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About these lectures

Theme of lectures 4—6: We introduce the basic definitions
and quantities needed to develop the theory. We provide the
intuition behind each notion and begin to speculate on their role
in Information Theory.

Math required: Lectures 1-3, familiarity with convex functions
(reviewed Today).

Some elements of convex analysis

We recall some basic facts on convex analysis

1. Convex sets
2. Convex functions

3. Constrained minimization and Lagrange multipliers




Cconvex sets

A set D C R" is said convex if the line segment joining every pair
of points is in D, that is, for every z,t € D we have that

A+ (1 —-XNteD, Xe]0,1]

e R" is a convex set
e The sets [a,b]"”, (a,b]”, [a,b)™, (a,b)™, are convex.

e If S and T are two convex sets then SNT is convex but SUT,
in general, is not.

e If S and T are two convex sets then the product set S xT =
{z = (s,t) :s € S,t € T} is convex.

Convex functions

Let D CIR™ be a convex set. A function g : D — R is said convex
if for every z,t € D and X € [0, 1]

g( Az + (1 = A)t) < Ag(x) + (1 — A)g(2).

g is said strictly convex if it is convex and, in the above inequality,
the equality holds only for A =0 or 1.

e A convex function always lies below any cord.

A function g is said concave if —g is convex.




Characterization of convex functions

Let g : R — IR. If its second order derivative g” exists everywhere
and it is everywhere (positive) nonnegative, then g is (strictly)
convex.

Example: Let g(z) = —logz, = € (0,00). Then g is strictly convex because

1
(@) =—>0
xXr

More generally, let g : R®" — R. If the second order partial derivatives of g

exist for every z = (z1,...,z,) € R" and the Hessian matrix
9%g(x)
J.. ) =
1]( ) 83318$J

is (positive) nonnegative definite for every z € R", then g is (strictly) convex.
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Sum of convex functions

If D C R are convex sets, the functions g; : D — IR are convex
(concave), then the function g : D® — R defined by

n
g(x177$n):Zgz(wz)7 :I"ZGD7 1=1,...,n
=1
is convex (concave) on D™. Can you proof this? (easy)
Example: Let h: [0,00) - R be defined as h(z) = zlogz. Since h is convex
(check!), the function g : [0,00)™ — IR defined by

n
g(z1,...,xzy) = Z xzn l0g )y,
k=1

is also convex.




Composition of convex functions

If f:IR — IR is a convex function and g = ax + b then f(g(-)) is
convex.

Proof: let z1,z20 € R and X € [0,1]. We have

flagOz1 4+ (1 —Nz2)) = fla(Az1+ (1 —AN)z2) +b)
= f(A(az1+0b) + (1 = A)(az2+b))

< Af(g(z1)) + (1 — M) f(g(22))

Jensen inequality

If Xisar.wv. and f: IR — IR a convex function then

E[f(X)] > f(E[X]).

In addition, if f is strictly convex the equality holds if and only
if X is a constant.

e We show the proof in the discrete case. This can be easily extended to
continuous r.v. (by a continuity step).

Example: The function f(z) = z2 is convex so we have:

E[X?] > (E[X])?

(recall var(X) = E[(X — E[X])?] = E[X2] — (E[X])2...)
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Proof

We need to prove that for every z; € R and p; > 0 with """, p; we have that

> opif (@) > FO_piw)  (x)
i=1 i=1

and if f is strictly convex the equality holds if and only if all but one p; are
Zero.

Proof is by induction: for n = 2 (*) is just the definition of convex function.
Suppose (*) is true forn =k —1, k> 3. Then it is also true for n = k since

k k—1
S @) = (1-p) (z n f<wz->>+pkf<mk>
=1

= 1-pk

k-1
> 1-— pi T T
> (A-pf (gl—pk ) + pr.f (k)

k

1 k
> f((1—pr) (Z 1 ﬁlpkivz) + pezi) = f (Zpimi)
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Entropy

Let X = {z1,...,zn} be a finite set (alphabet) and X a discrete
r.v. with values on X and probability function p(z) = P{X =
x}). The entropy of X is defined by

Hp(X) := — ) p(x)logpp(x)
TeX

Standard choice: D = 2 (here we neglect the subscript 2 in Hy and logs,)
and the entropy is measured in “bits”. If D = e the units measure is “nats”.
Useful conversion formula: H,(X) = log,(D) Hp(X).

