GI12/4C59: Information Theory

Lectures 4-6

Massimiliano Pontil

1

Outline

- 1. Convex functions
- 2. Entropy
- 3. Relative entropy
- 4. Joint entropy
- 5. Mutual information
- 6. Conditional entropy and mutual information

About these lectures

Theme of lectures 4–6: We introduce the basic definitions and quantities needed to develop the theory. We provide the intuition behind each notion and begin to speculate on their role in Information Theory.

Math required: Lectures 1–3, familiarity with convex functions (reviewed Today).

3

Some elements of convex analysis

We recall some basic facts on convex analysis

- 1. Convex sets
- 2. Convex functions
- 3. Constrained minimization and Lagrange multipliers

Convex sets

A set $\mathcal{D} \subset \mathbb{R}^n$ is said convex if the line segment joining every pair of points is in \mathcal{D} , that is, for every $x, t \in \mathcal{D}$ we have that

$$\lambda x + (1 - \lambda)t \in \mathcal{D}, \quad \lambda \in [0, 1]$$

- \bullet \mathbb{R}^n is a convex set
- The sets $[a,b]^n$, $(a,b)^n$, $(a,b)^n$, are convex.
- If S and T are two convex sets then $S \cap T$ is convex but $S \cup T$, in general, is not.
- If S and T are two convex sets then the product set $S \times T = \{z = (s,t) : s \in S, t \in T\}$ is convex.

5

Convex functions

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be a convex set. A function $g: \mathcal{D} \to \mathbb{R}$ is said convex if for every $x, t \in \mathcal{D}$ and $\lambda \in [0, 1]$

$$g(\lambda x + (1 - \lambda)t) \le \lambda g(x) + (1 - \lambda)g(t).$$

g is said strictly convex if it is convex and, in the above inequality, the equality holds only for $\lambda=0$ or 1.

• A convex function always lies below any cord.

A function g is said concave if -g is convex.

Characterization of convex functions

Let $g : \mathbb{R} \to \mathbb{R}$. If its second order derivative g'' exists everywhere and it is everywhere (positive) nonnegative, then g is (strictly) convex.

Example: Let $g(x) = -\log x$, $x \in (0, \infty)$. Then g is strictly convex because

$$g''(x) = \frac{1}{x^2} > 0$$

More generally, let $g: \mathbb{R}^n \to \mathbb{R}$. If the second order partial derivatives of g exist for every $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and the Hessian matrix

$$J_{ij}(x) = \frac{\partial^2 g(x)}{\partial x_i \partial x_j}$$

is (positive) nonnegative definite for every $x \in \mathbb{R}^n$, then g is (strictly) convex.

7

Sum of convex functions

If $\mathcal{D} \subseteq \mathbb{R}$ are convex sets, the functions $g_i : \mathcal{D} \to \mathbb{R}$ are convex (concave), then the function $g : \mathcal{D}^n \to \mathbb{R}$ defined by

$$g(x_1,...,x_n) = \sum_{i=1}^n g_i(x_i), \quad x_i \in \mathcal{D}, \ i = 1,...,n$$

is convex (concave) on \mathcal{D}^n . Can you proof this? (easy)

Example: Let $h:[0,\infty)\to\mathbb{R}$ be defined as $h(x)=x\log x$. Since h is convex (check!), the function $g:[0,\infty)^n\to\mathbb{R}$ defined by

$$g(x_1,\ldots,x_n)=\sum_{k=1}^n x_n\log x_n$$

is also convex.

Composition of convex functions

If $f: \mathbb{R} \to \mathbb{R}$ is a convex function and g = ax + b then $f(g(\cdot))$ is convex.

Proof: let $x_1, x_2 \in \mathbb{R}$ and $\lambda \in [0, 1]$. We have

$$f(g(\lambda x_1 + (1 - \lambda)x_2)) = f(a(\lambda x_1 + (1 - \lambda)x_2) + b)$$

$$= f(\lambda(ax_1 + b) + (1 - \lambda)(ax_2 + b))$$

$$\leq \lambda f(g(x_1)) + (1 - \lambda)f(g(x_2))$$

9

Jensen inequality

If X is a r.v. and $f: \mathbb{R} \to \mathbb{R}$ a convex function then

$$E[f(X)] \ge f(E[X]).$$

In addition, if f is strictly convex the equality holds if and only if X is a constant.

