GI12/4C59: Information Theory

Lectures 19—21

Massimiliano Pontil

About these lectures

Theme of these lectures: We continue the discussion of dis-
crete noisy channels and consider channels with memory (a.k.a.
channels with feedback). We then turn our attention to contin-
uous channels and analyze the important Gaussian channel.




Outline

1. Review of the channel coding theorem

2. Channels with feedback

3. Continuous channel

4. The Gaussian channel

Review of channel coding theorem

Memoryless channel:

W — |[Encoder|— X" — | Channel| — Y™ — |Decoder| — W

The received signal y™ has conditional probability distribution
p(y"z") = p(y1lz1)p(y2|z2) - - - p(ynlzn).

A code (™) is identified by the codewords z"(w) € X", w € W

and a decoding function g : Y™ — W.

_ log W]

n

The rate R of the code C(™) is defined to be R :




Review of channel coding theorem (cont.)

e The probability of error of C{™) is defined as
ME|C™Y) = max P(g(Y") # w).
wew

e A rate R is said achievable if there exists a sequence of codes
(™) n e N such that A(E|C(™) converges to zero as n — .

e The capacity C of the channel is the supremum of all possible
achievable rates.

Channel coding theorem (main part): C = maX, . I(X;Y).

5

Review of channel coding theorem (cont.)

The idea in proving the theorem consisted in generating a code
c() at random, i.e. z" ~ p(z1)---p(zn), wWith the decoding
function based on “joint typicality verification'.

The main steps in proving that R < C is achievable were

e The average probability of error P(")(E) with respect to C(™ and a ran-
dom choice of the sent message equals, by symmetry, P(")(E|W =1).

e If R<I(X;Y), then PM(E|W = 1) converges to zero as n — cc.

e There exists a sequence of codes C*™ n € IN whose maximal probability
of error converges goes to zero as n — co.

Then, the result follows by optimizing with respect to p(x).
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Decoding rule (informal argument)

Informally, if the input codewords have long length, the channel
looks like the noisy typewriter channel: there is a subset of inputs
which produces disjoint output subsets.

e Each input z" will likely produce about 22X IX) output sequences which
are equally likely.

e The total number of typical output sequences is about 27# ),

e Thus, there is a subset of about 27 () /onH(Y|X) — onI(X}Y) inputs which
produces disjoint subsets of typical output sequences.

The above argument suggests that a rate R = I(X;Y) is achiev-
able and, so, the capacity is C = maxp(x)l.

Channels with feedback

In this case the codewords associated to message w is a com-
puted with feedback, that is

1 '
LL‘]_::L'l(’w), xi:xi(w,yz ) 77’:27"'7”"

The rate of a ¢(™) feedback code is still defined as
log |W|

n

R =

Remark: In a memoryless channel the codewords are determined before send-
ing the message. Here each message has multiple possible codes associated

to it. The code which is actually used depends on the measured outputs.
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Feedback capacity

We define the capacity with feedback, Cr, of a discrete memory-
less channel as the supremum of all rates achievable by feedback
codes.

Let C = Max,z) I(X;Y) be the capacity without feedback. By
construction Cr > C, and we may expect that Crp > C as feed-
back allows for more reliable transmission. Instead we have the
rather surprising result.

Theorem: Cp = C (Feedback does not increase the capacity).

Proof of the theorem

Let P(™) be the average probability of error when p(w) is uniform. Then, by
Fano inequality, H(W|Y") < 1 + nRP™ and

nR=HW)=HWI|Y") +I(W;Y") <14 P™nR+I(W;Y")
and

I(W;Y") = HIY™) — H(Y"|W)=H(Y") - zn: H(Y|Yi_1,...,Y1,W)
i=1

= HY™) =) HilYia,...,YL, W, X)) = H(Y") = ) H(Yi|X)

< Y HM) - HX|X:) =) I(X;,Y;) < nC.
=1 =1

(we used the fact that X; = X,;(W,Y1,...,Yi_1) and, conditional on X;, Y; is
independent of W and Yi,...,Y;_1). Putting all together, we conclude that

1
n(1l — P™)

+ ¢ — C.