Note that H[X] = —E[logp(X)] = E [Iog ﬁ]

Example: Let X = {0,1} and set p = P({X = 1}). Then H(p) = —plogp —
(1 —p)log(1l —p). In particular, H(1/2) =1 and H(1) = H(0) = 0.
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Properties of H

The entropy is a function of the distribution p (it depends on X only through
the values p(z1),...,p(z,)). Thus, sometimes we write H(p) instead of H(X).

If p “peaks” at z* € X, that is, p(z) = 1 if z = z* and zero otherwise, then
H(p) = 0. In all other cases H(p) is positive. (Note: we use the convention
Olog0 = 0.

H(p) achieves its maximum when p is the uniform distribution, that is, p(z) =
1 for every z € X, in which case H(p) = logn (where n = |X|).

In fact, since the function f(t) := ntlogt is convex (we saw this before), by
Jensen’s inequality we have that

1 1 < 1
|09—=f(—§ pk)S—E f(pr) =—-H(p) = H(p) <logn
n n n
k=1 k=1
and since f is strictly convex, H(p) = logn if and only if p is uniform.
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Property of H (cont.)

Since the function —tlogt is concave and the sum of concave functions is
a concave function, it follows that the entropy is a concave function of the
vector point (p1,...,pn)-

In particular if p and g are two probability functions for X then for every
A € [0,1] we have that:

H(p+ (1 -2)g) <AH(p) + (1 - M H(q)
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Properties of H (summary)

We summarize the properties we have just proved
e H(X) € [0,logn] with H(X) = 0 if and only if p peaks at
some z € X, and H(p) = logn if and only if p is the uniform

distribution.

e H(p) is a concave function of p.
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Interpretation

Interpretation 1: H(X) as a measure of the uncertainty of X —
the higher the randomness in X the higher the uncertainty of X
(or a measure of the information gained by measuring X).

Interpretation 2: H(X) as a lower bound on the minimum num-
ber of binary questions required to determine the value of X.

Example 1: Let X = {a,b,c,d} and p(a) = %, p(b) = %, p(c) = p(d) =
%. Then H(X) = }. An efficient algorithm to determine X is to ask the
following ordered binary questions: Q1 = “Is X = a?”, Q2 = “Is X = b7",
Q3 “Is X = ¢?”". In this case the expected number of questions asked is
1x24+2x1+3x2:=17I We will see that, in general, the minimum number

of such questions is always between H(X) and H(X) + 1.
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Link to data compression

Suppose we wish to represent the elements of X with variable
length codes (for example, binary strings) and let ¢(z) be the
length of the code assigned to x € X.

Later in the course we will see that the entropy plays a key role
in this problem. In particular we will show that for every binary
code,

L = E[{(x)] > H(X)

and any minimizing code for L, that is a code which provides the
best compression of X, is always within one bit of the entropy
of X,

L*=minL< H(X)+1
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Constrained minimization

We present a different proof that the maximum of H is achieved
by the uniform distribution.

Let g : D -+ IR be convex and g € cl. Suppose we wish to find
the minimum of g : R” — IR subject to the constraint that
h(z) =0, hecCl

Consider the Lagrangian function L(z,u) = g(x) + ph(xz), where
u € R is called the Lagrange multiplier

Then zg is @ minimum of g subject to h(xz) = 0 if and only if

OL(zo, po) _ OL(z0,p0) _

0
ox ou

for some pg € R.
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Maximum entropy problem

Let p be a probability distribution on X = {z1,...,zn}.
What is the probability distribution which maximizes the entropy?

This problem is equivalent to solve

n
min{—H(p) : > pr=1,p; >0}
k=1

The Langrangian is

L(p,p) = Y prlogpr + pu(( > pr) — 1)
k=1 k=1

19

Maximum entropy problem (cont.)

L(p,p) = X7_ 1 prlogdpr + u((CR_;pr) — 1). We have: (only in
this slides we change notation and measure the entropy in nats).
OL(p,
0L ) _ logpr + 1+ pu=10gep; + u
Opk,
thus if we set this equation equal to zero we get that p, = %
and using the constraint 3°%_, pr, = 1 we obtain
1
pp=—, k=1,...,n.
n

Since the entropy is strictly convex, this is the only solution.
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Relative Entropy

Let p,q be two probability distributions. The relative entropy of
p and q is defined by:

D(p |l q) =) pl=) Iog@

zEX q(z)

Note: D is also called the Kullback Leiber divergence or distance (but it is
not a distance since, in general, D(p || ¢) # D(q || p)). Note also that D may
be infinite, e.g. if X ={0,1}, D((p,1 —p) || (0,1)) = oo for every p € (0, 1].

