GI12/4C59: Information Theory

Lectures 22—24

Massimiliano Pontil

About these lectures

Theme: We go back to the problem of source coding and dis-
cuss coding methods which are efficient when only some proper-
ties of the source distribution are known. Specifically, we prove
the existence of efficient codes in the case that the entropy of the
source is bounded and discuss the important Lempel-Ziv coding.
To illustrate these ideas we introduce a new tool from probability
called the method of types.

Outline

1. The method of types

2. Universal source coding

3. Lempel-Ziv coding

Type of a sequence

Let X1,...,Xyn be jointly r.v., each with values in a finite set X
of m elements, and let z (also denoted by x) be a sequence
(z1,...,7n) € X™.

e The type Px of a sequence x is the empirical distribution
(relative frequency) of the symbols of X in x,

Px(a) = N(a|x)/n, a€X
where N(alx) is the number of occurrences of symbol a in x.
e \We denote by P, the set of types with denominator n.

e If P € Pn, we denote by T'(P) the set of sequences of length
n and type P (or the type class of P).

Examples

Example 1: If X = {0,1}, the set of possible types of denominator n is

e {(23) (o) - ()

Example 2: Let X = {1,2,3}. The type of x = 33311 is (,0,2) because

Py(1) =2, P(2) =0, P«(3) =32. The type of 11321 is (3,1, 3).

S

The class of type P = (2,1, 1) consists of the sequences of length 5 containing

5575
three 1, one 2, and one 3. There are 20 such sequences,
51
IT(P)| = 31111 20

Properties of types

(1) [Pnl < (n4+1)™

(2) If X1,...,Xn are i.i.d. according to p(z), then
Prob(x) = 2~ (H(B)+D(Fxllp))

(3) For every P € Py,
1

__—_onH(P) < |p(p)| < 2nH(P)
D)™ <|T(P)| <

(4) Under the same hypothesis in (2), for every P € Py,
1

___ = o—nD(Plp) < < o—nD(P||p)
n T 1)m2 < Prob(T(P)) <2

Proof of 1

Remember that m = |X| and that Px is identified by a vector of
m components, the frequencies of symbols of X in x. Since the
nominator of each of these frequencies can take n + 1 values,
there are at most (n + 1)™ vectors.

Remark: This property says that there are a polynomial num-
ber of types of length n. Thus, since there are m"™ possible
sequences, there is at least one type which has exponentially
many sequences.

In fact, property 3 above says that each type has an exponential
number of sequences. The largest type class has essentially (i.e.
to the first order in the exponent) the same number of sequences
as the entire class.

Proof of property 2

Since Xq,...,Xy are i.i.d.,

n

Prob(x) = [[p(z:) = [] p(a)N@.

=1 acX
We then compute

Prob(x) = [[p(a)N(@X

acX

— H p(a)nPX(a) — H Qan(a) log p(a)
acX acX

— H 2an(a) log p(a)—Px(a) log Px(a)+ Px(a) log Px(a)
acX

51 Yacx (~Px(a) log ZE+P(a) 109 P(a)) _ on(—D(Pllp)— H(P))

8

Proof of property 3

The exact size of T'(P) is

n!
T(P)| = (nP(a))! - (nP(am))!

The upper and lower bound can be proved by using Stirling’s
formula. Alternatively note, by property 2 with p = Px = P, that

1 > Prob(T(P))= Y 2P
xeT(P)

= [T(P))2) = 1P| < 2"
The lower bound requires longer (but similar to the above) computations.

9

Proof of property 4

Using property 3, we have
Prob(T(P)) = Y Prob(x)= Y 2 nHEP)+D(Plp))
x€T(P) xeT(P)

— |T(p)|2—n(H(P)+D(Pllp))

and, by property 3, we conclude that
1 5D < prob(T(P)) < 2 DEPIP).
(n+1)m - -

10

Types: wrapping up

We have seen that

e there is only a polynomial (in n) number of types (prop-
erty 1) and each type class has exponentially many elements
(property 3).

e For i.i.d. random variables, property 4 says that type classes
P that are far from the true distribution p have exponentially
smaller probability.

This observation motivates the following definition: given € > 0
we define, for n large enough, the typical set
T{™ = {2 : D(Pyn || p) < €.

