GI12/4C59: Information Theory

Lectures 1-3

Massimiliano Pontil

About these lectures

Theme of Lectures 1—-3: We provide a quick tour on basic
probability which constitutes the main mathematical ingredient
of Information Theory.

Other mathematical tools will be reviewed during the course
when needed.

Prerequisites: familiarity with calculus (real-valued functions,
limits, derivatives, Taylor series, etc..)

Lecture notes are available at
http://www.cs.ac.uk/staff/M.Pontil/courses/
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4. Continuous random variables
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Random experiment

Consider a random experiment consisting of a finite number N
of mutually exclusive outcomes or elementary events wq,...,wxn-
We assume for the time being that the outcomes are equiprob-
able, that is, they all have a probability of 1/N.

Example 1: Tossing an unbiased (i.e. fair) coin. There are two outcomes,
“head” and “tail’. Both outcomes have probability 1/2.

Example 2: Throwing an unbiased die. Outcomes are the six possible faces
of an unbiased die. Each face has probability 1/6.

The set Q = {w1,...,wn} is called the sample space and the
elementary events the sample points.




Probability of an event

An event A is associated with the elementary events in 2 if for
every w € 2 we can always decide whether or not w leads to the
occurrence of A.

The probability P(A) of the event A is defined by the formula

N(A)
N
where N(A) is the number of elementary events leading to A.

P(A) .=

Example 2 (cont.) Let A = {getting an even number of spots}. Then,
P(A)=3/6 =1/2.

More examples

Example 3: Tossing a coin twice. Q = {(H,H),(Hd,T),(T,H),(T,T)}. If
A ="getting at least one head” then the elementary events leading to A are
(H,H),(H,T),(T,H) and, so, P(A) = 3/4.

Example 4: Throwing a pair of dice. The sample space consists of 36
elements. Let A = “getting two sixes” and B = "“both dice show the same

number of spots”. We have P(A) = 5= and P(B) = = = t.

Note: Apparently different events may coincide. For example, the event “the
total number of spots is even” is the same as the event “both dice show an
even or odd number of spots”




Combinatorial formulae

The computation of N(A) requires combinatorial analysis.

Let eq,ep,...,en De n ordered elements of a set. Two useful
formulae are

e The number of possible reordering of these elements is

nl''=n-(n—-1)---2-1

e The number of different unordered subgroups of size k is
nl

Cp i =——+—
E7 (n—k)1k!

Events as subsets of the sample space

Abusing notation we also let A be the set of elementary events
leading to the occurrence of A.

This way, an event A is simply a subset of €2, that is, A C 2.

In particular, the sure event is the set 2 and the impossible event
is the empty set 0.




Set operations

We define the following operations on A, B C 2:

e Union: AUB={weQ :we Aorwe B}
(occurrence of at least A or B).

e Intersection: ANB = AB '={w € Q2 :w € A and w € B}

(occurrence of both A and B).
We say that A and B are mutually exclusive if AN B = 0.

e Difference: A— B :={weQ:weAandw¢ B}
(occurrence of A but not of B). Note that A — B = AB.

Remark: The complementary of A is defined by A :=Q — A.
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Set properties

For every A, B C €2 we have that
)ifC=AuUBthenC=ANB
i)ifC=ANBthenC=AUB

iii) if A C B then B C A (follows from (i))

Note: Properties (i) and (ii) are known as the De Morgan laws. More
generally, for every sequence of events {A, : A, C 2 :n € N} we have that

-0+ [@9-ys

neN neN neN neN
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AXxioms of probability

If Q is a (finite, countably infinite or uncountable) set, a function
P defined on the “measurable” subsets of 2 is called a probability
function if

1. For every A C Q, P(A) € [0,1].

2. P(Q) = 1.

3. For every sequence of mutually exclusive events A1, Aop,...,
P (Ugen Ak) = Zren P(Ag).

Note: The above case where Q = {wi,...,wy} and P(w,) = 1/N satisfies
these axioms.
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Properties of P

For every A, B C 2 we have that
(a) P(A— B) = P(A) — P(AN B)
(b) P(AU B) = P(A) + P(B) — P(AN B)
(c) P(B) < P(A) if B C A.

Proof: (a): note that A is the union of the mutually exclusive events (A — B)
and (AN B) and apply axiom 3.

(b): note that AUB is the union of the mutually exclusive events A— B, B— A
and AN B. Then apply twice (a) and axiom 3 to get the result.

(c): We have that AN B = B and, so, by (a) the result follows.

Note: A particular case of (a) is A = Q in which case A — B = B and, so,
(a) says that P(B) =1 — P(B).
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Dependent events and conditional probability

If A,B C Q2 and P(B) > 0 we define the conditional probability
of A given B by

P(AB)

P(B)

which implies that P(AB) = P(B)P(A|B).

P(A|B) =

It can be shown that, for every B C 2, P(:|B) verifies the axioms
of probability.