Remember that we use the convection: plog 5= +oo for every p > 0, Olog % =
0, 0log0 = 0 (all these follow from the continuity of the log function).

21

Interpretation

D(p || @) is a measure of the inefficiency of assuming that the
distribution of X is ¢ when the true distribution is p.

Example 1 (cont.): Let g(a) = %, q(b) = %, q(c) = q(d) = Then
D(p |l q) =3

If we believe X is distributed according to q, in order to determine X we would
ask the binary questions: Q1 = “Is X =b7", Q2 = "Is X =a", Q3 = “Is
X = ¢?" (in this order). Since the true distribution of X is p, the expected
number of questions asked is 1xz+2x2+3xz=2=H(X)+D(p| q). We
will see that, in general, the minimum number of such questions is between

H(X)+D(pllq) and H(X) +D(p | ¢) + 1.

1
5
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Properties of D

We show that

1. D(p|| ¢) > 0 with equality if and only if p =q.

2. D(p || ¢g) is a convex function of (p,q), that is if p1,q1,p2,92
are probability distributions then for every A\ € [0, 1] we have

D(Ap1+(1-=X)p2 || Ag1+(1-X)g2) < AD(p1 || g1)+(1-X)D(p2 || g2)
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Proof of 1

Recall Jensen inequality: if f:IR —+ R is convex and X is a discrete r.v. then
E[f(X)] > f(E[X]). If f is strictly convex E[f(X)] = f(E[X]) if and only if X
is a constant.

Let D = {z : p(z) > 0}. Since log(-) is strictly concave, we have that

Dpllg) = -3 p)log pg §
rz€eX
= ) px) Iogﬁ < log (Z (z )q($)> (o)
z€D €D (:B)
= log (Z q(w)) < log (Z q(w)) =logl=0
z€D TEX

with equality if and only if p = q. (because of (¢))
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The log sum inequality

To proof 2 we use the following inequality: for every non-negative numbers
al,...,an, bl,...,bn,

Zaklog— > Zak og ZE=L% ()
> k=10
with equality if and only if a;/by = ¢ (where ¢ is a constant).

Proof: We set a; = b;/ Zj b; and t; = ax/bi. Since the function f(t) =tlogt
is strictly convex, by Jensen inequality we have

Z apf(tr) > f (Z aktk> = (%)
k=1 k=1

which equality if and only if t, = c.
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Proof of 2

Recall : Zaklog— > (Z ak> log %’“ 1%k with equality if and only if a;/by = c.
k=1 bi

We apply (*) to each term (inside the sum) in the relative entropy

D (Ap1(z) + (1 = Mp2(2) || Aq1(z) + (1 = X)qa(2)) =

Ap1(z) + (1 — A)p2(x)

Z(*pl(‘”)*aw @)+ I V)

b1 b,
( ) (1 — )\)pQ(fE)
< pr (z) Iog e + (1 — Mp2(z) log A= Np@)
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Alternative proof of 1

Inequality (*) can also be used to prove Property 1 above: D(p || q) > 0 with
equality in and only if p = q.

Recall : Zaklog% > (Z ar, | log %};:1 Zk with equality if and only if a;/by = c.
=1 k k=1 k=1"k

We have

D(p”q):;p(x)bgz&> (Z (z )) 09 =28 = 1l0g 1 =0

with equality if and only if pgmg = ¢, that is if and only if p(z) = q(z) for all

x € X (since, by normalization, ¢ =1).
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Two important consequences

If we choose g to be the uniform distribution on X, we have

0 < D)= Y p(@) logpg 3
reX
> p(z)log p(z) + p(z) logn = —H(X) 4 log(n)

reX

Thus, the two above properties of D provide an alternate proof
of the following facts

e H(X) < logn with equality if and only if p is the uniform
distribution.

e H(p) is a concave function of p.

28




Entropy of a pair of r.v.

If X and Y is a pair of discrete r.v. with distribution p(x,y), their
Jjoint entropy is defined by

H(Xa Y) = - Z Z p(xay) lOg p(:cay) — _E[IOg p(XaY)]
zeX yey

The conditional entropy of Y given X is defined by

HY|X):=- Y > plz,y)logp(ylz) = —E[log p(Y|X)]
zeX yc)y

Note: Using the decomposition p(z,y) = p(x)p(y|z) we derive that
HYI|X) =3 ,cxp(z)H(Y|X = z) where H(Y|X =z) := H(p(Y|X = z)).