(n)
nR<14+nRP"" 4+nC = R< T pm
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Entropy of a continuous random variable

Let X be a continuous r.v. with c.d.f. F(z) = P({X <«z}) and
assume that f(z) = F'(x) is well defined and [*°_ f(z) = 1.

The entropy of a r.v. X with density f (also called differential
entropy) is defined as

H(X)=H(f) =~ [ f(2)log f(x)de = —Ellog ()
(Remember that we use the convention 0log0 = 0.

Note: Unlike in the case of a discrete r.v., now H(X) can be negative.
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Entropy of a continuous random variable (cont)

Example 1: If f(z) is the uniform distribution on the interval [0, a], that is,

f(z) = % if z € [0,a] and zero otherwise, we have

1 1
H(X):—/ —Ioggdw=|oga.

Lo @

Example 2: If f(z) = ﬁexp( (”” ”) ), the Gaussian distribution with mean
@ and variance o,

H.(X) = / f()( (x_“)z |\/27r0'>da:———|— In 2702 ;In27rec72.

Thus, H(X) = Ho(X) = %Iog 2mec2. (Remember logyz = log,alog,z, in
particular logz = logelnx)

Remark: The extension of the entropy (and relative entropy and mutual
information — see below) to the continuous case needs some care since sums
are replaced by integrals which may not exist or be infinite.
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Joint entropy

If Xq,...,Xy is a sequence of continuous r.v., their joint entropy
is defined by

H(Xq,...,Xn) = —E[log f(X1,...,Xn)].

This satisfies the chain rule:
n
H(X1,...,Xn) =Y H(X;|X;i—1,...,X1).
i=1
In particular H(Xl,XQ) = H(Xl) + H(X2|X]_).
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Entropy of multivariate Normal distribution

Let x = (3717 s 7xn)v f(X) = G(,U,,K) = meXp(_%(x_M)TK_l(X_M))v

the multivariate normal distribution with mean p € R"™ and n x n covariance
matrix K. We have

Ho(X4,...,Xn) = g log(2re det(K))

Proof:

Ao X) = = [ 560 (—%(x ~ i) E @ — ) + 2 In(2e)" det(K))

= %E [;(wz — ) K (5 — ) | + % In(2m)" det(K)

and the result follows by noting that
E [Z(wz — i) K () — uj)] =) KiiK;;' =n
1,J 1
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Relative entropy / mutual information

The relative entropy of the ordered density pair f, g is defined by

D(fll9) = [, F@)10g T2

This is finite only if supp(f) C supp(g). Here X can be a vector of r.v.,
= (X1,...,Xn), in which case X = X1 X --- x X),.

If (X,Y) ~ f(X,Y) are jointly continuous r.v., their mutual in-
formation is defined by

VY — f(z,y) _
166GY) = [ | 7G@y)iog 25 S sdedy = D(i (@) || f@)f @)

and we have I(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X).
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Quantization of a continuous r.v.

H, D and I are the limit of their quantized version.

If we “approximate” X by a infinite discrete r.v. X5 which takes
the values f(x;)d, i« € N, where the z; (bins) are chosen to satisfy

(i+1)8
pii= [ f(e)de = f(2))
we have

H(X5) = — sz- logp; = — Z(df(:vi) log f(z;)+f(z;)d10g8) ~ H(X)—log$

In particular, the entropy of an n—bit quantization of X (that is
d=2"")is H(X) + n.
16




Examples

Example 1: If f(X) is uniform in [0,1], H(X) = 0 and n bits suffice to
describe X to n—bit accuracy.

Example 2: If f(X) has support [O,%] and we choose § = 27", that is X;

takes %2” = 273 possible values. Thus, n — 3 bits suffice to describe X to
n—Dbit accuracy.

Remarks:

X;
5
e In the above examples, each value of X; is described by the same number
of bits. In general H(X) + n is the average number of bits required to
describe X to n bit accuracy.

° is a step function approximating X.

e In general the bins do not need to have the same length §. A more
efficient quantization method is to use a variable parameter § where § is
smaller in regions where f(x) is large.
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Mutual information

Let X,Y be continuous r.v. and X?° Y9 their quantized versions.

