GI12/4C59: Information Theory

Lectures 13-15

Massimiliano Pontil

1

About these lectures

Theme of these lectures: We discuss the problem of data transmission through a noisy channel. We prove the key result of Information Theory which establishes that the fastest rate at which we can transmit a number of signals through the channel with arbitrarily small probability of error is bounded by the maximum of the mutual information of the channel.

Outline

- 1. Discrete channels
- 2. Typical sequences
- 3. Channel capacity
- 4. Channel coding theorem
- 5. Consequences of the theorem

3

Discrete channels

A channel is an input/output system where an input $x \in \mathcal{X}$ is transmitted and an output $y \in \mathcal{Y}$ is received with probability p(y|x) (also called transition probability)

- x is called the sent symbol (or signal)
- ullet y is called the received symbol (or signal)

If $\mathcal{X}=\mathcal{Y}$, the channel is said noiseless (or deterministic) if, for every $x\in\mathcal{X}$, p(y|x)=1 for y=x and zero otherwise. In this case it is always possible to infer the sent input from the received output.

Noisy channels

In practice the channel is noisy, that is, p(y|x) is nonzero for more than one output.

Example 1 (Binary symmetric channel) $\mathcal{X} = \mathcal{Y} = \{0, 1\}, p(1|1) = p(0, 0) = 1 - p, p(0|1) = p(1|0) = p.$

Example 2 (Binary erasure channel) $\mathcal{X} = \{0,1\}, \ \mathcal{Y} = \{0,e,1\}, \ p(0|0) = p(1,1) = 1 - \alpha, \ p(e|1) = p(e|0) = \alpha, \ p(1|0) = p(0|1) = 0.$

Example 3 (Noisy typewriter) $\mathcal{X} = \mathcal{Y} = \{1,...,26\}$ (representing e.g. the 26 letter of the English alphabet), $p(y|x) = \frac{1}{2}$ if y = x or y = x+1 mod 26, and zero otherwise.

Can we still send messages through these channels with low probability of error? What does this mean?

5

Discrete memoryless channels

$$W \longrightarrow \boxed{\mathsf{Encoder}} \to X^n \to \boxed{\mathsf{Channel}} \to Y^n \to \boxed{\mathsf{Decoder}} \to \hat{W}$$

Suppose we have a set $W = \{1, ..., M\}$ of M messages that we wish to send through a noisy channel. Each message w has a probability p(w) of being selected for transmission.

Encoder: we code each message by a sequence of symbols from \mathcal{X} of length n, that is

$$x^{n}(w), \quad w = 1, \dots, M$$
 called the codewords

Discrete memoryless channels (cont.)

$$W \longrightarrow \boxed{\mathsf{Encoder}} \to X^n \to \boxed{\mathsf{Channel}} \to Y^n \to \boxed{\mathsf{Decoder}} \to \widehat{W}$$

Memoryless assumption: the received signal y^n has probability distribution

$$p(y^{n}|x^{n}) = p(y_{1}|x_{1})p(y_{2}|x_{2})\cdots p(y_{n}|x_{n})$$

That is, the element y_i of the output sequence is only determined by the corresponding element x_i of x^n .

7

Discrete memoryless channels (cont.)

Decoder: based on y^n we produce a decoding rule $g: \mathcal{Y}^n \to \{1,\ldots,M\}$. $\hat{w}=g(y^n)$ is our guess for the sent message w. An error occurs if $\hat{w}\neq w$. In particular

$$\lambda_w(n) := P(\{q(Y^n) \neq w\} | \{X^n = x^n(w)\})$$

The map $x^n(w)$, $w \in \{1, ..., M\}$ coupled with a decoding function g is called an (M, n) code and we also denoted it by $\mathcal{C}^{(n)}$.

The probability of error of the code is defined by

$$\lambda(E|\mathcal{C}^{(n)}) := \max\{\lambda_w(n) : w \in \mathcal{W}\}$$

Channel capacity

Given an (M, n) code, the quantity $R = \frac{\log M}{n}$ is called the *transmission rate* of the code (log is the logarithm in base 2).