29

Chain Rule

H(X7 Y) = - Z Z p(m7y) |ng($,y)

rzEX ycy
The joint and conditional entropy are related by the formula

H(X,Y) = H(Y|X) + H(X)

This result follows by using log p(x,y) = log p(y|x) + log p(x) and
taking the expectation.

Likewise we have: H(X,Y) = H(X|Y)+ H(Y)
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Mutual Information

Let X and Y be two r.v. with probability distribution p(z,y) and
marginal distributions p(z) and p(y). The mutual information of
X and Y is defined by

p(z,y)
1GY) 2= DGolay) | pp)) = T 3 plea)los B

31

Properties of |

1. Symmetric: I(X;Y) =I(Y; X). (trivial)

2. Nonnegative: I(X;Y) >0 and I(X;Y) = 0 if and only if X
and Y are independent. (it follows from the property of D)

3. I(X;Y)=H(X) - H(X|Y) =H(Y) - HY|X)
4. I(X;Y) = H(X)+ H(Y) - H(X,Y)

5. I(X; X) = H(X) (it follows from 4: I(X;X) =2H(X) - H(X,X) =
H(X))
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Proof of property 3

I(X;Y)=H(X) - H(X|Y)
We use the decomposition p(z,y) = p(z|y)p(y) :

I(X;Y) = > ) plwy)log = Pz, y)

55 p(x)p(y)
_ Zzp(z )lng( |y)
TEX yeY ( )
= — Z Zp(a;, y) logp(x) — (— Z Zp(w, y) log p(z|y))
z€D ye)y z€D ye)y

= - p(@)logp(z) — H(X|Y) = H(X) — H(X|Y)

€D
I(X;Y)=H(Y)— H(Y|X) is proved as above by interchanging X with Y.
33

Interpretation of /|

I(X;Y) >0

I(X:;Y)=H(X) - HX|Y) = HY) - HY|X)

Properties 2 and 3 imply that H(X) > H(X|Y) with equality if
and only if X and Y are independent. This means that measuring
Y reduces (on the average!) the entropy of X.

Example: Let X =Y = {0,1}, p(0,0) =0, p(0,1) =3, p(1,0) =p(1,1) =}
Verify that H(X) = 0.544, H(X|Y) =1, H(X|Y =0) =0, H(X|Y =1) = 1.
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Proof of property 4

I(X)Y)=H(X)+ H(Y)-H(X,Y)

This follows by combining property 3, I(X;Y) = H(X)—-H(X|Y)
with the decomposition for the joint entropy, H(X,Y) = H(Y) +
H(X|Y).

35

One more property of |

If we look at the mutual information as a function of p(z) and

p(y|x) (the remaining probabilities can be derived from those)
we have the following result.

Lemma: I(X,Y) is a concave function of p(x) for fixed p(y|z)
and a convex function of p(y|z) for fixed p(z).
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Concavity of I in p(x)

We have

I(X;Y) = H(Y) - H(Y|X) = H(Y) = 3 p(z)H(Y|X = 2)
reX

where H(Y|X = z) = ¥,y p(y|z) log p(y|z).

We know H(Y') is concave in p(y). If we keep p(y|z) fixed then
p(y) is linear in p(x) and, so, H(Y) is also concave in p(z).

The second term, — Y . cx p(x)H(Y|X = ) is linear in p(z) so it
is concave in p(x).
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Convexity of I in p(y|z)

Let pi(y|z) and p2(y|z) be two conditional distributions and consider their
convex combination

pa(ylz) = Ap1(ylz) + (1 — Np2(ylz), A €[0,1]
Since p(z) is fixed we have p)(z,y) = p(z)pr(y|z) and
pa(y) = Ap1(y) + (1 = A)p2(y)

where p;(y) = > crp(@)pi(ylz), i = 1,2. Now let gx(z,y) = p(z)pr(y) and
notice that

I(X;Y) = D(px |l a0)-
Since D(- || -) is a convex function then I is a convex function of the conditional

distribution.
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Link to channel coding

Suppose we wish to send the symbol x, generated with p(z),
through a noisy channel with transition probability p(y|z). Unless
p(x|y) peaks at some z*, we won't be able to recover z from y.

However, if we represent z with some "redundant code” it is
possibleto recover x from y. The goal is to find an efficient
coding strategy which guarantees that this error is small (zero
in a limit process).