• We show the proof in the discrete case. This can be easily extended to continuous r.v. (by a continuity step).

Example: The function $f(x) = x^2$ is convex so we have:

$$E[X^2] > (E[X])^2$$

(recall
$$var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2...$$
)

Proof

We need to prove that for every $x_i \in \mathbb{R}$ and $p_i \geq 0$ with $\sum_{i=1}^n p_i$ we have that

$$\sum_{i=1}^{n} p_{i} f(x_{i}) \ge f(\sum_{i=1}^{n} p_{i} x_{i}) \quad (*)$$

and if f is strictly convex the equality holds if and only if all but one p_i are zero.

Proof is by induction: for n=2 (*) is just the definition of convex function. Suppose (*) is true for n=k-1, k>3. Then it is also true for n=k since

$$\sum_{i=1}^{k} p_i f(x_i) = (1 - p_k) \left(\sum_{i=1}^{k-1} \frac{p_i}{1 - p_k} f(x_i) \right) + p_k f(x_k)$$

$$\geq (1 - p_k) f \left(\sum_{i=1}^{k-1} \frac{p_i}{1 - p_k} x_i \right) + p_k f(x_k)$$

$$\geq f((1 - p_k)) \left(\sum_{i=1}^{k-1} \frac{p_i}{1 - p_k} x_i \right) + p_k x_k) = f \left(\sum_{i=1}^{k} p_i x_i \right)$$
11

Entropy

Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a finite set (alphabet) and X a discrete r.v. with values on \mathcal{X} and probability function $p(x) = P(\{X = x\})$. The entropy of X is defined by

$$H_D(X) := -\sum_{x \in \mathcal{X}} p(x) \log_D p(x)$$

Standard choice: D=2 (here we neglect the subscript 2 in H_2 and \log_2) and the entropy is measured in "bits". If D=e the units measure is "nats". Useful conversion formula: $H_a(X) = \log_a(D) \ H_D(X)$.

Note that
$$H[X] = -E[\log p(X)] = E\left[\log \frac{1}{p(X)}\right]$$

Example: Let $\mathcal{X} = \{0,1\}$ and set $p = P(\{X = 1\})$. Then $H(p) = -p \log p - (1-p) \log (1-p)$. In particular, H(1/2) = 1 and H(1) = H(0) = 0.

Properties of H

The entropy is a function of the distribution p (it depends on X only through the values $p(x_1), \ldots, p(x_n)$). Thus, sometimes we write H(p) instead of H(X).

If p "peaks" at $x^* \in \mathcal{X}$, that is, p(x) = 1 if $x = x^*$ and zero otherwise, then H(p) = 0. In all other cases H(p) is positive. (Note: we use the convention $0 \log 0 = 0$.

H(p) achieves its maximum when p is the uniform distribution, that is, $p(x) = \frac{1}{n}$ for every $x \in \mathcal{X}$, in which case $H(p) = \log n$ (where $n = |\mathcal{X}|$).

In fact, since the function $f(t) := nt \log t$ is convex (we saw this before), by Jensen's inequality we have that

$$\log \frac{1}{n} = f(\frac{1}{n} \sum_{k=1}^{n} p_k) \le \frac{1}{n} \sum_{k=1}^{n} f(p_k) = -H(p) \quad \Rightarrow H(p) \le \log n$$

and since f is strictly convex, $H(p) = \log n$ if and only if p is uniform.

13

Property of H (cont.)

Since the function $-t \log t$ is concave and the sum of concave functions is a concave function, it follows that the entropy is a concave function of the vector point (p_1, \ldots, p_n) .

