o=o\2/n, D= / (z — t(f(2)))2N(0, 02)dz = 02T —2.

T

e If just R = 2, the problem is less obvious. Below we discuss
an efficient method to find a good solution.

Example (cont.)

Setting y = z2/202, we have

o 2 x? o \/§ \/5
= exp{———=}dx = —exp{—y}dy = —.
0= |, e = [, rypeetni=oy

The expected distortion for one bit quantization is

D = /_(; (w_l_o_\/f)Qmexp{}dx—i—/ (m—a'\/7> \/;TTexp{_;TQ?}dm

2/oo 2+ 22 1 exp{ il }d 2/00 2 \/5 1 exp{ il }d
= x o — ———=}dz — —2x04|— ———=}dz
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Distortion for i.i.d. sources

More generally, let Xy,...,X, beiid. r.v. ~p(x),x € X. A rate
distortion code ¢(™) = (2"E_n) consists of an encoding function
frn X" > {1,2,...,2"%

and a decoding function

gn {1,2,...,2" 5 7 (usually T = &).

The process of replacing a sequence z, by one of the possible points t(:) =
gn(3),i=1,...,2"% is called vector quantization. The set formed by the points

t; is called the code-book.

This way, the space x™ is divided in the assignment regions f;1(i) (or Voronoi
partitions).

Distortion function

A distortion function is a mapping d : X x T — [0,00) which we
assume to be bounded, that is, dmaz = Maxg;d(z,t) < oco.

Typically used functions are:
e Hamming: d(z,t) = 0 if z =t and 1 otherwise.

e Squared error: d(z,t) = (z —t)>.

The distortion between sequences z™ € X™ and t" € T" is the
average per symbol distortion of the elements of the sequence,

1 n
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Rate distortion function

We focus of the average distortion (reconstruction error) of C(”))

D)= 3 p(a™)d(@", gn(fulz™))).

e Xn

e A distortion pair (R, D) is said to be achievable if there exists
a sequence of (2" n) distortion codes with

1im_ Bld(X™, gn(fa(X™))] < D.

e The rate distortion function p: [0,00) — [0,00) is defined by
p(D) = inf{R : (R, D) is achievable}.

Note: p(D) is non-increasing and convex (skip proof).

Some comments

e We wish to find codes which have small average distortion.

If the code-book is fixed, it is clear that the best encoding func-
tion is given by

fn(z™) = argmin;d(z™, t(i))
because the average distortion is minimize by mapping an z™ to
the a codeword t(z) which is closest to it.

On the other hand if the assignment regions are fixed, the code-
words t(z) are those which minimize the average distortion in
each region.
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Lloyd algorithm

The above observations suggest the following algorithm for finding a good
code-book

e Initialization: choose an initial set of M = 2"% codewords, t(i), i =
1 M.

g e sy

e Repeat until convergence the following two steps
1. Compute the function f, by the formula f,(z") = argmin;d(z"™,t(z))

2. Update t(i) to minimize the average distortion in each region f=1(3).
It can be proved that the algorithm converges to a local minima.

Remark: these ideas are very related to k—means clustering as used in Ma-
chine Learning.
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Main result of rate distortion theory

Theorem: The rate distortion function for an i.i.d. source X ~
p(z) and bounded distortion function is

p(D) = min{I(X;T) : ¥ p(z)q(t|z)d(z, t) < D}
z,t
where the minimum is take w.r.t. ¢(t|z). Said in other words:

1. If R > p(D), there exists a sequence of (2"% n) distortion codes whose
average distortion goes to D as n — oo.

2. If R < p(D) such code sequence does not exist.

Remark: we use the notation X ~ p(z), T ~ q(t), T|X ~ q(t|z), and
XY ~ q(z,t) = p(x)q(t|z).

Although the result is stated for finite discrete r.v., it also holds in the con-
tinuous case.
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Main result of rate distortion theory (cont.)

The result provides an optimization method for computing the
rate distortion function. We discuss the computation of p in two
important cases:

e Binary (Bernoulli) sources.
e Gaussian sources.