We have

H(X°) — H(X’|Y°)

H(X) —logé— (H(X|Y) —10og¥)
= I(X;Y)

(X% Y?)

%

Thus, the mutual information of X and Y is the limit of the
mutual information of their quantized version.

18




Properties of D and [

1. D(f || g) > 0, with equality if and only if f = g with probability 1.
2. D(f || g) is convex in the pair (f,g).
3. I(X;Y) > 0 with equality if and only if X and Y are independent.

4. I(X;Y) is a concave function of p(z) for p(y|z) fixed and a
convex function of p(y|z) for p(x) fixed.

Note: Here D(f || g) is a functional of the functions f and g.
A functional J(f) is convex if for every fi1, fo and X € [0, 1],

JOfi+ @ =N f2) <AI(f1) + (1 = N)JI(f2).

The convexity of a functional of two functions f and g is defined similarly.
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Proof of property 1

Let S be the support of f. Then

fDUHg):=uéfbg%

< Iogjgf%

= Iog/Sggloglzo

The first inequality follows by Jensen inequality. In that inequal-
ity, equality holds if and only if f = g almost everywhere.
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Properties of the entropy

a) H(X|Y) < H(X), with equality iff X and Y are indep.
e Follows from above property 3and I(X;Y) = H(X)—H(X|Y).
b) H(X")<Y™ ; H(X;) with equality iff the X; are indep.

e Follows from chain rule for entropy,

n
H(Xl,"',Xn) — Z H(Xi|X17°'°7Xi—1)
i=1
and above property 3.
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Properties of the entropy (cont.)

For every a € R,c € R"™ and A € R"*"™, we have that
c) H(X™+4c)=H(X").

d) H(AX™) = H(X™) + log | det(A)|.
e In particular, H(aX) = H(X) +log|al|, a € R. In fact, if Y = aX we have

=15 (2)

and so

1) = - [ syoafre) == [ s () (s (%)) a

= —/f(a:) log f(x) + log |a| = H(X) + log |a]

22




One more important property of H

Lemma: If X = (X4,...,Xn) has zero mean and covariance
K = E[XXT], then

H(X) < glog(Qwedet(K))
with equality if and only if X ~ G(0,K). In particular, if n =1
and E[X?] < o2, then H(X) < Zlog(2mreo?).
Proof: Let g = G(0,K). We have

0 < D<f||g>=/flog§=—H<f)—/f|ogg

= —H() - [gloag=~H(N) +H@) = H)<HE)
where we use the fact that logg is a quadratic form in X and f satisfies the
zero mean and covariance constraint.
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Typical sequences

If Xq,...,Xy are i.i.d. continuous r.v. with density f, then, by
the weak law of large numbers,

lo X1,...,X
lim — gf( 1, ) TL)

n—oo n

The e—typical set is defined as

= —FE[log f(X)] = H(X) in probability

log f(x1,...,Tn)

Aén):{(xl,...,xn)eRn: -I—H(X)‘ge}

Remark: The above definition, the below definition of e—jointly typical se-

guences, and the properties of typical sets follow closely the discrete case.
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Property of the typical sequences

° P(A.g")) > 1 — e for n sufficiently large.
This follows from the law of large number (see above)

° Vol(Agn)) = fA(") dzy . ..dzy < 2M(HX)te)  for every n.

In fact, we have:

1 = /f(:nl,...,a:n)dml---dmn

> f(z1,...,zp)dz1 - - - dxy, > / P CICORDF M
A A

_ on(HX)+e) / dzy - - doy = 27" HEOFI Y1 AM)
Ain)
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Property of the typical sequences (cont.)

o Vol(AM™) > (1 — )2n(H(X)=€) for p, sufficiently large.