In particular if p and q are two probability functions for X then for every $\lambda \in [0,1]$ we have that:

$$H(\lambda p + (1 - \lambda)q) \le \lambda H(p) + (1 - \lambda)H(q)$$

Properties of H (summary)

We summarize the properties we have just proved

- $H(X) \in [0, \log n]$ with H(X) = 0 if and only if p peaks at some $x \in \mathcal{X}$, and $H(p) = \log n$ if and only if p is the uniform distribution.
- H(p) is a concave function of p.

15

Interpretation

Interpretation 1: H(X) as a measure of the uncertainty of X – the higher the randomness in X the higher the uncertainty of X (or a measure of the information gained by measuring X).

Interpretation 2: H(X) as a lower bound on the minimum number of binary questions required to determine the value of X.

Example 1: Let $\mathcal{X}=\{a,b,c,d\}$ and $p(a)=\frac{1}{2},\ p(b)=\frac{1}{4},\ p(c)=p(d)=\frac{1}{8}.$ Then $H(X)=\frac{7}{4}.$ An efficient algorithm to determine X is to ask the following ordered binary questions: Q1 = "Is X=a?", Q2 = "Is X=b?", Q3 "Is X=c?". In this case the expected number of questions asked is $1\times\frac{1}{2}+2\times\frac{1}{4}+3\times\frac{1}{4}=\frac{7}{4}.$ We will see that, in general, the *minimum* number of such questions is always between H(X) and H(X)+1.

Link to data compression

Suppose we wish to represent the elements of \mathcal{X} with variable length codes (for example, binary strings) and let $\ell(x)$ be the length of the code assigned to $x \in \mathcal{X}$.

Later in the course we will see that the entropy plays a key role in this problem. In particular we will show that for every binary code,

$$L = E[\ell(x)] \ge H(X)$$

and any minimizing code for L, that is a code which provides the best compression of X, is always within one bit of the entropy of X,

$$L^* = \min L < H(X) + 1$$

17

Constrained minimization

We present a different proof that the maximum of H is achieved by the uniform distribution.

Let $g: \mathcal{D} \to \mathbb{R}$ be convex and $g \in C^1$. Suppose we wish to find the minimum of $g: \mathbb{R}^n \to \mathbb{R}$ subject to the constraint that

$$h(x) = 0, \quad h \in C^1.$$

Consider the Lagrangian function $L(x,\mu)=g(x)+\mu h(x)$, where $\mu\in\mathbb{R}$ is called the Lagrange multiplier

Then x_0 is a minimum of g subject to h(x) = 0 if and only if

$$\frac{\partial L(x_0, \mu_0)}{\partial x} = \frac{\partial L(x_0, \mu_0)}{\partial \mu} = 0$$

for some $\mu_0 \in \mathbb{R}$.

Maximum entropy problem

Let p be a probability distribution on $\mathcal{X} = \{x_1, \dots, x_n\}$.

What is the probability distribution which maximizes the entropy?

This problem is equivalent to solve

$$\min\{-H(p): \sum_{k=1}^{n} p_k = 1, p_k \ge 0\}$$

The Langrangian is

$$L(p,\mu) = \sum_{k=1}^{n} p_k \log p_k + \mu((\sum_{k=1}^{n} p_k) - 1)$$

19

Maximum entropy problem (cont.)

 $L(p,\mu) = \sum_{k=1}^{n} p_k \log p_k + \mu((\sum_{k=1}^{n} p_k) - 1)$. We have: (only in this slides we change notation and measure the entropy in nats).

$$\frac{\partial L(p,\mu)}{\partial p_k} = \log p_k + 1 + \mu = \log e p_k + \mu$$

thus if we set this equation equal to zero we get that $p_k=\frac{2^{-\mu}}{e}$ and using the constraint $\sum_{k=1}^n p_k=1$ we obtain

$$p_k = \frac{1}{n}, \quad k = 1, \dots, n.$$

Since the entropy is strictly convex, this is the only solution.

Relative Entropy

Let p, q be two probability distributions. The relative entropy of p and q is defined by:

$$D(p \parallel q) := \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Note: D is also called the Kullback Leiber divergence or distance (but it is not a distance since, in general, $D(p \parallel q) \neq D(q \parallel p)$). Note also that D may be infinite, e.g. if $\mathcal{X} = \{0,1\}$, $D((p,1-p) \parallel (0,1)) = \infty$ for every $p \in (0,1]$.

