GI12/4C59: Information Theory

Lectures 7—9

Massimiliano Pontil

About these lectures

Theme of lectures 7—9: We present the theory of data com-
pression — finding a description of a discrete random variable
which minimizes the average description length. We show the
relation between the entropy of this random variable and the
minimum description length and discuss several optimal and sub-
optimal coding strategies.

Math required: Basic familiarly with probability and convexity.

Outline

1. Codes

2. Kraft inequality

3. Optimal codes and relation to entropy

4. Shannon codes

5. Huffman codes

6. Arithmetic codes

Codes

Let X = {z1,...,zm},m € N and A* the set of finite sequences
(strings) of symbols from a finite alphabet A = {aq1,...,ap}. A
(any!) function C : X — A* is called a code for X with alphabet
A.

C is said non-singular if C(z) # C(t) for every z,t € X, x £ t.
e Without loss of generality we assume that
A={0,1,...,D — 1}. The default choice is A = {0,1}.
e C(x) is called the codeword corresponding to x.

e The length of the string C(x) is denoted by #4(x).

Coding and data compression

We wish to find a code with has the shortest average code length
for the random variable X (or source symbols in X drawn with
probability p),

L=E[lX)] =) px)(z)

reX
Minimizing L may be computationally intensive, so we are happy
to just find a good approximation to the shortest description.

Minimal description length can be useful, for example, for docu-
ment (text, image, sound) compression.

N —extension of a code

Often we need to code not just one element of X but a sequence
of elements, z" = (z1,z2,...,zn), T; € X, i=1,...,n.

Can we use C to code "7

We introduce the n—extension of a code C to be the code
c" . X" - A* defined by

C"(z") = C(x1)C(z2) - - C(zn)
Even if C is nonsingular, its extension may be singular! (see

example below). If C™ is non-singular for every n > 0 we say
that C is a uniquely decodable code.

Instantaneous codes

Even if C is uniquely decodable, given a code sequence v €
Range(C™) we may have to look at the entire string v in order
to find the first symbol in the decoded sequence.

A code is called an instantaneous or prefix free code if no code-
word is the prefix of any other codeword.

An instantaneous code C can be decoded without reference to
future codewords: the end of a codeword is immediately recog-
nizable when we move left-to-right along a code sequence.

Example 1

Let X = {z1,z2,z3,z4}, A = {0,1}, and consider the following non-singular
codes.

| Code | z1 |22 [z3 |z4 |
C1 0 010 | 01 10
C> 10 | 00 11 110
C3 0 10 110 | 111

C; is not uniquely decodable: the string 010 could be decoded as z2, (z1,z4)
or (£C3,m1).

C> is uniquely decodable (why?) but not instantaneous since the codeword
11 is a prefix of the codeword 110. In particular, to decode the string 11000
we need to count the number of "0"s after 11.

C3 is instantaneous: no codeword is the prefix of any other codeword

Kraft inequality

We focus on instantaneous codes as they are easy to decode.

Theorem: If C : X — A* is an instantaneous code and ¢; the
length of C(z;), i=1,...,m, m = |X|, then

m

> D7t<1 (1)

i=1
Conversely, if the sequence of numbers /¢q,...,¢, satisfies (1)
then there exists an instantaneous code with such codeword
lengths.
Example 1 (cont.) the code C3 in the above example satisfies Kraft in-
equality.

Note: Sometimes we write the Kraft inequality as Y _, D@

Preparing for the proof

Let lraxr be the maximum codeword length. The codewords can
be seen as the leaves of a D—ary tree of depth £nez (there are m
leaves in such a tree.) The path from the root to one leaf traces
out the sequence of symbols of the codeword. By construction,
a codeword cannot be a prefix of any other codeword and, so,
the code is instantaneous.

[Draw the tree for code C3 above. Compare to C5]

10

Proof

There are D%maz nodes at level fmax in the tree.

Let A; be the set of descendants of the i—th codeword. There
are Dfmaz—%i sych descendants and, by construction, the sets A;
are disjoint. In addition, the total number of these descendants
cannot be more than Dmax, the maximum number of leaves in
the tree. Thus, we have

m m
Z Dimaz—¥; < Dfmax Z Dt <1
i=1 i=1
Using the D—ary tree construction, the other part of the proof
is immediate .