11

An useful lemma

Lemma: If Xq,...,Xy, are i.i.d.~ p(z), then

1 — —ne—m|o
P D n < ____ = o—me_o9—ne-m g(n-l—l).
b (D(Pen | 9) >) < (-
Prob({D(Pyn || p) > €}) = > Prob(T(P))
P:D(P||p)>e
< S 2 P(lIp) (by property 4)
P:D(P||p)>e
S Z 2—7’1,6
P:D(P|lp)>e
< 1 —ne (by property 1).

(n+1)™

12

The typical set

Lemma: If Xq,...,X, are i.i.d.~ p(x), then
Prob({D(Pyn || p) > €}) < 27ne-miog(n+l),
The lemma implies that the probability of a typical set
T{ = (2" : D(Pyn || p) < €}
converges to 1 as n — oo.
We also have

Y PUD(Pu || p) > €}) < o0

n=1
That is, the expected number of occurrences of the event {D(P.- || p) > €}
for all n is finite. This implies (skip proof) that

D(P,- || p) - 0 with probability 1.

13

Two notions of convergence

Remember that the sequence of r.v. {7}, : n € N} converges

e in probability to a r.v T if, for every t > 0, we have that

JNim PUIT, = T] 2 1)) = 0

e with probability 1 to a r.v. T if the following holds
P({weq: Nim_ Tp(w) = T(w)}) =1

Convergence in probability (aka almost sure convergence) implies

convergence in probability.
14

Universal source coding

We wish to compress an i.i.d. source when the distribution p of
the source is unknown but has bounded entropy, say H(p) < R.
This scenario is common in practice...

If we use, say, an Huffman code to compress the source se-
quences and this code is designed for a distribution g(x), we may
pay a penalty of D(p(™ || ¢(™)), where p(™")(z™) = p(21) - - - p(zn).
That is,

Eple(X1,..., Xn)] — Eqlé(X1, ..., Xn)] =~ D™ || ¢) = nD(p || q).

e can we do better?
15

Universal source coding (cont)

The goal is to design a code which is “efficient” for every p such
that H(p) < R.

A fixed rate block code of rate R consists of an encoder fj, :
X" — {1,2,...,2"7} and a decoder g, : {1,2,...,2"F} — xm.
(These two mappings are independent of p.) The probability of error
of the code is

P = Prob(gn(fn(X1,- -, Xn)) # (X1,..., Xn)).

Such code is called universal if P(") — 0 as n — oo for every p
such that H(p) < R.

Remark: this code is lossy (singular), since R < logm and, so, 2% < m™.
16

Universal codes exist

Idea: we set R, = R — m% and consider the set of se-
quences

A={xec X" : H(Px) < Rn)}.

We show below using the method of types that Prob(A) — 1 as
n — oo and |A| < 2n&,

Informal justification: If n is large enough
e there are about 2"H(P) sequences of type P and, since there are only a
polynomial number of types with denominator n, we need roughly nR
bits to enumerate all sequences such that H(P) < R.

e the remaining sequences have small probability.

17

Choice of the functions f, and g,

We index the elements of A and define the encoder f, as

) index(x) ifxeA
fn(x) = { 0 otherwise .

We also define the decoder g, to map each index to the corre-
sponding element of A or to a dummy element otherwise.

Thus, the probability of error is

P™ = Prob((Xy,...,Xn) ¢ A).

18

Proof of the technical step 1

We now prove the above technical steps.

In order to prove that |A| < 2" we set

P = {PGPn:H(P) §Rn=R—m|Og(n+1)}
n

and note, by property 1 and 2 above, that

|Al Yorp) < Y MR < 3 onfn

Pep! pep! pPep!
< (n+ 1)m2an — 2n(Rn—|-% log(n+1)) — 2nR_

19

Proof of the technical step 2

We now show that P(™) —s 0. Using properties 1 and 2, we derive

PM = 3" Prob(T(P)) < (n+1)™max {Prob(T(P)) : P € P'}
PeP!

Then, we note that, since R, + R and H(p) < R, for n large
enough, we have R, > H(p) and, so,

min {D(P|lp): PeP}= min {D(P || p) : H(P) > Rn} >0
which implies that P(®) s 0 as n — oo.