Later we will give some insights in proving the key part of the theorem (as-

sertion 1) and discuss the relation with the channel coding theorem.
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Binary sources

Theorem: The rate distortion function for an i.i.d. source X ~
p(x) and bounded distortion function is

p(D) =min{I(X;T) : Zp(a:)q(t|:c)d(ac,t) < D}
z,t

where the minimum is take w.r.t. q(¢|x).

Example 1: if X = {0,1}, p(1) = p, and d the Hamming distor-
tion, then
H(p) — H(D) if D€ [0,min(p,1—p)]
p(D) =
0 otherwise.
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Binary sources (cont.)

Proof: assume without loss of generality that p < 1/2, and consider the
binary rv. Z=X+4T|2 (i,e., Z=1if X 2T an 0 if X =T). We then have,

H(X|T) = H(Z|T) < H(Z) < H(D)
where the last inequality is because
P(Z=1)=PX #T)=E[dX,T)]<D
and H(D) increases with D for D < 1/2. Consequently,
I(X;T)=H(X)- H(X|T) = H(p) — H(X|T) > H(p) — H(D)

which implies that p(D) > H(p) — H(D).
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Binary sources (cont.)

We now find a specific distribution ¢(t|z) which achieves the above upper
bound and satisfies the distortion constraint.

Consider a binary symmetric channel with input 7', output X, and transition
probability (1 — D, D). Choose r = P(T' = 1) so that P(X = 1) = p, that is

D
rfA-D)+(1-nND=p = r=I—01

and note that, if D <p <1/2, then r is a well defined probability and
I(X;T) = H(X) - H(X|T) = H(p) — H(D)
with expected distortion D = P(X # T).

On the other hand, if D > p and we choose p(T'=0) = 1 we have I(X;T) =0
and D = p, so also p(D) = 0.
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Gaussian sources

Example 2: if X is a Gaussian source, p(z) ~ N(0,02), d the
squared distortion, then we have

log% if 0< D < o2

N

p(D) =
0 if D> o2,

Proof: Since E[(X —T)?] < D, we have
H(X|T) = H(X-T|T) < H(X -T)

< H(N(0,E[(X —T)%]) = %log(%e)E[(X - T)?].

where the second inequality is since the normal distribution maximizes the
entropy for a fixed value of the second order momentum.
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Gaussian sources (cont.)

Using the above inequality and the properties of the normal distribution, we
have

I66GT) = H(X)~ HXIT) > H(X) - - 10g(2ne) BI(X ~ T’

1 1 1 2
> 5 log(2me)o? — 5 log(2me)D = 5 log %

which implies that p(D) > 2log %.

Now, if D € [0,07] and we choose X = T + Z with p(t) ~ N(0,62 — D) and
Z ~ N(0,D), we have p(z) = N(0,0°) and I(X;T) = 1/2log(e?/D), achieving
the bound. On the other hand, if D > ¢2 and we choose T' = 0 with probability
1, we get I(X;T) =0 and, so, p(D) = 0.
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An important consequence

We can rewrite the above result as D(R) = o227 2R, (this is
the infimum of the distortion achieved asymptotic by an (2" n)
code).

For example if R =1, we get

2 D(R
D(1) = %, and, in general D(R+1) = %

In contrast, in our opening example (one single r.v.) we found that D(1) =
(1 —2/7m)o? ~ 0.3602. Thus,

e \We can achieve a lower distortion by quantizing a succession
of i.i.d. r.v. rather than each r.v. separately!
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Proof of the theorem

Theorem: For ani.i.d. source X ~ p(x) with bounded distortion
function, we have

p(D) = min {1 T+ 3 p(@p(ie)d(e, ) < D}

z,t

We sketch the proof of the main part of the theorem:

e for every R > p(D), there exists a sequence of (2" n) dis-
tortion codes whose average distortion goes to D as n — oco.