11

Kraft inequality for uniquely decodable codes

Kraft inequality also holds for uniquely decodable codes. This
result is remarkable: the larger class of uniquely decodable codes
does not provide any improvement on the minimal description
length.

Proof: We need to show that

Y DT <1,

reX

We denote by £(z") the length of the code sequence corresponding to z" =
(z1,...,2n) € X™. The extension code satisfies

TCOEDINICD
i=1

12

Proof

We have
(Z D—E(m)) — Z Z Z D z) p—=z) .. p—tz) — Z D=
TEX T, EX T,€EX z,EX neXn
which we re-write as
Nl mos
> DU = Y a(ypt
TneXn k=1

where £pyq. is the maximum codeword length and a(k) the number of sequence
™ whose concatenation codeword has length k. Since the code is uniquely
decodable, a(k) < D* which implies

n Wz N e
(Z D—E(I)) — Z a(k)D—k: S Z Dk;D_k; S (nﬁ’maz + 1)nemaw

TEX k=1 k=1 2

13

Proof (cont.)

We re-write last inequality as

Z D_g(z) < <(n£max + 1)n£maa¢>;

2
reX
But since this holds for every n, we have that, for n — oo

max 1 max i 2

TEX
from which

Y D@ <1,

Tr€EX
The converse of the proof is like for prefix-free codes

Note: The Kraft inequality holds also for infinite set X

14

Optimal codes
Problem: We wish to find an instantaneous code with has the
shortest average code length L = E[¢(X)].
This is equivalent to solve the constrained minimization problem:

m m
mind > pplp: > DR <1, fLeN,k=1,...,m (P.1)
k=1 k=1

15

Solution

If we relax the integer constraints we can use the Lagrangian

J(zla"'agm) = Zpkzk_l_/“l’ (Z D_Ek - 1)
k=1 k=1

and

If we set g—é = 0 and equal the kraft inequality we obtain the minimum

¢, = —logp pr
Since J is convex for fixed u, this is the optimal real solution.

In general, Z; is not an integer and, so, it is not a minimum of (P.1). When
{; is an integer we say that p a D—adic distribution, that is, p; is a negative
power of D for every k=1,...,m.

16

Lower bound

Note that, above, >7_, ppfy, = Hp(p), the entropy of p.

Lemma: Every instantaneous code satisfies L > Hp(X).

Proof: We have
L—Hp(X) =) pelle —&) == prlogp D™+ " prlogp pr.
k k k

If we set C =)", D~% < 1 and define the probability distribution g, = C~1D~%,

L—Hp(X) = =) pelogpCar+ > prlogdpps
k k
— dk _ 1
= —Zpklogpp——pklogpc‘—D(pllq)+I099520
k
k

with equality if and only if p is D—adic with py = D%,

17

Upper bound

We exhibit a sub-optimal instantaneous code for which
Hp(X) < L<Hp(X)+1
Proof: Let [z] be the smallest integer which is greater than or equal to «z,

and choose
1
b, = ['OQD —-‘
Pk

This choice of code lengths satisfies Kraft inequality and, since
1 1
logp — < 4 <logp —+1
Dk Dk
the result follows.

Note: This code is called the Shannon code.

18

Description length with a wrong distribution

We show that if we use ¢ as the distribution of X but the true
distribution is p, and use the codeword lengths

l(x) = {Iog (—)W

Then the average optimal description of X satisfies the bound

H(p)+D(pll q) < Ep[l(X)] < H(p) +D(pl|l q) +1

19

Description length with a wrong distribution
(cont.)

Proof: We have

B = 3 p(@) [log : u

—|—Iogm—|—1>

p(z)
q(z)
= D(pllg)+H(p)+1

The lower bound is derived similarly.