20

Some remarks

e We pay an extra price in designing an universal code: to
obtain the same performance as, say, an Huffman code, we
need a longer block length.

e The above proof technique also tells us that if H(p) > R, the
sequence will have a type outside A and the probability of
error will be close to 1.

e Proof technique is restricted to i.i.d. sources.

21

Lempel-Ziv Coding

We now remove the i.i.d. assumption and discuss an universal
code, named Lempel-Ziv code, for more general sources.

We discuss this code for binary alphabets but its extension to
finite alphabets is immediate.

Consider the following example
Example: Let x =1011010100010... We parse x as a sequence

of successive substrings of it

1,0,11,01,010,00, 10

What's the idea behind this?
22

Extracting the parse sequence

In the above example, we have sequentially extracted strings
which “have not appeared so far’. More precisely, the parsed
sequence is obtained by extracting, after each comma, an input
subsequence which

(1) starts at the end of the previous subsequence, and

(2) is the shortest string which has not been extracted before.

Remark: A consequence of (2) is that all prefixes of an extracted string were
extracted before this string (e.g., the prefixes of 010 are 0 and 01 and were
both extracted before 010).

23

Coding

Let n be the length of x and ¢(n) the number of strings in the
parse sequence y1,y2;- -, Ye(n)- The code of x is identifies by

e a pointer codeword of log c(n) bits which codes for the prefix
of y;, =1,...,c(n).
e a single bit which describes the last bit in y;.

Example: Let x = 1011010100010. The parsed sequenceis1,0,11,01,010,00, 10
and the code of x is

(000, 1), (000, 0), (001, 1), (010, 1), (100, 0), (010, 0), (001, 0)

24

Decoding

Given a Lempel-Ziv codeword, we decode it into a string
" = (y1,...,yc), by computing the y; sequentially.

In particular, (000,1),(000,0),(001,1),(010,1),(100,0),(010,0),(001,0) is
decoded as

Iteration | (p-code,l-bit) | Parse-string Sequence
0 (0,0) yo=1~0 0
1 (000,1) y1 =yol =1 1
2 (000,0) y> = yo0 = O 10
3 (001,1) y3 =y11 =11 | 1011
4 (010,1) ys =yo1l =01 | 101101
5 (100,0) ys = y40 = 010 | 101101010
6 (010,0) Y6 = yo0 = 00 | 10110101000
7 (001,0) y7 =y10 = 10 | 1011010100010

25

Some observations

e The Lempel-Ziv code is a variable length block code. The
function f, (which was now specified before) maps X" into
X*.

e By construction the code is non-singular and, so, P(") = 0o
for every n.

e In the above example the Lempel-Ziv code is about twice
longer than x. However, for longer strings the code will
compress x. In fact, as we will show below, this code is
asymptotically optimal. This also implies that the code is
universal.

26

Some observations (cont.)

e To compute the code we need two passes through the input
string x. In the first pass we produce the parsed sequence and
calculate ¢(n). In the second pass, we calculate the pointers.

e It is possible to modify the Lempel-Ziv code to: i) have
variable length pointers (in fact, the first pointers need fewer
bits) and ii) have only a single pass through x. These changes
do not affect the asymptotic properties of the code.

27

Optimality of Lempel-Ziv coding

The total length of the compress sequence is

(") = c(n)(loge(n) + 1).

We wish to show that the code is universal and asymptotically
optimal, namely

110,60

— H(X) with probability 1

where H(X) is the entropy rate of the process.

28

Plan for the proof

The proof is based on the following main steps

Find an upper bound for c(n).

Approximate the process by a k—order Markov process.

Bound the entropy for such a process (Lemma B and C),
thereby proving optimality.

Observe that the approximation is exact in the limit £ — .

29

Upper bound on c(n)

Formally, a parse of a string ™ is a division of ™ into contiguous
subsequences of it (phrases) separated by a comma. We assume
here that these subsequences are always distinct. For example,
the Lempel-Ziv parser gives distinct subsequences.

Lemma A: If the parser is distinct, we have
< n

e(n) < (1 —e€pn)logn

where ¢, > 0 and ¢, — 0 as n — oo.