Remember that we use the convection: $p \log \frac{p}{0} = +\infty$ for every p > 0, $0 \log \frac{0}{0} = 0$, $0 \log 0 = 0$ (all these follow from the continuity of the log function).

21

Interpretation

 $D(p \parallel q)$ is a measure of the inefficiency of assuming that the distribution of X is q when the true distribution is p.

Example 1 (cont.): Let $q(a) = \frac{1}{4}$, $q(b) = \frac{1}{2}$, $q(c) = q(d) = \frac{1}{8}$. Then $D(p \parallel q) = \frac{1}{4}$.

If we believe X is distributed according to q, in order to determine X we would ask the binary questions: Q1 = "Is X=b?", Q2 = "Is X=a", Q3 = "Is X=c?" (in this order). Since the true distribution of X is p, the expected number of questions asked is $1 \times \frac{1}{4} + 2 \times \frac{1}{2} + 3 \times \frac{1}{4} = 2 = H(X) + D(p \parallel q)$. We will see that, in general, the *minimum* number of such questions is between $H(X) + D(p \parallel q)$ and $H(X) + D(p \parallel q) + 1$.

Properties of D

We show that

- 1. $D(p \parallel q) \geq 0$ with equality if and only if p = q.
- 2. $D(p \parallel q)$ is a convex function of (p,q), that is if p_1,q_1,p_2,q_2 are probability distributions then for every $\lambda \in [0,1]$ we have

 $D(\lambda p_1 + (1-\lambda)p_2 \parallel \lambda q_1 + (1-\lambda)q_2) \le \lambda D(p_1 \parallel q_1) + (1-\lambda)D(p_2 \parallel q_2)$

23

Proof of 1

Recall Jensen inequality: if $f: \mathbb{R} \to \mathbb{R}$ is convex and X is a discrete r.v. then $E[f(X)] \geq f(E[X])$. If f is strictly convex E[f(X)] = f(E[X]) if and only if X is a constant.

Let $\mathcal{D} = \{x : p(x) > 0\}$. Since $\log(\cdot)$ is strictly concave, we have that

$$-D(p \parallel q) = -\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$= \sum_{x \in \mathcal{D}} p(x) \log \frac{q(x)}{p(x)} \le \log \left(\sum_{x \in \mathcal{D}} p(x) \frac{q(x)}{p(x)} \right) \quad (\diamond)$$

$$= \log \left(\sum_{x \in \mathcal{D}} q(x) \right) \le \log \left(\sum_{x \in \mathcal{X}} q(x) \right) = \log 1 = 0$$

with equality if and only if p = q. (because of (\diamond))

The log sum inequality

To proof 2 we use the following inequality: for every non-negative numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$\sum_{k=1}^{n} a_k \log \frac{a_k}{b_k} \ge \left(\sum_{k=1}^{n} a_k\right) \log \frac{\sum_{k=1}^{n} a_k}{\sum_{k=1}^{n} b_k} \tag{*}$$

with equality if and only if $a_k/b_k = c$ (where c is a constant).

Proof: We set $\alpha_k = b_k / \sum_j b_j$ and $t_k = a_k / b_k$. Since the function $f(t) = t \log t$ is strictly convex, by Jensen inequality we have

$$\sum_{k=1}^{n} \alpha_k f(t_k) \ge f\left(\sum_{k=1}^{n} \alpha_k t_k\right) \quad \Rightarrow \quad (*)$$

which equality if and only if $t_k = c$.