A rate R is said to be *achievable* if there exists a sequence of $\mathcal{C}^{(n)} = (\lceil 2^{nR} \rceil, n), n \in \mathbb{N}$ codes such that,

$$\lim_{n\to\infty} \lambda(E|\mathcal{C}^{(n)}) = 0$$

The **capacity** C of the channel is the supremum of all achievable rates.

Informally, $\mathcal{C}^{(n)}$ is a "good code" if it has small probability of error and its rate is close to C.

Note: the capacity does not depend on p(x) but only on p(y|x).

9

The channel coding theorem

Remember that the mutual information of a pair of the r.v X and Y is defined by

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Theorem (Shannon) The channel capacity is given by

$$C = \max_{p(x)} I(X; Y)$$

that is, for every rate R < C, there exits a sequence $\mathcal{C}^{(n)} = (\lceil 2^{nR} \rceil, n), n \in \mathbb{N}$ of codes such that $\lambda(E|\mathcal{C}^{(n)}) \to 0$ as $n \to \infty$. Conversely, any sequence of codes for which $\lambda(E|\mathcal{C}^{(n)}) \to 0$ must have a rate $R \leq C$.

Application of the theorem

Before proving the theorem we use it to compute the capacity of the above channels.

Recall that the mutual information is a nonnegative concave function of p(x) for fixed p(y|x) (so the above maximization problem is well defined) and can be written as

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \mathcal{X}} p(x)H(Y|X=x).$$

Using the properties of the entropy, we conclude that

• $0 \le C \le \min(\log |\mathcal{X}|, \log |\mathcal{Y}|)$.

11

Noiseless channel

In this case C=1, because H(Y|X=x)=0 and, so, I(X;Y)=H(Y) which achieves its maximum when p(x) (and p(y)) is uniform.

Any nonsingular code has zero probability of error and the identity code achieves capacity.

• In general, the computation of the capacity by the formula, $C = \max_{p(x)} I(X;Y)$, is not constructive, that is, this computation does not provide us with a sequence of codes whose rate is arbitrarily close to C.

Binary symmetric channel

We have $\mathcal{X} = \mathcal{Y} = \{0, 1\}, p(1|1) = p(0|0) = 1 - p, p(0|1) = p(1|0) = p.$

In this case C = 1 - H(p). In fact

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$
$$= H(Y) - \sum_{x \in \mathcal{X}} p(x)H(p) = H(Y) - H(p)$$

Thus,

$$C = \max_{p(x)} \{I(X;Y)\} = 1 - H(p)$$

achieved for p(x) uniform (in which case also p(y) is uniform).

13

Noisy typewriter channel

Remember that $\mathcal{X} = \mathcal{Y} = \{1,...,26\}$ and $p(y|x) = \frac{1}{2}$ if y = x or y = x + 1 mod 26, and zero otherwise.

We have $C = \log 13$. In fact

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x) = \sum_{x \in \mathcal{X}} p(x)1 = 1$$

and, thus,

$$C = \max_{p(x)} I(X; Y) = \max_{p(x)} \{H(Y) - 1\} = \log 26 - 1 = \log 13$$

again achieved when p(y) (and, so, p(x)) is the uniform distribution.

Typewriter channel

For this channel it is also easy to choose a good code.

Simply take n=1, M=13 and x(1)=a, x(2)=c, x(3)=e, etc. This code has zero probability of error because each codeword is either transmitted at such or as the next symbol in \mathcal{X} .

This code also achieves capacity since its transmission rate is

$$R = \frac{\log M}{n} = \log 13$$

15

Binary erasure channel

Remember that $\mathcal{X} = \{0, 1\}$, $\mathcal{Y} = \{0, e, 1\}$, $p(0|0) = p(1, 1) = 1 - \alpha$, $p(e|1) = p(e|0) = \alpha$, p(1|0) = p(0|1) = 0.