In fact, if n is sufficiently large so that P(AE”)) > 1 —¢, we have

1—e = f(z1,...,zp)dz1 - -dxy
AM

< / >-n(HO- g . das
AM

o=n(H(X)~c) / dzy - - - day, = 27" HE) =y o1(AM)
AP
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Jointly typical sequences

Given i.i.d. r.v. (X;,Y),i =1,...,n, the set of jointly e—typical sequences is
defined by
<

log f(z",y™) n oo
S H(X, YT

A§"> = {(w“,y”) :z",y" are e — typical, and

For every € > 0, we have that

1. P <{(X",Y") e AE”’}) — 1 when n — co.

2. Vol(A™) € [(1 — e)2n(HXY)=e) on(H(XY)+e)]

3. If S™ and T™ are independent with the same marginal distributions as X"
and Y™ respectively, then

P ({(Sn,Tn) c Agn)}) = |:(1 _ G)Q—n(I(X;Y)—I—3e),2—n(I(X;Y)—3e):| )
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T he Gaussian channel

The Gaussian channel is a time discrete memoryless channel
specified by the conditional density

p(ylz) = G(z, K)
that is
Y=X+4+Z7
where X and Y are independent and Z ~ G(0, K).

Remark: like in the discrete case, the memoryless assumption says that if
z" = (z1,...,x,) is the input to the channel and y" = (y1,...,yn) the output,

p(y"|z") = p(y1|z1)p(y2|z2) - - - p(Yn|Ts)
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The Gaussian channel (cont.)

We wish to send M = |W| possible messages w € W over the
channel. The set-up is like in the discrete case except that we
require that each message codeword z"(w), w € W satisfies the

constraint
n

3 zZ(w) <np, p>0.
1 =1

Without this constraint the capacity of the channel would be
infinite (verify that we could code infinitely many messages just
using codewords of length 1...).
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Gaussian channel vs. discrete channel

Assume we have two messages (M = 2) which we wish to code
with 1 bit. Given the above constraint, the best code is z(1) =

Vh 2(2) = —/p. If p(W = 1) = p(W =2) = 1 we have
P(error) = %P(Y <0|X =4/p) + %P(Y > 0|X = —/p)

= P(Z>yD) =1-o([2)

where
z 1 z2
P(z =/ exp(——)dzx
@) =] szeon(=)
Thus, we can use a Gaussian channel as a discrete binary sym-
metric channel with crossover probability p = P(error)
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Capacity

A code C(™) s specified by the codewords z™(w), w € W satis-
fying the above constraint and a decoding function g : Y" — W.
The probability of error of C(") is defined by
AEIC™M) == max {P({g(Y™) # w}{X" = 2"(w)}) : w € W}

A transmission rate R is said to be achievable if there exists a
sequence of ([Q”R],n),n € IN codes such that,

lim A(E|c(™) =0

n—oo
The capacity C of the channel is the supremum of all achievable

rates.
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The channel coding theorem for Gaussian
channel

Theorem (Shannon) The capacity of the Gaussian channel is
C=max{I(X;Y): E[X?]<p}= 1 log (1 + ﬁ)
p(=) o - 2 K

that is, for every rate R < C, there exits a sequence of c(n) =
([27F],n) codes such that A(E|C(™)) — 0 as n — co. Conversely,
any sequence of codes for which A(E|C(™)) — 0 must have a rate
R<C.
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Computation of the capacity

We first show that max,{I(X;Y) : E[X?] < p} = 3 log (1 + %).

SinceY=X+7, Z~ G(0,K), and X and Z independent, we have
I(X;Y) = HY)-HY|X)=H®)-H(X + Z|X)

= H(Y)-H(Z|X)=H(Y)—-H(Z)
We also have

H(Z) = % log2reK, E[Y?] = E[X?]+ 2E[X]E[Z]+ E[Z?] =p+ K.