25

Proof of 2

$$\text{Recall}: \quad \sum_{k=1}^n a_k \log \frac{a_k}{b_k} \geq \left(\sum_{k=1}^n a_k\right) \log \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k} \quad \text{with equality if and only if } a_k/b_k = c.$$

We apply (*) to each term (inside the sum) in the relative entropy

$$D(\lambda p_1(x) + (1-\lambda)p_2(x)) \| \lambda q_1(x) + (1-\lambda)q_2(x)) =$$

$$\sum_{x} (\underbrace{\lambda p_1(x)}_{a_1} + \underbrace{(1-\lambda)p_2(x)}_{a_2}) \log \underbrace{\frac{\lambda p_1(x) + (1-\lambda)p_2(x)}{\underbrace{\lambda q_1(x)}_{b_1} + \underbrace{(1-\lambda)q_2(x)}_{b_2}}$$

$$\leq \sum_x \lambda p_1(x) \log \frac{\lambda p_1(x)}{\lambda q_1(x)} + (1-\lambda) p_2(x) \log \frac{(1-\lambda) p_2(x)}{(1-\lambda) q_2(x)}$$

Alternative proof of 1

Inequality (*) can also be used to prove Property 1 above: $D(p \parallel q) \ge 0$ with equality in and only if p = q.

$$\text{Recall : } \sum_{k=1}^n a_k \log \frac{a_k}{b_k} \geq \left(\sum_{k=1}^n a_k\right) \log \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k} \text{ with equality if and only if } a_k/b_k = c.$$

We have

$$D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \ge \left(\sum_{x} p(x)\right) \log \frac{\sum_{x} p(x)}{\sum_{x} q(x)} = 1 \log \frac{1}{1} = 0$$

with equality if and only if $\frac{p(x)}{q(x)} = c$, that is if and only if p(x) = q(x) for all $x \in \mathcal{X}$ (since, by normalization, c = 1).

27

Two important consequences

If we choose q to be the uniform distribution on $\mathcal X$, we have

$$0 \le D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$
$$= \sum_{x \in \mathcal{X}} p(x) \log p(x) + p(x) \log n = -H(X) + \log(n)$$

Thus, the two above properties of ${\cal D}$ provide an alternate proof of the following facts

- $H(X) \leq \log n$ with equality if and only if p is the uniform distribution.
- H(p) is a concave function of p.

Entropy of a pair of r.v.

If X and Y is a pair of discrete r.v. with distribution p(x,y), their joint entropy is defined by

$$H(X,Y) := -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y) = -E[\log p(X,Y)]$$

The conditional entropy of Y given X is defined by

$$H(Y|X) := -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) = -E[\log p(Y|X)]$$

Note: Using the decomposition p(x,y)=p(x)p(y|x) we derive that $H(Y|X)=\sum_{x\in\mathcal{X}}p(x)H(Y|X=x)$ where H(Y|X=x):=H(p(Y|X=x)).

29

Chain Rule

$$H(X,Y) := -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

The joint and conditional entropy are related by the formula

$$H(X,Y) = H(Y|X) + H(X)$$

This result follows by using $\log p(x,y) = \log p(y|x) + \log p(x)$ and taking the expectation.

Likewise we have: H(X,Y) = H(X|Y) + H(Y)

Mutual Information

Let X and Y be two r.v. with probability distribution p(x,y) and marginal distributions p(x) and p(y). The mutual information of X and Y is defined by

$$I(X;Y) := D(p(x,y) \parallel p(x)p(y)) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

31

Properties of I

- 1. Symmetric: I(X;Y) = I(Y;X). (trivial)
- 2. Nonnegative: $I(X;Y) \ge 0$ and I(X;Y) = 0 if and only if X and Y are independent. (it follows from the property of D)
- 3. I(X;Y) = H(X) H(X|Y) = H(Y) H(Y|X)
- 4. I(X;Y) = H(X) + H(Y) H(X,Y)
- 5. I(X;X) = H(X) (it follows from 4: I(X;X) = 2H(X) H(X,X) = H(X))

Proof of property 3

$$I(X;Y) = H(X) - H(X|Y)$$

We use the decomposition p(x,y) = p(x|y)p(y):

$$\begin{split} I(X;Y) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x|y)}{p(x)} \\ &= -\sum_{x \in \mathcal{D}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x) - (-\sum_{x \in \mathcal{D}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x|y)) \\ &= -\sum_{x \in \mathcal{D}} p(x) \log p(x) - H(X|Y) = H(X) - H(X|Y) \end{split}$$

I(X;Y) = H(Y) - H(Y|X) is proved as above by interchanging X with Y.

