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Abstract

The next release problem is a significant task in the iterative and incremental
software development model, involving the selection of a set of requirements
to be included in the next software release. Given the dynamic environment
in which modern software development occurs, the uncertainties related to
the input variables of this problem should be taken into account. In this
context, this paper presents a formulation to the next release problem con-
sidering the robust optimization framework, which enables the production
of robust solutions. In order to measure the “price of robustness”, which is
the loss in solution quality due to robustness, a large empirical evaluation
was executed over synthetical and real-world instances. Several next release
planning situations were considered, including different number of require-
ments, estimating skills and interdependencies between requirements. All
empirical results are consistent to show that the penalization with regard to
solution quality is relatively small. In addition, the proposed model’s behav-
ior is statistically the same for all considered instances, which qualifies it to
be applied even in large-scale real-world software projects.

Keywords: Next Release Problem, Robust Optimization, Search Based
Software Engineering

1. Introduction

In an iterative and incremental software development process, a stable
and executable version of the product delivered to the clients is called re-
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lease. Despite bringing many benefits, this development model embodies
more complexity to the project management. The choice of which require-
ments will be added to the next release has to be made in a way to keep the
clients interested and involved in the project. The effort cost to develop the
requirements selected to the next release must respect a predefined budget.
In addition, the requirements usually present interdependencies between each
other. Such constraints must also be respected. In the Search Based Soft-
ware Engineering field, this problem has become known as the Next Release
Problem (NRP).

The NRP was first modeled as an optimization problem by Bagnall et al.
(2001). In this model, each client has an importance to the organization and
requests a subset of requirements to be implemented in the next release. The
goal is to select a subset of clients to be satisfied so that the sum of their
importance is maximized. A client is considered satisfied when all require-
ments that he/she has requested are included in the release. A variation of
this model was proposed by Van den Akker et al. (2005). In this model, in-
stead of the client, the requirements have importance values, which estimates
their revenue for the company. The objective here is to select a subset of
requirements such that the total revenue is maximal.

In order to employ an optimization technique to solve the Next Release
Problem, it is necessary to obtain the values of importance and cost for
each requirement. As reported in the empirical study by Cao and Ramesh
(2008), companies using an iterative and incremental software development
model usually employ an iterative Requirements Engineering process, rather
than a formal one. Among most of the seven different iterative RE tech-
niques reported, the clients indication of the requirements’ business values
is a commonplace. These iterative RE practices also usually use some kind
of expertise-based technique for requirements effort cost estimation. The ex-
perts, usually the development team, provide estimates based on personal
experiences along with knowledge obtained in past projects (Boehm et al.,
2000).

Both requirements’ importance and cost estimates can be significantly
hard to make due to the dynamic environment in which software development
occurs. Harker et al. (1993) classifies software requirements in six types.
Among those types, five are considered as changing requirements and only
one as stable requirements, which stresses the evolving nature of software
requirements. In this context, requirements’ importance and cost are among
those features that can change during the release development. Indeed, the
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high level of uncertainty related to the variables of the NRP generates a fairly
complicated context, as pointed out by Zhang et al. (2008):

“Software engineering problems are typically ‘messy’ problems in
which the available information is often incomplete, sometimes
vague and almost always subject to a high degree of change (in-
cluding unforeseen change). Requirements change frequently, and
small changes in the initial stages often lead to large changes to
the solutions, affecting the solution complexity and making the
results of these initial stages potentially fragile.”

Regarding the requirements’ cost estimates, the sensitivity analysis per-
formed by Harman et al. (2009) shows the impact that an inaccurate cost
estimation can have in the final NRP solution. It is stated that in most of
the cases, the more expensive the requirement is, the greater impact it will
have on the result when wrongly estimated. Also, similarly, the higher the
level of error, the bigger is the impact.

