GI12/4C59: Information Theory

Lectures 13—15

Massimiliano Pontil

About these lectures

Theme of these lectures: We discuss the problem of data
transmission through a noisy channel. We prove the key result
of Information Theory which establishes that the fastest rate at
which we can transmit a number of signals through the chan-
nel with arbitrarily small probability of error is bounded by the
maximum of the mutual information of the channel.




Outline

1. Discrete channels

2. Typical sequences

3. Channel capacity

4. Channel coding theorem

5. Consequences of the theorem

Discrete channels

A channel is an input/output system where an input z € X is
transmitted and an output y € Y is received with probability
p(y|x) (also called transition probability)

e 1 is called the sent symbol (or signal)

e y is called the received symbol (or signal)

If X = ), the channel is said noiseless (or deterministic) if, for
every ¢ € X, p(y|lr) = 1 for y = xz and zero otherwise. In this
case it is always possible to infer the sent input from the received
output.




Noisy channels

In practice the channel is noisy, that is, p(y|xz) is nonzero for
more than one output.

Example 1 (Binary symmetric channel) X =Y = {0, 1}, p(1]|1) = p(0,0) =
1 —p, p(0]1) = p(1]0) = p.

Example 2 (Binary erasure channel) X = {0,1}, Y = {0,e,1}, p(0|0) =
p(1,1) =1 —a, p(e[1) = p(e|0) = a, p(1]0) = p(0[1) = 0.

Example 3 (Noisy typewriter) X = Y = {1,...,26} (representing e.g. the
26 letter of the English alphabet), p(y|z) = % ify=xz ory=2xz+4+1 mod 26,

and zero otherwise.

Can we still send messages through these channels with low
probability of error? What does this mean?

Discrete memoryless channels

W — [Encoder| — X™ —| Channel| - Y™ — Decoder| - W

Suppose we have a set W = {1,..., M} of M messages that we
wish to send through a noisy channel. Each message w has a
probability p(w) of being selected for transmission.

Encoder: we code each message by a sequence of symbols from
X of length n, that is

2"(w), w=1,...,.M called the codewords




Discrete memoryless channels (cont.)

W — |Encoder| — X™ —| Channel| - Y™ — [Decoder| — W

Memoryless assumption: the received signal y™ has probability
distribution

p(y"z") = p(y1lz1)p(y2|z2) - - - P(Yn|Tn)

That is, the element y; of the output sequence is only determined
by the corresponding element z; of z™.

Discrete memoryless channels (cont.)

Decoder: based on y"™ we produce a decoding rule g : Y"* —
{1,...,M}. w = g(y™) is our guess for the sent message w. An

error occurs if w #= w. In particular

Aw(n) == P({g(Y") # wi{X" = z"(w)})

The map z"(w), w € {1,..., M} coupled with a decoding function
g is called an (M, n) code and we also denoted it by C(?).

The probability of error of the code is defined by
AE|IC™)Y) := max{w(n) : w € W}




Channel capacity

Given an (M,n) code, the quantity R = Iggnﬂ is called the trans-
mission rate of the code (log is the logarithm in base 2).

A rate R is said to be achievable if there exists a sequence of
c(m) = ([27R],n),n € N codes such that,

lim A(E|C(™) =0

n—oo

The capacity C of the channel is the supremum of all achievable
rates.

Informally, c(m) is a “good code” if it has small probability of
error and its rate is close to C.

Note: the capacity does not depend on p(z) but only on p(y|z).

The channel coding theorem

Remember that the mutual information of a pair of the r.v X
and Y is defined by

p(z,y)
I(X;Y) = xEZX y;yp(w ,y) log ——=— S @n(y)

Theorem (Shannon) The channel capacity is given by
C=maxI(X;Y)
p(x)

that is, for every rate R < C, there exits a sequence C(®) =
([2"7],n),n € N of codes such that )\(E|C(")) — 0 as n — oo.
Conversely, any sequence of codes for which A(E|C(™) — 0 must
have a rate R < C.
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Application of the theorem

Before proving the theorem we use it to compute the capacity
of the above channels.

Recall that the mutual information is a nonnegative concave
function of p(z) for fixed p(y|z) (so the above maximization prob-
lem is well defined) and can be written as

I(X;Y)=H()-HY|X)=H(Y) — Z p(x)H(Y | X = z).
reX
Using the properties of the entropy, we conclude that

e 0 < C <min(log|X|,log|Y]).
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Noiseless channel

In this case C =1, because H(Y|X = z) =0 and, so, I(X;Y) =
H(Y) which achieves its maximum when p(x) (and p(y)) is uni-
form.