We will see that the “maximum rate” C at which we can transmit
the the coded data z through the channel with arbitrary small
probability of error is given by

C = max

p(a)[(X3Y)

39

Noisy typewriter channel

Let X =Y ={1,...,,26} and p(y|z) = % ify=xory=xz+1 mod 26, and zero
otherwise.

We have C = log 13. In fact
HY|X)=) p@HY|[X=2)=> px)l=1

rzeX zeX
and, thus,

C = m(a)xI(X; Y)= m(a)x{H(Y) — 1} =10926 — 1 =1log 13 bits.
(T p(x

The maximum is achieved when p(x) is the uniform distribution.
Which code achieves the channel capacity?

Consider a code of unit length: z(1) =1, z(2) = 3, z(3) = 5, etc. This
code has zero probability of error because each codeword is either transmitted
as such or as the next symbol in X. This code achieves capacity since its
transmission rate is log 13 bits
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Entropy of more than two r.v.

It is straightforward to extend these concepts to an n—tuple of
r.v. Xi,...,Xn-. In particular we have the following chain rule:

H(Xq,...,Xn) = H(X1) + H(X2|X1) + Z H(X;|X;-1,...,X1)

1=3
which follows by using the chain rule for probability:

n
p(z1,...,zn) = [ p(zilziz1,...,21)

1=1
or, equivalently, logp(z1,...,2,) = > -, logp(zi|zi-1,..., 1)
Note: Above, p(zi|zi-1,...,z1) is meant to be p(z1) when i =1 and p(z2|z1)

when 7 = 2.
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Conditional entropy of two joint r.v.

We have
HX,Y|Z) = > > Y p(z,y,z)logp(z,ylz)

reEX yeyY zeZ

= > p(2) > p(z,y|z) log p(z,y|z)
z T,y

= Y. p(x)H(X,Y|Z = 2)
z
A direct computation (as in the above case of two joint r.v.)
gives
H(X,Y|Z) = H(X|Z)+ H(Y|X, Z)

compare to H(X,Y) = H(X) + H(Y|X)
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Conditional mutual information

If X,Y,Z are r.v., the conditional mutual information of X and
Y given Z is defined by

p(X,Y, 2)
p(X|Z2)p(Y|Z)

I(X:Y|2) = H(X|Z) — H(X|Y, Z) = E |log

Using the chain rule for the entropy we see that the mutual
information satisfies the chain rule:

n
I(Xy,..., X0 V)= > I(X;Y[Xi—1,...,X1)
i=1
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Conditional relative entropy

It is defined by the formula

D(pyix llay|x) = Y p(@)D(p(|z) || q¢(-|x))
reX
_ N ) log P12
3 @) X sl iog T

Note We also denote (abusing notation) D(pyx || gv|x) by D(p(ylz) || ¢(y|z)).

Chain rule for relative entropy

D(p(z,y) || q(z,y)) = D(p(z) || ¢(z)) + D(p(ylz) || ¢(y|z)).
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Ordered Markov chain

We say that the r.v. X,Y, Z for a Markov chain in that order (we
write X — Y — Z) if p(z|ly,z) = p(z|y), that is, Z is conditionally
independent of X given Y. Thus, we have

p(z,y,2) = p(zly, z)p(ylz)p(z) = p(z)p(ylz)p(2|y)
This condition is equivalent to ask that X and Z are conditionally independent
give Y. In fact
p(z,y,2) _ p(zlz,9)p(z,y) _ p(z,y)p(zly)
p(y) p(y) p(y)
In addition, we have that X - Y — Z implies Z - Y — X (check!).

p(x, zly) = = p(z|y)p(z|y)

e Particular case: if Z = f(Y) then X - Y — Z.
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Data processing inequality

If X,Y,Z form a Markov chain, no preprocessing of Y (determin-
istic or random) can increase the information that Y contains
about X Thatis, if X - Y — Z, then

I(X:Y) > I(X; 2).

Proof: Using the chaining rule, we have
I(Z,Y;X)=1(Z; X))+ I(Y; X|2)
and, also,
12y, X)=I,Z; X)=1(V; X))+ I(Z; X|Y) = I(Y; X)

where I(Z; X|Y) = 0 because from hypothesis Z and X are conditionally
independent given Y. Thus I(Z; X)+I(Y; X|Z) = 1(Y; X) and since I(X;Y|Z)
is nonnegative we conclude that I(Y; X) > I(Z; X), or, equivalently I(X;Y) >
I(X,2).

Note: Similarly, we have that I(Y;Z) > I(X; Z).

46




See Chapter 2 of
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