Here $C = 1 - \alpha$. In fact

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x) = \sum_{x \in \mathcal{X}} p(x)H(\alpha) = H(\alpha).$$

If we let p = p(X = 0) we have $p(Y = 0) = p(1 - \alpha)$, $p(Y = 1) = (1 - p)(1 - \alpha)$, $p(Y = e) = \alpha$. We then have

Binary erasure channel (cont.)

$$H(Y) = -p(1-\alpha)\log p(1-\alpha) - (1-p)(1-\alpha)\log((1-p)(1-\alpha)) - \alpha\log\alpha$$

$$= -(1-\alpha)\log(1-\alpha) - (1-\alpha)(p\log p + (1-p)\log(1-p)) - \alpha\log\alpha$$

$$= (1-\alpha)H(p) + H(\alpha).$$

We conclude that

$$C = \max_{p(x)} I(X;Y) = \max_{p} \{(1-\alpha)H(p)\} = 1 - \alpha$$

achieved when p(x) is the uniform distribution.

17

Symmetric channels

The above example of binary symmetric channel can be generalized as following.

We take $m=|\mathcal{X}|$, $\ell=|\mathcal{Y}|$ and let P be a $m\times \ell$ matrix whose rows are the numbers p(y|x) for fixed x and columns are the numbers p(y|x) for fixed y.

A channel is said weakly symmetric if the rows of the matrix P are permutations of each other and the columns all have the same sum.

Symmetric channels (cont.)

Since the rows are permutations of each other, we have H(Y|X=x)=H(r) for every $x\in\mathcal{X}$, where r is, say, the first row of the transition matrix. Thus,

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x) = H(r)$$

and we conclude that

$$C = \max_{p(x)} I(X; Y) = \max_{p(x)} \{H(Y) - H(r)\} = \log \ell - H(r)$$

achieved when p(x) is the uniform distribution.

Note: for the binary symmetric channel we rediscover that $C = \log 2 - H(r) = 1 - H(p)$.

19

Jointly typical sequences

The proof of the theorem uses a simple decoding rule which is based on the idea of jointly typical sequences.

A sequence x^n is a called ϵ -typical if

$$\left| -\frac{\log p(x^n)}{n} - H(X) \right| < \epsilon$$
 (likewise for y^n)

and a pair of sequences (x^n,y^n) is said jointly $\epsilon-$ typical if x^n and y^n are $\epsilon-$ typical and

$$\left| -\frac{\log p(x^n, y^n)}{n} - H(X, Y) \right| < \epsilon$$

The set of ϵ -jointly typical sequences is denoted by $\mathcal{A}^{(n)}_{\epsilon}$.

Properties of jointly typical sequences

For every $\epsilon > 0$, we have that

1.
$$P\left(\left\{(X^n,Y^n)\in\mathcal{A}^{(n)}_{\epsilon}\right\}\right)\to 1$$
 when $n\to\infty$.

2.
$$|\mathcal{A}_{\epsilon}^{(n)}| \in \left[(1-\epsilon)2^{n(H(X,Y)-\epsilon)}, 2^{n(H(X,Y)+\epsilon)} \right].$$

3. If S^n and T^n are independent with the same marginal distributions as X^n and Y^n respectively, then

$$P\left(\left\{(S^n, T^n) \in \mathcal{A}_{\epsilon}^{(n)}\right\}\right) \in \left[(1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}, 2^{-n(I(X;Y) - 3\epsilon)}\right]$$

Note: Remember that here X^n and (X^n, Y^n) are i.i.d..

21

Proof of property 1

The above properties follow by the weak law of large numbers, which says that if $X_i = X, i \in \mathbb{N}$ is a sequence of i.i.d. r.v., then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to E[X] \quad \text{in probability.}$$

that is, for every $\epsilon > 0$, $P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E[X]\right| > \epsilon\right) \to 0$ as $n \to \infty$.