Any nonsingular code has zero probability of error and the iden-
tity code achieves capacity.

e In general, the computation of the capacity by the formula,
C = Max,(z) I(X;Y), is not constructive, that is, this com-
putation does not provide us with a sequence of codes whose
rate is arbitrarily close to C.
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Binary symmetric channel

We have X =Y = {0,1}, p(1]|1) =p(0[0) =1 —p, p(0[1) =p(1]|0) =p.

In this case C =1 — H(p). In fact

I(X;Y) = H(Y)-HY|X)=HY)- Y p@HY|X =)
rzeX

= H)- ) px)H(p) =H(Y)— H(p)
reX

Thus,
C=madI(X;Y)} =1~ H(p)
plT

achieved for p(x) uniform (in which case also p(y) is uniform).
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Noisy typewriter channel

Remember that X = Y = {1,..,26} and p(ylz) = L ify ==z or y = 2 +
1 mod 26, and zero otherwise.

We have C =1log 13. In fact
HY|X)= Y p@)H{Y|X=z)= ) p@)l=1
zeX xeX
and, thus,
C=maxI(X;Y)=max{H(Y)—-1}=1log26 — 1 =10og 13
p(z) p(z)
again achieved when p(y) (and, so, p(x)) is the uniform distribu-
tion.
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Typewriter channel

For this channel it is also easy to choose a good code.

Simply take n =1, M = 13 and z(1) = a, z(2) = ¢, z(3) =
e, etc. This code has zero probability of error because each
codeword is either transmitted at such or as the next symbol in

X.

This code also achieves capacity since its transmission rate is
log M

n

R = =1log 13
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Binary erasure channel

Remember that X = {0,1}, ¥ = {0,¢,1}, p(0|0) = p(1,1) =1 — q,
p(e|l) = p(el0) =, p(1|0) = p(0[1) = 0.

Here C =1 — . In fact

HY|X)= ) p@)HY|X =z)= ) p(x)H(a) = H(a).
reX xekX

Ifwelet p=p(X =0) we have p(Y =0) =p(1—a), p(Y =1) =
(1 -p)(1—-a), p(Y =e) = a. We then have
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Binary erasure channel (cont.)

HY) = -p(1-a)logp(l—-a)—(1-p)(1—-a)log((1-p)(1—-a))—aloga
= —-(1-a)log(1—-a)—-(1-a)(plogp+ (1 —p)log(l—p)) —aloga

= (1 -a)H(p) + H(a).

We conclude that
C=maxI(X;Y)=max{(1—a)H(p)}=1—-«
p(x) p

achieved when p(x) is the uniform distribution.
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Symmetric channels

The above example of binary symmetric channel can be gener-
alized as following.

We take m = |X|, £ = |Y| and let P be a m x £ matrix whose rows
are the numbers p(y|x) for fixed x and columns are the numbers
p(y|x) for fixed y.

A channel is said weakly symmetric if the rows of the matrix
P are permutations of each other and the columns all have the
same sum.
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Symmetric channels (cont.)

Since the rows are permutations of each other, we have H(Y|X =
x) = H(r) for every x € X, where r is, say, the first row of the
transition matrix. Thus,

HY|X)= ) p@HY|X =z)=H(r)
reX
and we conclude that
C=maxI(X;Y)=max{H(Y)— H(r)} =logt— H(r)
p(x) p(x)
achieved when p(z) is the uniform distribution.

Note: for the binary symmetric channel we rediscover that C = log2—H(r) =
1 — H(p).
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Jointly typical sequences
The proof of the theorem uses a simple decoding rule which is
based on the idea of jointly typical sequences.

A sequence z" is a called e—typical if

_logp(z™)

— H(X)‘ <e€ (likewise for y™)

and a pair of sequences (z",y™) is said jointly e—typical if 2™ and
y™ are e—typical and

log p(z"™, y™)
n

—H(X,Y)‘ <e

The set of e—jointly typical sequences is denoted by A§">.
20




Properties of jointly typical sequences

For every € > 0, we have that
1. P ({(X”,Y”) € AE")}> — 1 when n — oc.