For the converse result, see chapters 13.4 of Cover and Thomas's book.
20




Scheme of the proof

The proof is similar to the proof of the channel coding theorem.
It is based on the following steps:

1. Generate a code-book t(i), i =1,...,2"R j.i.d. according to
p(t) = p(t1)p(t2) - - - p(tn)

2. Encode a sequence z™ using a modified notion of jointly -
typicality explained below.

3. Show that the average (w.r.t. to code-book generation) of
the average distortion tends to D as n — oo.

4. Extract a good sequence of codes from the set randomly
generated codes.
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Distortion ¢—typicality

We define the set of distortion e—typical sequences AE”) to be
the set formed by the pairs (z™,t") € X™ x T" (generated i.i.d.
with p(x,t)) which satisfies the following constraints

“logp(e™) + H(X) < [Llogp(m) + H(T)| <

‘% log p(z",t") + H(X, T)‘ <e |d(a"™t") — E[d(X",T")]| <€

This set is similar to the set of e—jointly typical sequences which
we used in the proof of the channel coding theorem. Also, by the
weak law of large numbers, we have that Prob((z",t") € Aé")) —
1 as n — oo.
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Encoding/decoding

We generate a code-book C = {t(1),...,t(2"%)} i.i.d. as dis-
cussed above.

We then encode z™ as

w if wis the smallest index : (z", t(w)) € Al
fn(z™) =
1 if, for every w, (z™, t(w)) ¢ A,

and decode w € {1,2,...,2"%} as g,(w) = t(w).

We need to calculate D = Ez[Exn[d(X™, gn(fn(X")]].
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Formula for the average distortion

We decompose D as
D= 3% Ec[Exn[d(X", gn(fn(X™)))IZ = 4]].
i=1,2
Z(C,X™) is binary r.v. which is 1 if there exist a codeword which

is jointly e—typical with X", and zero otherwise.
If P(") := Prob(Z = 0), we have

D<1-P™YD+e) 4+ P™dpae < D+ e+ PMdpae

Thus, to prove the result we need to show that P() 5 0 as
n — o0.
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Computation of pP(®)

The computation of P(") yses ideas similar to those encountered
in proving the channel coding theorem. The conclusion is that,
if R< I(X;T), pn) goes to zero as n — oco. (See page 355-6 of
Cover and Thomas for the details).

This tells us that, if R < I(X;T), for every § > 0, there exist ¢ and
n such that E [Exn[d(X™, gn(fn(X™))]] < D + §. Consequently,
there must exist at least one such code C* with

Eld(X™,T™)|C*] < D+ 5.
This conclude the sketch of the proof.

Remark: It is also possible to use the method of types from last class, to
prove a stronger result
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Informal argument

We discuss an informal argument for the result in the case of Gaussian sources.
We denote by B(a,r) the sphere in IR” centered at a with radius r. All state-
ments made are meant to be true with “high probability” and asymptotically.

Remember the C.C. Theorem for a Gaussian channel: ¥ = X + Z, with Z ~
G(0, K), with codewords subject to the power constraint 1/n) . ; E[X?] <
p- The idea in computing the channel capacity is based on the following
observations

e Given an input z", the output y™ € B(z",v/nK) (a small sphere)

e The possible outputs lie in B(0,+v/n(K + p)) (big sphere)

Consequently, a code has small decoding error if the small spheres do not
overlap. The maximum number of such spheres (or packing number) is

_ Vol(BO,Vn(K +p) _ (K+p\"? _logM _ 1 p
ST TETORV Y 9) _( K) > C=== =3l (14 %)
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Informal argument (cont.)

Consider the rate distortion problem for a Gaussian source, X ~ N(0,¢?), and
squared distortion (thus, \/d(z",t") is the Euclidean distance in R").

If an (2% n) code achieves a distortion D, then, given an input sequence 2",
there exists a codeword which has Euclidean distance vnD to it. Here we
wish to find the minimum number of such codewords (or covering number).
As before, this number is

_ Vol(B(0,y/n(c?®) _ [a2\"? _logM _ 1, o2
M= Vol(B(0,v/nD)) (5) = p(D) = n 2°%9p
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Relation between channel and distortion codes

The observations above suggest that a channel code can be used
to build a distortion code and viceversa.