33

Interpretation of I

$$I(X;Y) \ge 0$$

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Properties 2 and 3 imply that $H(X) \ge H(X|Y)$ with equality if and only if X and Y are independent. This means that measuring Y reduces (on the average!) the entropy of X.

Example: Let $\mathcal{X} = \mathcal{Y} = \{0,1\}$, p(0,0) = 0, $p(0,1) = \frac{3}{4}$, $p(1,0) = p(1,1) = \frac{1}{8}$. Verify that H(X) = 0.544, $H(X|Y) = \frac{1}{4}$, H(X|Y) = 0, H(X|Y) = 1.

Proof of property 4

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

This follows by combining property 3, I(X;Y) = H(X) - H(X|Y) with the decomposition for the joint entropy, H(X,Y) = H(Y) + H(X|Y).

35

One more property of I

If we look at the mutual information as a function of p(x) and p(y|x) (the remaining probabilities can be derived from those) we have the following result.

Lemma: I(X,Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

Concavity of I in p(x)

We have

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)$$

where $H(Y|X=x) = \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$.

We know H(Y) is concave in p(y). If we keep p(y|x) fixed then p(y) is linear in p(x) and, so, H(Y) is also concave in p(x).

The second term, $-\sum_{x\in\mathcal{X}}p(x)H(Y|X=x)$ is linear in p(x) so it is concave in p(x).

37

Convexity of I in p(y|x)

Let $p_1(y|x)$ and $p_2(y|x)$ be two conditional distributions and consider their convex combination

$$p_{\lambda}(y|x) = \lambda p_1(y|x) + (1-\lambda)p_2(y|x), \quad \lambda \in [0,1]$$

Since p(x) is fixed we have $p_{\lambda}(x,y)=p(x)p_{\lambda}(y|x)$ and

$$p_{\lambda}(y) = \lambda p_1(y) + (1 - \lambda)p_2(y)$$

where $p_i(y) = \sum_{x \in \mathcal{X}} p(x) p_i(y|x)$, i = 1, 2. Now let $q_{\lambda}(x,y) = p(x) p_{\lambda}(y)$ and notice that

$$I(X;Y) = D(p_{\lambda} \parallel q_{\lambda}).$$

Since $D(\cdot \| \cdot)$ is a convex function then I is a convex function of the conditional distribution.

Link to channel coding

Suppose we wish to send the symbol x, generated with p(x), through a noisy channel with transition probability p(y|x). Unless p(x|y) peaks at some x^* , we won't be able to recover x from y.

However, if we represent x with some "redundant code" it is possible to recover x from y. The goal is to find an efficient coding strategy which guarantees that this error is small (zero in a limit process).

We will see that the "maximum rate" C at which we can transmit the the coded data x through the channel with arbitrary small probability of error is given by

$$C = \max_{p(x)} I(X;Y)$$

39

Noisy typewriter channel

Let $\mathcal{X}=\mathcal{Y}=\{1,...,26\}$ and $p(y|x)=\frac{1}{2}$ if y=x or y=x+1 mod 26, and zero otherwise.

We have $C = \log 13$. In fact

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x) = \sum_{x \in \mathcal{X}} p(x)1 = 1$$

and, thus,

$$C = \max_{p(x)} I(X;Y) = \max_{p(x)} \{H(Y) - 1\} = \log 26 - 1 = \log 13 \ bits.$$

The maximum is achieved when p(x) is the uniform distribution.

Which code achieves the channel capacity?

Consider a code of unit length: x(1) = 1, x(2) = 3, x(3) = 5, etc. This code has zero probability of error because each codeword is either transmitted as such or as the next symbol in \mathcal{X} . This code achieves capacity since its transmission rate is $\log 13\ bits$

Entropy of more than two r.v.