In general we have the multiplication rule

P(A1---A,) = P(A1)P(A2|A1)P(A3|A2A1) - - P(Ap|A1 -+ Ap—1)
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Dependent events and conditional probability

Example 4 (cont.) Throwing a pair of dice. Let A = ‘getting two sixes"
and B = “both dice show the same number of spots”. Then P(A) = %,

P(B) =1 and since A C B we have that AB = B. So, we conclude that
P(AB) == 1

P(A|B) =

P(B) L 6
and

P(AB) _ |
P(4)

P(B|A) =
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An important decomposition

Note that for every A, B C Q, A= ABUAB and ABNAB =0
(AB and AB are mutually exclusive). Thus, by axiom (3) we
have the useful formula

P(A) = P(AB) + P(AB) (1)
— P(A|B)P(B) + P(A|B)P(B)

= P(A|B)P(B) + P(A|B)(1 - P(B))
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Bayes formula

If By, k=1,...,n are mutually exclusive and U’,;‘Zl B;, = Q2 then,

for every A C 2 we have that
P(A|By)P(By)

>n_y P(A[B))P(B;)’

P(BilA) =

=1,...,n

Proof: Note that A = U;_, ABj, and the sets ABj, are mutually
exclusive. Consequently, by axiom (3)

P(A) = > P(ABy) = > P(A|By)P(By)
k=1 k=1

from which the result follows.

n
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A simple example

We have two coins. The first coin is fair while the second one is biased
towards tail with P(T) = %. Consider the experiment where we randomly
choose one of the two coins and flip it twice. What is the probability that
the biased coin was flipped if we obtain two heads?

Solution: Let A = “getting two heads” and B = "the biased coin was
flipped”. We have P(B) = P(B) = 3, P(A|B) = ;= and P(A|B) = ;. Conse-
quently

— _ 1 1 1 1 5
P(A) = P(AIB)P(B) + P(AIB)P(B) = [ o x >+ 3 X 5 =
and we conclude that
P(A|B)P(B) 35 1
(BlA) P(A) s
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Independent events

In general P(A|B) # P(A). If the equality holds we say that A is
independent of B. This implies that P(AB) = P(A)P(B), and,
so, that B is independent of A. Thus we say that A and B are
independent if P(AB) = P(A)P(B).

Note that if A and B are independent so are A and B. In fact,
we saw before that A= ABU AB and ABN AB = () and, so,...

Example 4 (cont.) Let A =“the sum of the dice is 7", B="the first die is
4", and C ="the second die is 3”. Note that each pair consists of independent
events. However, for example, A and BC are not independent!
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Independent events (cont.)
The events A, B,C are said independent if every pair of them is
independent and P(ABC) = P(A)P(B)P(C).
Likewise, we say that the the eventsintheset {A;:5=1,...,n},n>

2 are independent if, forevery r<m and 1 < j;i < jo < --- < jr <
n, we have that

P(Aj - Ay) = k:lill P(Aj )
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Random variables

A random variable (r.v.) is a function X : Q2 — X, where X C R.

A is called a discrete r.v. if its range is either finite or countably
infinite. The Probability mass function p : X — [0, 1] of a discrete
r.v. X is defined by

p(z) =PU{X =2}) =P{weQ: X(w)=2}), z€X
Example 4: Let X be the r.v. “number of heads appearing after tossing one
coin three times”. In this case X = {0,1,2,3} and P(X =0) = P(X =3) = é,
PX=1)=P(X=2)=3.

Note: when it is clear in the text we write P({X € B}) as P(X € B), BCR.
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Some important quantities

e The Expectation of X is defined by E[X] := Y, cx zp(z)
e The Variance of X is defined by Var(X) := E[(X — E[X])?]

The variance can be written as Var(X) = E[X?] — (E[X])2.

The expectation of X" is called the n—order momentum of X.

21

Binomial random variable

Let X = {0,1,...,n}. A binomial random variable has probability
mass function:

p(k) = CPp*(1 —p)" %, pe(0,1)

X can be interpreted as the number of successes occurring over
n independent trials, each having probability p of success.

We have E[X] = np, Var(X) = np(1 — p).
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Cumulative distribution function

The function F(z) := P({X < z}) is called the cumulative dis-
tribution function (cdf) of X.

If X is discrete then F(z) = i<, p(t)

Example 5 (cont.): Let X = “number of heads appearing after tossing one
coin three times”. In this case X = {0,1,2,3} and P(X =0) = P(X =3) = é,

P(X =2) = P(X =4) = 2. Compute the cdf of X.
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Cumulative distribution function

The following properties follows from the axioms of probability.

e I is a nondecreasing function: if x < t, then F(x) < F(t).

F is right continuous: for every non decreasing sequence
{zn,z > 1} converging to z, limg—zy = F(xq)

e P(s< X <t)=F()— F(s) for every s < t.

24




Continuous random variables

X is called a continuous r.v. if there is a probability density
function f : R — [0,00) such that for every “measurable” set
B C R,

P(X € B) = /B F(z)dz

Examples: X represents the time a train arrives at a specified station.