Indeed, there is a general relation between sphere packing and sphere covering.
If S is a metric space with distance function d(-,-) (e.g., our big sphere above),
we define

e Covering number: N.(§) = size of the smallest set of points G(§) such
that, for every z € S, d(z,G(8)) = min{d(z,t) : t € G(§)} <.

e Packing number: N,(v) = size of the largest set of points F(v) such that
if x,z€ F, x # z, d(z,z) > 7.

It can be shown that
Ny(28) < N(8) < Np(8)  and, so, Ne(28) < Ny(8) < Ne(9)
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Characterization of p(D)

We can use the method of Lagrange multipliers to find

p(D) = ;1(1'15 {I(X: T) : ) p(x)g(tle)d(z,t) < D} :

z,t

The Lagrangian function is

J(Q)—;p( )a(t|z) log Zzp(x)q(t|x)+>\%:p( )q(t|z)d( ,t)—l-zw: ( )zt:q(tl )

where the last term corresponds to the constraint that

Zq(t|a¢) =1, for every z € X.
t

e In the calculation below we assume, for simplicity that ¢(¢) >0, t € T.
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Characterization of p(D) (cont.)

Differentiating w.r.t. ¢(t|z) and using ) p(z)q(t|x) = q(t), we obtain
—d(z,t)
q(t|z) = q(¢)
p(z)
where log u(x) 1= v(z)/p(x) and, using >, q(t|z) = 1 we have

pla) =) q(t)e 4D

t

e

and, so, combining

e—)\d(x,t)

Sa@erien
Multiplying by p(z) and summing over z, we obtain, if g(¢t) > 0,
Ad(z,t)

p(x)e”
4 = 17 t E T
; Zt' q(tl)e—/\d(a:,t)

which combined with the distortion constraint provides a set of |7|+ 1 equa-
tions to compute X and q(¢).

q(t|lz) = q(t)
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A method for computing p(D)

In practice, it is difficult to solve the above system of non-linear equations.

Consider the general problem where we want to find the minimum distance

between two convex sets A and B,

dmin = Min{d(a,b) : a € A,b € B}.

We can use the following algorithm to compute a solution:

e fixed a € A and look for a closest point b € B to a. Then, find a closest

point a € A to b, and repeat.

Under some general conditions on the distance d, the algorithm converges to

an optimal solution. Let's see how this method can be used to compute the

rate distortion function...
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A method for computing p(D) (cont.)

Lemma: I(X;T) = D(q(z,t) || p(z)q(t)) = min,y D(g(z,t) || p(z)7()).

Proof (sketch): Remember our notation q(z,t) = p(z)q(t|z). After some

algebra we obtain

D(q(z,t) || p(x)r(t)) — D(q(,?) || p(x)q(t)) = D(q(®) || 7(¢)) 2 O

with inequality if and only if r = q.
Using this lemma in the above formula for p(D), we see that

p(D) =min{D(a ||b) :a € A,be B}, with
A = {a=qx,t): Y q(-,t) =p(-) >0, Ed(X,T)] < D}

B = {b=p@r(®):r()>0, Y r(t) =1}

teT
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A method for computing p(D) (cont.)

We then have the following iterative algorithm to compute p(D)

e Choose X and r(t), t € T and calculate q(t|z) € A which minimizes
D(q(t|z)p(x) || p(x)r(t)). This is given by the above method of Lagrange
multipliers. In particular, equation (*) gives

e—Md(z,t)

>, r(t)e A’

q(t|z) =r(t)

e We fixed this just computed q(t|z) and minimize D(q(t|z)p(z) || p(x)q(x))
for p(xz)q(z) € B. By the lemma above, the solution is

g(t) = p(z)q(t|z).
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A method for computing p(D) (cont.)

We summarize the above alternating minimization method

e Repeat until convergence

1. Choose X and r(t), t € T and calculate:

e—)\d(:c,t)

I OESECO)

q(t|z) = r(t)

2. Update r(t) as
r(t) =) p(x)q(t|z).

Remark: This method is called the Blahut-Arimoto algorithm. Csiszar has
shown that the converges in the limit to p(D).
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