Consequently, by the property above H(Y) < %Iog 2ne(p + K) and

1 1 1
I(X;Y) € —> log 2meK + ~ log 2me(p + K) = 5 100 (1 + %) :
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Proof of part 1

The proof of the theorem parallels the proof for the discrete
case with the minor difference that, here, we need to take into
account the codeword constraint. The key steps are

1. Random code generation.
2. Decoding by jointly typicality.
3. Computation of the average probability of error.

4. Extraction of a good code.
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Part 1: code generation

We generate a ([2"7],n) code C at random according to p(z) =
G(0,p — €). Each codeword z"(w),w = 1,...,M = [2"1] js
generated with probability

n M n
p(a"(w)) = ][ p(zi(w)) = P(C)= ][ I p(zi(w))

i=1 w=1i=1
When n grows the probability that a generated codeword does
not satisfy the power constraint goes to zero. In fact, if we set
Eq = {%2?21 XZ-2 > p}, for every € > 0, by the weak law of large
numbers

P(Epg) -0 asn— oo
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Part 1: decoding function

Let 2"(w) and y™ be the sent and received signals.
We set g(y") = w if i) z™(w) is the only codeword which is
jointly typical with ™ and ii) ™ (w) satisfies the power constraint.

Otherwise we declare an error.

We also define the events

Fup = {(X”(w),Y”) c AE”)}, w=1,..., M
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Part 1: probability of error

By the symmetry of the code generation process we have that

P(E) = P(E|W = 1).

The events which contribute to the occurrence of an error are
Eg, E1, Ew, w > 2. Then, using the union bound,

P(E|W:1) = P(EoUElUEQUE:;...UEM)

M
< P(Eo) + P(E1) + ), P(Ew)

w=2

M
< 2e+ Z P(Ey).

w=2

(1)
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Part 1: probability of error (cont.)

If w>2 X"(1) and X"(w) and independent and, so, Y” and X"(w) are also
independent. By the property of typical sequences, the probability that Y
and X" (w) are jointed typical is bounded as

P(E,) < 27 "UXY)=8) 0y =2 3, ... M = 2"

We conclude that

PEIW =1) <

<

-
2+ ) P(Eu)

w=2
2nR

D¢ + Z o=n(I(X;Y)=3¢)

w=1

(2)

D¢ + (2nR o l)2—n(I(X;Y)—3€) < D¢ + 23n62—n(I(X;Y)—R) < 3¢
where the last step holds if n is sufficiently large and R < I(X;Y) — 3e.

Like in the discrete case, we conclude that, for n large enough, P(FE) < €.
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Part 1: extracting a good code

The above argument shows that, if n is large enough,
P(E) =Y P(c™)P(E|C(™) <e.
c(n)
Then, there must exist a code P(C*(™)) such that
PE|IC* (M) < e.

Finally, if we remove the worst half codewords (all the codewords
which do not satisfy the power constraint are included in this set),
we have a new code with rate R—% whose codewords satisfy the
power constraint and has maximal probability of error < 2e.
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Proof of part 2

We now show the converse of the theorem: a rate R > C =
% log (1 + JI%) is not achievable or, equivalently,

AEIC™) 50 = R<C.

Proof: We assume that a message w is selected at random and denote by
P(™) the average probability of error. By Fano inequality we have

H(W|Y™) <1+ nRP™
and, as we shown for the discrete channel, we have

H(W) =nR<14nRP™ 4+ " 1(X;; V).
=1

40




Proof of part 2 (cont.)

We set k; = &>, 22(w), M = 2"E. Since Y; = X, + Z; with X; and Z;
independent, the second order momentum of Y; is k; + K.

Thus, by the property of the entropy with covariance constraint, we have

1
H(Y;) < ) log 2me(k; + K)
and
I(X; Ys)

H(Y;) — H(Y|X;) = H(Y;) — H(Z;)

1 1 1
< 5 log 2mwe(k; + K) — 5 log 2re K = 5 log(1 + i/ K)

We conclude that

n M
1
nR<14nRP™ 43 " 1(X;Y;) <14 nRPM 4 5 )} "log(1 + ki/K)
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Proof of part 2 (cont.)

We rewrite last equation as
1 & 1
R< > log(1+ ki/K) 4+ RP™ + =
2n e n
and observe that, since log(1 + z) is concave in z, by Jensen inequality,

1< 1< p
gglog(l + ki/K) < log (1 + 5;;@-”() < log <1 + E)

where the last inequality we use %Z?:l k; < p which is because of the power
constraint of each codeword. Thus,

1 P 1 1 p
R<=lo (1 —) RPM 4= 4 o (1 —).
<5 g +K + +n 5 g +K
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