Note: Measurable sets include all sets of “practical interests”, e.g. (a,b),a,b €
RU{—o0,00}. A rigorous treatment or continuous r.v. requires Measure The-
ory.
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Continuous random variables (cont.)

The probability density f satisfies the following properties:

(i) /2% flz) =1
(i) P(a < X <b) = [? f(z)da
(iii) P(X = a) = 0.

(iv) f(z) =4

(v) P(a < X <b) = F(b) — F(a)
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Continuous random variables (cont.)

The expectation of a continuous r.v X is given by

E[X] = /_O:Oacf(ac)dac

If X is a nonnegative r.v. it can be shown that

E[X] = /O°° P(X > z)d
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The Gaussian distribution

The most important continuous r.v. is a the Gaussian (or nor-
mal) r.v. whose distribution is defined, for o € R and o > O,
by

T — 2
f(2) = N(u,0)(@) = Zo—exp {_%}

We have that E[X] =y and Var(X) = o2

It can be shows that for n large the binomial distribution is ap-
proximated by N(np,np(1l —p)).
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Jointly random variable

The above ideas can be extended to a set of r.v. (vector-valued
r.v.). In particular, if X and Y are two discrete r.v. with set
values X and Y, we define their jointly mass function by

p(z,y) =P{X =z,Y=y)}, z€X,yec)

The (marginal) mass function of X is obtained by the formula

px(z) := P{X =z}) = ) p(z,vy).
yey
The conditional mass function of X given that Y = y is defined

by.

Py y(z,y) = P{X =a}|{Y =y}) = p(z,y)
py(y)
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Jointly random variable (cont.)

X and Y are said to be jointly continuous r.v. if there exists a
probability density function f :IR? — [0,00) such that, for every
“measurable” set D € IR?

P({X € A,Y € B}) = /A /B £z, y)dzdy

If X and Y are jointly continuous then they are also individually
continuous and their (marginal) density functions are given by

Ix@= [ j@wdy @)= [ f@y)de

The conditional density function of X given that Y = y is given
by

f(z,y)

fy(y)

Ixy(zly) ==
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Jointly independent r.v.

X and Y are said independent if, for every set A, BCIR

P(X € A,Y € B)=P(X € A)P(Y € B)

Two discrete r.v. X and Y are independent if and only if their
probability mass function is given by p(z,y) = px(z)py (v).

Tow continuous r.v. X and Y are independent if and only if their
probability density function is given by f(z,y) = fx(z)fy (y).
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Jointly cumulative distribution functions

The jointly cumulative distribution function of X and Y is define
by

F(z,y) =P(X <z,Y<y), zyeR

The individual cdf are obtained as

Fx(2) = Jim F(z,p), Fy(y) = Jim F(z,).
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Expectation

If g: X x)Y — IR, we have that

Yrex Lyey 9(x,y)p(z,y) if XY, are discrete
Elg(X,Y)] =
JeeR Jyer 9(z,9) f(z,y)  if X,Y, are continuous

In particular, this implies that

E[X +Y] = E[X] + E[Y]
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Conditional Expectation

The conditional expectation of X given that Y = y is defined by
erxa:pX|Y(a:|y) if X,Y, are discrete
E[X|Y =y] =
f:z:E]Rme|Y(x|y) if X,Y, are continuous

It can be shown that if E[X]|Y] : 2 — R is defined by the formula
E[X|Y](y) = E[X|Y =y], y €Y then we have that

Yyey EIX|Y =ylpy(y) if X,Y, are discrete
E[X] = E[E[X|Y]] =
Jyer EIX|Y =ylfy(y) if X,Y, are continuous
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Convergence in probability

We say that the sequence of r.v. {X, : n € N} converges in
probability to X if, for every t > 0, we have that

JSim P({Xn = X| 2 1)) =0
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Convergence with probability 1

We say that the sequence of r.v. {X, : n € N} converges with
probability 1 to X if the following holds

P ({w €Q: lim Xn(w) = X(w)}) =1

Remark: Convergence with probability 1 is also called almost sure con-
vergence. When the above equation holds true we say that the sequence

{Xn :n € N} converges to X almost surely.

If can be shown that if X,, -+ X almost surely then X,, — X in
probability. The converse, however, is not true.
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Some useful inequalities

Markov'’s inequality: If X is nonnegative r.v. then we have, for
every a > 0, that
EIX
P((X > ap) = 2]
a

Proof: For a > 0 we define the binary r.v. ZasZ=1if X >a
and zero otherwise. Then, Z < = and, so, E[Z] < E[f]. The
result follows by observing that P({X > a}) = E[Z].
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Some useful inequalities (cont.)

Chebyshev’s inequality: If X has mean p and variance o then
we have, for every t > 0O, that

P{IX — pl > t0}) < 5

Proof: Apply Markov's inequality to the r.v. Y := (X — p)2.
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Some topics we have not covered

Moment generating functions

e Law of large numbers

Central limit theorem

Markov chains
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