20

Summary so far

e Instantaneous codes, a subset of uniquely decodable codes,
allow efficient decoding of a code sequence.

e Any uniquely decodable (and, in particular, instantaneous)
code satisfies Kraft inequality, Y ,cp D~H®) < 1.

e For every uniquely decodable D—ary code, E[¢(X)] > H(X).

e A simple sub-optimal code is Shannon code, 4(z) = [IogDpix) :
Its average length is less than H(p) + 1. If p is a D—ary d(is-
tribution, Shannon code is optimal and E[{(X)] = H(X).

e For every optimal code, E[¢(X)] € [H(p), H(p) + 1).

21

A simple property of optimal codes

We first note that if C' is an (any) optimal code and p; > py,
then Ej < /4;. In fact, consider the code C’ which equals C except
that the codewords C; and Cj, are swapped. We have

¢; ifi#3,k
ﬁgz fj if e =k
b, ifi=y

and, so,

L(C") — L(C) = pil; + pjly — Pl — pit; = (pj — p) (U — £;)

Since p; — pr, > 0, we must have ¢, — £; > 0, otherwise C is not
optimal.

22

Characterization of optimal instantaneous codes

The following result holds for binary codes but its extension to
D—ary codes is straightforward.

Lemma: For any probability distribution there exists an optimal
instantaneous code such that the two longest codewords (a)
have the same length, (b) are assigned to two of the least likely
symbols, and (c) differ only in the last bit.

Sketch of the proof: (a) Suppose there is only one longest codeword. Then
if we delete the last bit, the reduced codeword has still the prefix free property.
(b) This follows from the observation made in the previous slide.

(c) At least two codewords of maximal length must be siblings, otherwise we
could delete the last symbol and still have an instantaneous code with smaller
average length. We then make a permutation of these longest codewords so
that two among the least likely ones are siblings.

23

Example 2

Let X = {1,2,3,4} and p(1) = .3, p(2) = p(3) = .25, p(4) = .2. We have
H(p) = 1.9855.

The following binary codes are instantaneous

]Code\wl ‘$2’$3 ‘w4 ’L ‘
C1 0 11 | 100 | 101 | 2.45
C> 00 | 11 | 10 01 2
C3 00 | 01 | 10 11 2

C1 is not optimal. Both C> and C3 are optimal. C3 satisfies the lemma above
and is obtained by C> by swapping Ca(xz2) with Ca(z4).

24

Example 3

Assume now that X is distributed with ¢ such that ¢q(1) = .6, ¢(2) = q(3) =
.15, p(4) = .1. In this case H(p) = 1.5955.

| Code | z1 |22 |23 |z4 | L |
Ch 0 11 | 100 | 101 | 1.65
C> 00 | 11 | 10 01 2
C3 00 | 01| 10 11 2
Ca 0 10 | O1 111 | 1.5

Now C> and C3 are not optimal anymore while C1 is an optimal instantaneous
code and satisfies the above lemma. Cs; has smaller description length than
C1 but in not uniquely decodable.

25

Huffman codes

Let C be an instantaneous code which satisfies the above lemma
and assume, without loss of generality, that p1 > p> > ... > pm.

A code which satisfies the properties stated in the above lemma
is called an Huffman code. It can be obtained by repeatedly
“merging” the last two symbols, assigning to them the ‘“last
codeword minus the last bit”, and reordering the symbols in
order to have non-increasing probabilities.

26

Huffman codes (cont.)

More precisely, to find an Huffman code we repeat the following
procedure until we end up with only two symbols.

1. Replace z,,_1 and z,, by a new symbol t,,_1 having proba-
bility pp,—1 4+ pm.

2. Assign to t,,_1 the codeword obtained by removing the last
bit in C(x,,,—1) or Cn, (which differ only in the last bit).

3. Reorder zi1,x2,...,x,_2,t,,—1 according to non increasing
probabilities.

We then assign codewords 0,1 to the last two symbols and “prop-
agate back” these codewords.

Note that this procedure is a greedy algorithm.
27

Huffman codes (cont.)

More precisely, note that in the above procedure

L(Cm) - L(le)

m m—2
> pili — Y pili — (Pm—1 + pm)Um — 1)

= Pm—-1t+DPm

Since the difference between we average length of code (), and
C,,—1 does no depend on C,,_1, if C,,—1 is optimal so is Cn,
and we can iterate. We conclude that the above procedure is
optimal.