To prove 1, note that

$$\frac{1}{n}\sum_{i=1}^{n} -\log p(X_i) \to -E[\log p(X)] = H(X)$$

and

$$-\frac{\log p(X^n, Y^n)}{n} = \frac{1}{n} \sum_{i=1}^n -\log p(X_i, Y_i) \to -E[\log p(X, Y)] = H(X, Y)$$

Proof of property 1 (cont.)

Then, consider the events

$$E_{1,\epsilon}^{(n)} = \left\{ \left| -\frac{\log p(X^n)}{n} - H(X) \right| > \epsilon \right\}, \quad E_{2,\epsilon}^{(n)} = \left\{ \left| -\frac{\log p(Y^n)}{n} - H(Y) \right| > \epsilon \right\}$$

and

$$E_{3,\epsilon}^{(n)} = \left\{ \left| -\frac{\log p(X^n, Y^n)}{n} - H(X, Y) \right| > \epsilon \right\}.$$

By the week law of large numbers there exist n_1, n_2, n_3 such that

$$P(E_{1,\epsilon}^{(n)})<rac{\epsilon}{3} \ ext{if} \ n>n_1, \quad P(E_{2,\epsilon}(n))<rac{\epsilon}{3} \ ext{if} \ n>n_2$$

and

$$P(E_{3,\epsilon}(n))<\frac{\epsilon}{3} \text{ if } n>n_3.$$

23

Proof of property 1 (cont.)

Now set $E_{\epsilon}^{(n)} = E_{1,\epsilon}^{(n)} \cup E_{2,\epsilon}^{(n)} \cup E_{3,\epsilon}^{(n)}$ and note that $\mathcal{A}_{\epsilon}^{(n)} = \overline{E}_{\epsilon}^{(n)}$.

Using the union bound,

$$P(E_{\epsilon}^n) \le \sum_{i=1}^{3} P(E_{i,\epsilon}^{(n)})$$

it follows that for $n > \max(n_1, n_2, n_3)$

$$P(\mathcal{A}^{(n)}_{\epsilon}) = 1 - P(\bar{\mathcal{A}}^n_{\epsilon}) \ge 1 - \sum_{i=1}^3 P(E^{(n)}_{i,\epsilon}) > 1 - \epsilon.$$

 Properties 2 and 3 are proved similarly (see page 196-7 of Cover and Thomas).

Idea in proving the channel coding theorem

We focus on part 1 of the theorem: for every rate R < C, there exits a sequence of $(\lceil 2^{nR} \rceil, n)$ codes such that the probability of error $\lambda(E|\mathcal{C}^{(n)}) \to 0$ for $n \to \infty$. The main steps are:

- Generate a code C at random (to simplify notation we drop the subscript (n) in $C^{(n)}$).
- Use joint typical sequences to define a decoding rule.
- Compute the *average* probability of error w.r.t. a random choice of the sent codeword w and the generated code C.
- Show that the above calculation guarantees that a good code exists.

25

Part 1: proof of R < C

We generate a $(\lceil 2^{nR} \rceil, n)$ code $\mathcal C$ at random according to p(x). Each codeword $x^n(w), w=1,\ldots,M:=\lceil 2^{nR} \rceil$ is generated with probability

$$p(x^n(w)) = \prod_{i=1}^n p(x_i(w)) \implies P(C) = \prod_{w=1}^M \prod_{i=1}^n p(x_i(w))$$

Decoding function g: if there is only one \widehat{w} such that $(x^n(\widehat{w}), y^n)$ is jointly ϵ -typical, we set $g(y^n) = \widehat{w}$, otherwise we set $g(y^n) = 0$. Let $E = \{g(y^n) \neq w\}$ (we always commit an error in the second case).

Part 1 (cont.)