Remark: Note that c¢(n) is function of the sequence z" and the above results
holds for every sequence, that is

n
(1 —ey)logn’
For a proof of the lemma see pp. 321 of Cover and Thomas's.

supc(n) <
o

30

k—order Markov process

We prove the optimality of the code for a k—order Markov pro-
cess. Let x{ denote the sequence (z;,...,x;) with i < j. We
define, for k£ > 1,

n
—1
Qu(T1—ks--»70, %1, @n) = P(aY_3) T P(=jl2i_p)
J=1
The initial state :ccl’_k is part of specification of the process. The
entropy rate of the process is

_ . 1
H(Xp| X5~ = Jim ——109 Qu(X1, - Xn| X1, ..., X0)

Remark: This method of proof is general since any ergodic process can be
approximate by a k—order Markov process. In particular, H(Xk|X§_1) — H(X)
for k — oo.

31

k—order Markov process (cont.)

Let 7 be a sampled sequence and y7 its parsing,

V’i —1
y; = xVi+1
where, for : = 1,...,c, v; is the index where phrase y; starts and

vet1 =n+ 1. We define, for : =1,...,¢c, the “preceding state”
variable

v,—1
vi—k

(the k bits preceding y;)

S — T

and ¢y, be the number of phrases y; with length ¢ and preceding
state s. Then, by construction we have

ZCKS = c, and ZEC@S =n (%)
4,s

4,s

32

k—order Markov process (cont.)

Lemma B (Ziv’s inequality): l1og Qi(z7[s1) < — 324 s ¢ps 109 cys.

Proof: Using the chain rule and the k — order Markov property, we write
Qi(z[s1) = Qr(ils1) = [[PQwilsi, i = [P(wils).
=1 =1

We define the index set I(s,£) = {i : |yil = ¢, si = s} and note that

log Qk(iﬂﬂsl) ZIOg P(yzlsz) == Z Z log P(yzlsz)

L,s 1€I(s,f)

ZCes) log _P(yz|31) < Z’%'Og > Cip(yﬂsi)

6s iel(s)) icl(s,0) b

where we used Jensen’'s inequality. Now the result follows by noting that,
since the y; are distinct, the inner sum is bounded by log 1/cys.

33

Optimality of Lempel-Ziv code

We define mys = ¢ys/c and note that, by eqgs. (%)

Zzﬂ'ﬂszl ;Eﬂ'ﬁszg

bs £L,s

Thus, we have

log Qi (z7|s1) < — Z cys 109 ¢ps = —clog c—cZ mps l0g mps = —clog e+cH(U, V) (%)
E,S f’s
where U,V are r.v. with Prob(U = £,V = s) = my;.

Now, H(U,V) < HU)+ H(V) < H({U) + klogm.

34

Bounding H(U)

We used following result to bound H(U).

Lemma C: If Z is an integer and positive r.v. with mean pu, its
entropy is bounded by H(Z) < (p+ 1) log(p+ 1) — pnlogpu

Then, since E(U) = Z&s bmys = n/c, we have
H(U) < (E_i_l) log <E+1) —Elogﬁﬂ:|ogﬁz Iogﬁ—l— (E—Fl) log <£_|_1)
C C C C C C C n
and, so,
SHW,V) < Sklogm+ Slog =+ 0(1) (x*%)
n n n C

35

Concluding the proof

log ¢

We rewrite inequality (x*) as ¢ < —%Iog Qk(x?|sl)+§H(U, V).
We then observe that

e "H(U,V) - 0asn—oo (byinequality (***) and Lemma A)

e lim,,osupc(n)/n=0 (by Lemma A)

o lim, o0 2 log Qp(a?|s1) = H(Xo| X 1,...,X1-%).

Thus, with probability 1, we have
n I
fim sup £ 0g c(n) +c<n>>
n

< lim sup (c(n)
n—oo

< lim supc(n)

n—o0

log c(n) c(n)

lo
+ lim sup =2 < lim sup ¢(n) 9c(n)
n—00 n n—oo n

< H(Xo|X_1,...,X1-8) — H(X) as k— oo.

36

Bibliography

This lectures are based on Sections 12.1-3 and 12.10 of Cover

and Thomas's book.

37