The next examples illustrate this algorithm.

28

Example 4 (Huffman code)

100 | .15 wsz=wi0 | .15 wl=w3l

101 A W4

w51

C(z) |p w pt w! P> w?
0 6 w 6 wi 6 w?=0
11 15 w» 25 wi=wi0| .4 wi=1

29

Example 5 (Huffman code)
C(z) | p w pl w! p2 w2 p3 w3
01 25 wq 3 wi 45 w? 55 w?=
10 25 wo 25 wl 3 wi=wi0 | .45 w3=
11 2 w3 25 w}i=w?0|.25 w3=wjl
000 |.15 ws=wl0|.2 w}=w?l
001 15 ws = wil

30

Example 6 (Huffman code)

z | C(z) | p w pl w!l
1|1 25 wn 5 w;=0
212 25 wo 25 wi=1
3100 2 w3 = w%O .25 w% =2
4 | 01 15 ws =wil

51 02 15 ws = w%2

31

Example 6 (Huffman code)

The total number of symbols must equal to 1+ k(D —1) where k is the depth

of the tree. We can always match this by adding dummy symbols
z | C(z) | p w pl wl p? w?
11 25w 25 wj 5 wi=0
212 25 wo .25 w% 25 w; =1
3|00 2 ws 2 wi=wi0| .25 wi=2
4 | 02 .1 W4 .2 wAlr = w%l
51010 | .1 ws = wi0 | .1 wi = w?2
6 | 011 | .1 we=wil
— 012 | .0 wr=wi2

32

Source coding and 20 questions

In the game of 20 questions we wish to find the most efficient
series of yes/no questions to determine an object from a class
of objects.

Each question is of the type “Is £ € A?" for some A C X and, in
general, depends on the answers to the questions before it.

Also, any code gives rise to the series of questions "Is the k—th
bit of the code equal to 17", for k =1,...,4mnaez, and the average
number of required questions equals the average length of that
code. So, an optimal series of questions are those determined
by an Huffman codel!

33

Source coding and 20 questions (cont.)

example 5 (cont.) p1 = p> = .25, p3 = .2, pa = ps = .15 and we found the
Huffman code: 01,10,11,000,001.

An optimal series of questions to determine X are:

Q1 = “is X equal to 2 or 37" = “Is the first bit = 17".

If the answer is Yes we could ask: Q2 = "“is X = 37" Or we can directly ask:
Q2 = "Is X =1or 3?7 = "Is the second bit = 17".

Q3 = “is X equal to 4" = "Is the third bit = 17" ..

The expected number of questions N in this optimal scheme satisfies

HX)<N<H(X)+1

34

20 questions and slice codes

Problem: Suppose p;1 > p> > --- > pm. Is there an optimal
sequence of questions of the type “is X > a?", a € N7 (“slice”
questions)

In general an Huffman code does not provide slice questions
(see, e.g., the above example) but we can always reorder its
codewords to obtain another Huffman code (called alphabetic
code or “slice” code) which provides such guestions.

Example 5 (cont.) The above Huffman code, 01,10,11,000,001 tells us the
optimal codelengths are 2,2,2,3,3. Using these codelengths and assigning
the symbols to the first available node in the binary tree for the code we
obtain the alphabetic code C(1) = 00, C(2) = 01, C(3) = 10, C(4) = 110,
c(5) =111

35

Shannon-Fano-Elias coding

We assume that p(xz) > 0 for every =z € X and describe a code based on the
cumulative distribution function of X, F(z) =), p(t).

We introduce a slight modification of F,

F@) = 3" p(®) + 5p()

t<z

F consists of steps of size p(z) at = and F(z) is the midpoint of that step.
Since p(z) > 0 for every z, F(x) can be use to code z. But this is in general

a real number (infinite bits).

A finite length code can be obtained by rounding off F(z) to
¢(x) bits, that is, the codeword of zx is

C(z) = [F ()] g(a)

36

Shannon-Fano-Elias coding (cont.)