We compute the average probability of error P(E) (with respect to the generated code C and uniformly sample codewords)

$$P(E) = \sum_{\mathcal{C}} P(E|\mathcal{C}) P(\mathcal{C}) = \sum_{\mathcal{C}} P(\mathcal{C}) \frac{1}{M} \sum_{w=1}^{M} \lambda_w(\mathcal{C}) = \frac{1}{M} \sum_{w=1}^{M} \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_w(\mathcal{C})$$

Key observation: the inner sum does not depend on w because of the symmetric generation process of the code. Thus,

$$P(E) = \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_1(\mathcal{C}) = P(E|W=1)$$

Let
$$E_i = \{(x^n(i), y^n) : (x^n(i), y^n) \in \mathcal{A}^{(n)}_{\epsilon}\}$$
. Then

$$P(E|W=1) = P(\bar{E}_1 \cup E_2 \cup E_3 \cup ... \cup E_M) \le P(\bar{E}_1) + \sum_{i=2}^{M} P(E_i)$$

27

Part 1 (cont.)

$$P(E|W=1) \le P(\bar{E}_1) + \sum_{i=2}^{M} P(E_i)$$

now remember the properties of typical sequences (page 20).

• Property $1 \Rightarrow P(\bar{E}_1) = 1 - P(E_1) \le \epsilon$

 $X^n(1)$ and $X^n(w)$ are independent if w>1. This implies that Y^n is also independent of $X^n(w)$. Thus

• Property 3 $\Rightarrow P(E_i) \leq 2^{-n(I(X;Y)-3\epsilon)}$

Remember that $M = \lceil 2^{nR} \rceil$. If we chose $R \leq I(X;Y) - 3\epsilon$, we conclude that

$$P(E|W=1) \le \epsilon + (\lceil 2^{nR} \rceil - 1)2^{-n(I(X;Y)-3\epsilon)} \le \epsilon + 2^{nR}2^{-n(I(X;Y)-3\epsilon)} \le 2\epsilon$$

where the last inequality holds provided that n is large enough.

Part 1 (cont.)

The above calculation show that if R < I(X;Y), the average (w.r.t. $\mathcal C$ and W) probability of error goes to zero as n goes to infinity. To conclude the proof we observe that

- If we set p(x) to be the probability which maximizes I(X;Y), the above condition R < I(X;Y) becomes R < C.
- There must exist at least one code C^* for which the average probability of error w.r.t. the codewords goes to zero as n goes to infinity.
- Since, above,

$$P(E|\mathcal{C}^*) = \frac{1}{2^{nR}} \sum_{w} \lambda_w(\mathcal{C}^*) \le 2\epsilon$$

at least half of the codewords of \mathcal{C}^* must have probability of error less than 4ϵ . We keep such codewords to form a code which has 2^{nR-1} codewords. This code has maximal probability of error less than 4ϵ and a rate $R+\frac{1}{n}$. Thus, when $n\to\infty$ it achieves the rate R.

29

Part 1: some observation

We make some observations about the above proof technique.

- The symmetry of the above generation process greatly simplifies the calculation.
- The decoding rule also simplifies the calculation. We will see below that other decoding rules are possible.
- However, the proof technique is not constructive: it shows that a good code exists but it does not provide a procedure to find such a code.

Zero-error codes

Before proving the second part of the theorem, we analyze the case that our codes have zero probability of error for every n. In this case the output Y^n always determines the sent input index W and, so,

$$H(W|Y^n) = 0$$

Thus, assuming W has uniform distribution we have

$$nR = H(W) = H(W|Y^n) + I(W;Y^n) = I(W;Y^n)$$

Note: We have used the property $I(X_1; X_2) = H(X_1) - H(X_1|X_2)$

31

Zero-error codes (cont.)

Now recall the data processing inequality which says that, if $X \to Y \to Z$ forms a Markov chain (that is, p(x,y,z) = p(x)p(y|x)p(z|y)) then $I(X;Y) \ge I(X;Z)$.

Since $W \to X^n(W) \to Y^n$ forms a Markov chain, we have

$$I(W; Y^n) \le I(X^n; Y^n)$$

Thus, so far we have

$$nR = I(W; Y^n) \le I(X^n; Y^n)$$

Zero-error codes (cont.)