) |A§”)| c [(1 - E)Qn(H(X,Y)—e)72n(H(X,Y)—|—e)}_

3. If ™ and T™ are independent with the same marginal distri-
butions as X™ and Y" respectively, then

p <{(Sn7Tn) c Agn)D c [(1 B G)Q—n(I(X;Y)-|-3e)72—n(I(X;Y)—3e)}

Note: Remember that here X™ and (X™,Y™) are i.i.d..
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Proof of property 1

The above properties follow by the weak law of large numbers,
which says that if X; = X,7 € N is a sequence of i.i.d. r.v., then

1 n
= > X;— E[X] in probability.
ni=1

that is, for every e >0, P (|27 . X; — BE[X]| > ¢€) — 0 as n — oo.
n ~1=1

To prove 1, note that

%Z —log p(X;) — —E[logp(X)] = H(X)
=1
and

n

n

—logp(X;,Y:) = —Eflogp(X,Y)] = H(X,Y)
=1
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Proof of property 1 (cont.)

Then, consider the events

E%):{‘_%_H(X)‘>e}, Eéz):{‘_%_ﬂ(y)‘>e}

and
Eg"e) = { — > e} .

By the week law of large numbers there exist ni, no,n3 such that

log p(X™, Y™)

n

— H(X,Y)

P(Egne)) < % if n>mn1, P(Ex(n))< g if n>no

and
P(E3,€(n)) < % if n>ns.

23

Proof of property 1 (cont.)

Now set E™ = E(") U Eé"e) U Eé"e) and note that A™ =E™.

Using the union bound,
P(E") < ZP(E(")

it follows that for n > max(ni,n2,n3)

3
PAM)=1-P(A)>1-> P(EX)>1-«

=1

e Properties 2 and 3 are proved similarly
(see page 196-7 of Cover and Thomas).
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Idea in proving the channel coding theorem

We focus on part 1 of the theorem: for every rate R < C, there
exits a sequence of ([Q”R],n) codes such that the probability of
error )\(E|C(”)) — 0 for n — oco. The main steps are:

e Generate a code C at random (to simplify notation we drop the
subscript (n) in C(™).

e Use joint typical sequences to define a decoding rule.

e Compute the average probability of error w.r.t. a random
choice of the sent codeword w and the generated code C.

e Show that the above calculation guarantees that a good code
exists.
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Part 1: proof of R< C

We generate a ([2"%],n) code C at random according to p(z).
Each codeword z™(w),w = 1,...,M := [2"7] is generated with
probability

n M n
p(z™(w)) = ,H p(zi(w)) = P(C)= ][] I p(zi(w))

Decoding function g: if there is only one w such that (z"(w), y™)
is jointly e—typical, we set g(y™) = w, otherwise we set g(y™) = 0.
Let £ = {g(y”) +* w} (we always commit an error in the second case).
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Part 1 (cont.)

We compute the average probability of error P(E) (with respect
to the generated code C and uniformly sample codewords)

1
P(E) =) P(E|C)P(C) = ZP(C)M
C C w=1 w=1 C
Key observation: the inner sum does not depend on w because
of the symmetric generation process of the code. Thus,

P(E) =) P(C)M(C) = P(E|W = 1)
C

Let B; = {(z"(i),y™) : (z"(i),y™) € AL} Then

M
P(E|W =1) = P(E{UE,UE3U...UEy) < P(E1)+ Y P(E)
1=2
27

Part 1 (cont.)

M
P(BE|W = 1) < P(E1) + ) P(E))
i=2
now remember the properties of typical sequences (page 20).

e Property 1 = P(E1) =1—-P(E1) <ce

X"(1) and X™(w) are independent if w > 1. This implies that Y" is also
independent of X"(w). Thus

e Property 3 = P(E;) < 2—n(I(X;Y)—3¢)

Remember that M = [2"%]. If we chose R < I(X;Y) — 3¢, we conclude that
P(E|W — 1) S € _|_ (I‘QnR‘| o 1)2—n(I(X;Y)—36) S € _|_ 2nR2—n(I(X;Y)—36) S o

where the last inequality holds provided that n is large enough.
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Part 1 (cont.)