Example 5 (cont)
z | p(z) | F(z) | F(z) | £(z) =[log =51+ 1 | [F(2)]es) | codeword
p(z)

1].25 |.25 |.125 3 .001 001
2|1.25 | .5 .375 3 .011 011
31.2 7 .6 4 .10011 1001
4| .15 | .85 775 4 .1100011 | 1100
5|.15 | 1.0 |.925 4 .1110110 | 1110

Note that, since p(z) is not 2—adic, the binary representation of F(x) may
have infinite number of bits.
Note that this code is instantaneous. It is on average 1.2bits longer the
Huffman code derived above.

37

Shannon-Fano-Elias coding (cont.)

How many bits do we need to make C instantaneous? We show
that it is sufficient to choose

(z) = {Iog ﬁ} +1

In fact, by definition, F(z) — | F(z)] < 274®). We also have that

1
o—z) — 2—“091@1—1 < 1% = F(z) — LF(iU)Jz(x) < P2) P(CB)

This proves that if the roundoff of F(z) uses [log ﬁ} +1 bit, the correspond—

ing code is nonsingular.

38

Shannon-Fano-Elias coding (cont.)

The above choice is also sufficient to guarantee the prefix free property. In
fact, since 24 < ’% the sets

lLF(a:)Je(z), LF(2)] o) + 2€(:c)i|

are disjoint and the code is prefix-free if and only if the interval corresponding
to codewords are disjoints.

Finally note that

L= Y @) = So@) ([log | +1) < OO 42

reX reEX ()

39

Arithmetic coding

Let X = {0,1}. If we have a block (or sequence) of symbols
from X and code each symbol separately we may lose one bit
per symbol). We are better off coding directly block symbols
from X!

Huffman code is not efficient to do this as it requires the con-
struction of the code for each fixed block length!

Let us use the above idea. If 2" = (z1,...,2n) € X", we need to
calculate

F(z"™), and {(z")=T[log——~]|+1

(")

How can we do this efficiently?

40

Computing F(x)

We represent all block symbols of length n as the leaves of a binary tree T"
of depth n where in each node the symbol 1 (0) brings us to the right (left)
branch on the tree. Thus, if ™ > y™ the leaf corresponding to z" is to the
right of the leaf corresponding to y™.

Let 7 be the space of all subtrees of T". We can compute F(z") efficiently
as

F@) = Y pm =Y p(T)

ynS bl T< "

A subtree T is represented by the path from the root of the binary tree T™ to
the root of T. So, if T is at the left of z" = (z1,...,z,) — we use the notation
T <z™ —we have T = x1x2---x,_10 for some k£ <n — 2 and, so,

p(T) = p(z1,22,...,2£-1,0)

41

Sequential encoding

Note that if we have computed F(z") for every z", if is easy to compute
F(z™*t1) for every z"*t1. In fact

n n F(z" n0) ifz,g1=1
F(z"™) = F(a™, zpy1) = { ang +p(e",0) if ﬁni =0

Thus encoding can be done sequentially.

The above procedure is efficient provided that p(z"™) can be efficiently com-

puted. This is true for example in the case of 7.2.d or Markov sources.

42

Decoding

Decoding can also be done sequentially by using the above tree
T™ as a decision tree.

Given the codeword | F(z™)](,n), we first check at the root node
in the tree whether |F(z™)]y;n) > p(0). If ves, then z; =1 (the
subtree starting with 0 is to the left of z™), otherwise 1 = 0.
We then iterate this process.

43

Example of arithmetic coding

Suppose Xq,...,Xp are i.i.d. Bernoulli random variables with
P({X =1}) =p. Compute F(01110).

We have

F(01110) = p(00)4p(010)+p(0110) = (1—p)?+p(1—p)?+p?(1—p)?
This can be calculated sequentially by the above formula, that is

n n F(z" m 0 if z, =1
F(a: +1) = F(a: ,:I:n+1) — { ngng -I-p(:B) " znii —5

44

See Chapter 5 of

Bibliography

T.M. Cover and J.A. Thomas, The elements of information the-

ory, Wiley, 1991.

45