Now we observe that

$$I(X^{n}; Y^{n}) = H(Y^{n}) - H(Y^{n}|X^{n}) = H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|Y_{i-1}, \dots, Y_{1}, X^{n})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|X_{i}) \le \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i}|X_{i})$$

$$= \sum_{i=1}^{n} I(X_{i}; Y_{i}) \le nC$$

where we used the property $H(Y^n) \leq \sum_{i=1}^n H(Y_i)$ and the definition of capacity.

We conclude that if the a code $\mathcal{C}^{(n)}$ has zero probability of error then $R \leq C$.

• Note that the inequality $I(X^n;Y^n) \leq nC$ means that the capacity per transmission rate does not increas if we use the channel many times.

33

Fano inequality

Lemma: If $P^{(n)}$ is the average probability of error of a code $\mathcal{C}^{(n)}$ when p(w) is uniform, then

$$H(X^n(W)|Y^n) \le 1 + nRP^{(n)}$$
 (Fano inequality)

Proof: By definition $P^{(n)} = P(g(Y^n) \neq W)$. If E is the binary r.v. defined by

$$E = \begin{cases} 0 & \text{if } g(Y^n) = W \\ 1 & \text{if } g(Y^n) \neq W \end{cases}$$

We have $P^{(n)} = P(E=1)$ and, using the chain rule for entropy, we obtain $H(E,W|Y^n) = H(W|Y^n) + H(E|W,Y^n) = H(E|Y^n) + H(W|E,Y^n)$.

Fano inequality (cont.)

Since E is a function of W and $g(Y^n)$, we have $H(E|W,Y^n)=0$ and, since E is binary $H(E|Y^n)\leq 1$. It follows that

$$H(W|Y^n) \le 1 + H(W|E, Y^n).$$

We have

$$H(W|E,Y^n) = P(E=0)H(W|Y^n,E=0) + P(E=1)H(W|Y^n,E=1)$$

$$\leq (1 - P^{(n)})0 + P^{(n)}\log(|\mathcal{W}| - 1)) \leq P^{(n)}nR$$

and, so,

$$H(W|Y^n) \le 1 + H(W|E, Y^n) \le 1 + P^{(n)}nR$$

Finally, note that, since X^n is a function of W, $H(X^n(W)|Y^n) \leq H(W|Y^n)$ and we conclude that

$$H(X^n|Y^n) \le 1 + P^{(n)}nR$$

Note: this proof also tells us that $H(W|Y^n) \leq 1 + P^{(n)}nR$ (we will use this for channels with feedback next week)

35

Proof of part 2

We are now ready to prove part 2 of the theorem: any sequence of $(\lceil 2^{nR} \rceil, n)$ codes whose probability of error goes to zero as n goes to infinity has a rate R < C.

Since by hypothesis the maximal probability of the code $C^{(n)}$ goes to zero as n grows, we also have that the average probability of error of that code goes to zero.

Again, we assume that W is drawn with the uniform distribution over $\mathcal{W} = \{1, \dots, nR\}$ so that $P(g(Y^n) \neq W) = P^{(n)}$.

Proof of part 2 (cont.)

Using the previous results we have that

$$nR = H(W) = H(W|Y^n) + I(W;Y^n)$$

$$\leq H(W|Y^n) + I(X^n(W),Y^n) \quad \text{(Data processing ineq.)}$$

$$\leq 1 + P^{(n)}nR + I(X^n(W),Y^n) \quad \text{(Fano inequality)}$$

$$< 1 + P^{(n)}nR + nC$$

which implies that

$$R \le \left(C + \frac{1}{n}\right) \left(1 - P^{(n)}\right)^{-1} \to C \quad \text{for } n \to \infty$$

which proves the result.

37

An important remark

The above formula can be rewritten as

$$P^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}.$$

This shows than if R>C and n is large enough, the average probability of error is bounded away from zero.

Indeed, this is also true for all n because if $P^{(n)}=0$ for some $n=\bar{n}$, we could simply concatenate such code to have a code with large n and $P^{(n)}=0$.

These observations confirm that we cannot achieve an arbitrarily low probability of error if R > C.

Bibliography

This lectures are based on Chapter 8 of Cover and Thomas's book.