The above calculation show that if R < I(X;Y), the average (w.r.t. C and
W) probability of error goes to zero as n goes to infinity. To conclude the
proof we observe that

e If we set p(z) to be the probability which maximizes I(X;Y), the above
condition R< I(X;Y) becomes R < C.

e There must exist at least one code C* for which the average probability
of error w.r.t. the codewords goes to zero as n goes to infinity.

e Since, above,
k 1 *
P(BIC") = 5.7 > Au(C) < 2e
at least half of the codewords of C* must have probability of error less
than 4e. We keep such codewords to form a code which has 2nf-1

codewords. This code has maximal probability of error less than 4e¢ and
a rate R+ % Thus, when n — oo it achieves the rate R.
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Part 1: some observation

We make some observations about the above proof technique.

e The symmetry of the above generation process greatly sim-
plifies the calculation.

e The decoding rule also simplifies the calculation. We will see
below that other decoding rules are possible.

e However, the proof technique is not constructive: it shows
that a good code exists but it does not provide a procedure
to find such a code.
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Zero-error codes

Before proving the second part of the theorem, we analyze the
case that our codes have zero probability of error for every n. In
this case the output Y™ always determines the sent input index

W and, so,
H(W|Y™) =0
Thus, assuming W has uniform distribution we have
nR=H(W)=H(WI|Y") 4+ I(W;Y") = I(W;Y")

Note: We have used the property I(X1; X2) = H(X1) — H(X1|X2)
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Zero-error codes (cont.)

Now recall the data processing inequality which says that, if X —

Y — Z forms a Markov chain (that is, p(z,y, z) = p(z)p(y|z)p(z|y))

then I(X;Y) > I(X; Z).

Since W — X™"(W) — Y™ forms a Markov chain, we have
I(W;Y™) < I(X™Y™)

Thus, so far we have

nR=I(W;Y") < I(X™Y")
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Zero-error codes (cont.)

Now we observe that

I(xX™y"™) = HY™-HY"X")=HX") - iH(Y;IYi_l, sy Y1, X

i=1

H(Y™) =Y HYiX:) <Y H(Y:) - H(YilX)
=1 =1 =1

= Y I(XiYi) <nC
1=1

where we used the property H(Y™) < > | H(Y;) and the definition of capacity.

We conclude that if the a code C(™ has zero probability of error then R < C.

e Note that the inequality I(X™;Y") < nC means that the capacity per
transmission rate does not increas if we use the channel many times.
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Fano inequality

Lemma: If P(™) is the average probability of error of a code c(n)
when p(w) is uniform, then

HX"(W)|IY™") <1+ nRP(™) (Fano inequality)

Proof: By definition P(™ = P(g(Y™) # W). If E is the binary r.v. defined by

E_{o if g(Y") =W
—11 ifg(Y")#W

We have P(") = P(E = 1) and, using the chain rule for entropy, we obtain
H(E,W|Y") =HWI|Y")+ H(E|W,Y") = H(E|Y") + HWIE,Y™").
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Fano inequality (cont.)

Since E is a function of W and g(Y™"), we have H(E|W,Y"™) = 0 and, since E
is binary H(E|Y™) < 1. It follows that

H(W|Y™) <1+ H(W|E,Y™).

We have
HW|E,Y") = P(E=0)HWI|Y" ,E=0)+P(E=1)HW|Y",E=1)
< (1 -P")o 4 P™jog(IW| —1)) < P™nR
and, so,

HW|Y") <14 H(W|E,Y") <1+ PM™npR

Finally, note that, since X™ is a function of W, H(X"(W)|Y™) < H(W|Y™)
and we conclude that

H(X"Y™) <14+ P™nR

Note: this proof also tells us that H(W|Y™) < 1+ P™nR (we will use this
for channels with feedback next week)
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Proof of part 2

We are now ready to prove part 2 of the theorem: any sequence
of ([Q"R],n) codes whose probability of error goes to zero as n
goes to infinity has a rate R < C.

Since by hypothesis the maximal probability of the code ¢(™) goes
to zero as n grows, we also have that the average probability of
error of that code goes to zero.

Again, we assume that W is drawn with the uniform distribution
over W={1,...,nR} so that P(g(Y") # W) = P,
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Proof of part 2 (cont.)

Using the previous results we have that
nR = HW)=HW|Y™) +I(W;Y")

< HW|Y™) 4+ I(X"(W),Y"™) (Data processing ineq.)
< 14 P™pR 4+ 1(X™(W),Y") (Fano inequality)

< 14 P™pR 4 nC

which implies that
1 -1
R< <0+—> (1—P(">) 5 C forn— oo
n

which proves the result.
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An important remark

The above formula can be rewritten as
pmy s, ¢ 1
- R nR

This shows than if R > C and n is large enough, the average
probability of error is bounded away from zero.

Indeed, this is also true for all n because if P(™) = 0 for some
n = n, we could simply concatenate such code to have a code
with large n and P(™) = 0.

These observations confirm that we cannot achieve an arbitrarily
low probability of error if R > C.
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