It is straightforward to extend these concepts to an n-tuple of r.v. X_1, \ldots, X_N . In particular we have the following chain rule:

$$H(X_1,\ldots,X_n) = H(X_1) + H(X_2|X_1) + \sum_{i=3}^n H(X_i|X_{i-1},\ldots,X_1)$$

which follows by using the chain rule for probability:

$$p(x_1,\ldots,x_n) = \prod_{i=1}^n p(x_i|x_{i-1},\ldots,x_1)$$

or, equivalently, $\log p(x_1,\ldots,x_n) = \sum_{i=1}^n \log p(x_i|x_{i-1},\ldots,x_1)$

Note: Above, $p(x_i|x_{i-1},...,x_1)$ is meant to be $p(x_1)$ when i=1 and $p(x_2|x_1)$ when i=2.

41

Conditional entropy of two joint r.v.

We have

$$H(X,Y|Z) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} p(x,y,z) \log p(x,y|z)$$
$$= \sum_{z} p(z) \sum_{x,y} p(x,y|z) \log p(x,y|z)$$
$$= \sum_{z} p(z) H(X,Y|Z=z)$$

A direct computation (as in the above case of two joint r.v.) gives

$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$

compare to H(X,Y) = H(X) + H(Y|X)

Conditional mutual information

If X,Y,Z are r.v., the conditional mutual information of X and Y given Z is defined by

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z) = E\left[\log\frac{p(X,Y,Z)}{p(X|Z)p(Y|Z)}\right]$$

Using the chain rule for the entropy we see that the mutual information satisfies the chain rule:

$$I(X_1,\ldots,X_n;Y) = \sum_{i=1}^n I(X_i;Y|X_{i-1},\ldots,X_1)$$

43

Conditional relative entropy

It is defined by the formula

$$D(p_{Y|X} \parallel q_{Y|X}) = \sum_{x \in \mathcal{X}} p(x) D(p(\cdot|x) \parallel q(\cdot|x))$$
$$= \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{p(q|x)}$$

Note We also denote (abusing notation) $D(p_{Y|X} \parallel q_{Y|X})$ by $D(p(y|x) \parallel q(y|x))$. Chain rule for relative entropy

$$D(p(x,y) \parallel q(x,y)) = D(p(x) \parallel q(x)) + D(p(y|x) \parallel q(y|x)).$$

Ordered Markov chain

We say that the r.v. X,Y,Z for a Markov chain in that order (we write $X \to Y \to Z$) if p(z|y,x) = p(z|y), that is, Z is conditionally independent of X given Y. Thus, we have

$$p(x, y, z) = p(z|y, x)p(y|x)p(x) = p(x)p(y|x)p(z|y)$$

This condition is equivalent to ask that X and Z are conditionally independent give Y. In fact

$$p(x,z|y) = \frac{p(x,y,z)}{p(y)} = \frac{p(z|x,y)p(x,y)}{p(y)} = \frac{p(x,y)p(z|y)}{p(y)} = p(x|y)p(z|y)$$

In addition, we have that $X \to Y \to Z$ implies $Z \to Y \to X$ (check!).

• Particular case: if Z = f(Y) then $X \to Y \to Z$.

45

Data processing inequality

If X, Y, Z form a Markov chain, no preprocessing of Y (deterministic or random) can increase the information that Y contains about X That is, if $X \to Y \to Z$, then

$$I(X;Y) \geq I(X;Z)$$
.

Proof: Using the chaining rule, we have

$$I(Z,Y;X) = I(Z;X) + I(Y;X|Z)$$

and, also,

$$I(Z,Y;X) = I(Y,Z;X) = I(Y;X) + I(Z;X|Y) = I(Y;X)$$

where I(Z;X|Y)=0 because from hypothesis Z and X are conditionally independent given Y. Thus I(Z;X)+I(Y;X|Z)=I(Y;X) and since I(X;Y|Z) is nonnegative we conclude that $I(Y;X)\geq I(Z;X)$, or, equivalently $I(X;Y)\geq I(X,Z)$.

Note: Similarly, we have that $I(Y; Z) \ge I(X; Z)$.

Bibliography

See Chapter 2 of T.M. Cover and J.A. Thomas, *The elements of information theory*, Wiley, 1991.

47