As can be seen, some of the approaches used to estimate the require-
ments’ importance and cost in incremental software development can intro-
duce some degree of uncertainty to the Next Release Problem variables. Such
uncertainties, if not treated carefully, can have a big impact in the subset
of requirements selected to the next release. Therefore, it seems reasonable
that the uncertainties related to requirements’ importance and cost should
be considered when solving the NRP through an optimization technique.

Admitting that some problem aspects are uncertain, the robust optimiza-
tion is an operational research framework that identifies and quantifies un-
certainties in optimization problems (Beyer and Sendhoff, 2007). Taking the
requirements’ cost uncertainty as an example, both the robustness level and
the respective uncertainty variation have to be defined. Among the set of
requirements’ cost estimates, the robustness level is related to how many cost
estimates will be considered as wrong estimates. The cost uncertainty varia-
tion represents how much each requirement cost could vary from the original
estimate. Based on these assumptions, the robust optimization framework
builds up models which seek robust solutions, i.e., even with noisy input
data, it produces good quality solutions while still fulfilling all constraints.
More details about the robust optimization framework are given in Section
3.

Accordingly, the robust optimization framework can be used to model
the NRP considering the uncertainties present in this problem. This robust
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model could handle the requirements’ importance and effort cost uncertain-
ties, allowing for the production of robust NRP solutions.

In order to ensure robustness to a certain optimization problem, some
loss in solution quality is inevitable, which is highly connected to both the
robustness level and uncertainty variation, and needs to be contemplated.
This measure of quality loss of the robust solution when compared to the
non-robust solution has been called in the robust optimization literature as
the “price of robustness” (Bertsimas and Sim, 2004).

Actually, the robust NRP model presented in this paper has already been
proposed by the authors of this paper in another work (Paixao and Souza,
2013). This paper is intended to be an extension of the previous one, improv-
ing both the robust model explanation and evaluation. Therefore, motivated
by this context, this paper aims at answering the following research questions:

• RQ1: How the Next Release Problem can be modeled as an optimiza-
tion problem considering the uncertainties related to its input variables
in order to allow for the production of robust solutions?

• RQ2: What is the “price of robustness” for the presented Next Release
Problem model? In other words, how much would be lost with regard
to solution quality in order to gain robustness?

The RQ2 was broken in the following sub-questions in order to facilitate
the “price of robustness” analysis:

• RQ2.1: What is the “price of robustness” for the presented NRP model
when using different robustness levels?

• RQ2.2: What is the “price of robustness” for the presented NRP model
when using different variations in the requirements’ costs?

• RQ2.3: What is the “price of robustness” for the presented NRP model
when there are interdependencies between requirements?

• RQ2.4: What is the “price of robustness” for the presented NRP model
when it is applied to real-world NRP instances?

The remaining of this paper is organized as follows: Section 2 presents
some related work to this paper and Section 3 gives more details about the
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robust optimization framework. Section 4 presents the robust NRP formu-
lation. Section 5 exhibits and examines the empirical study designed to
evaluate the presented formulation. Finally, Section 6 concludes the paper
and points out some future research directions.

2. Related Work

As stated earlier, the NRP was first modeled as a search problem by
Bagnall et al. (2001) and a variation of this first model was proposed by
Van den Akker et al. (2005). After that, many works have addressed this
problem with different focuses, like proposals to apply the model to real-
world instances (Baker et al., 2006), to solve large NRP instances (Jiang et al.,
2010)(Xuan et al., 2012), to consider interdependencies between requirements
(Del Sagrado et al., 2011) and to apply different metaheuristic approaches
like Ant Colony Optimization (Del Sagrado et al., 2010). All approaches
mentioned above use a single objective formulation and can be thought as a
decision making tool. The software engineer would insert the requirements
data and the tool would return a set of requirements to be implemented in
the next release. Search based algorithms usually perform at the edge of
the constraints, aiming to find the best solutions. A wrong estimation of
the requirements’ costs can make the final solution infeasible due to budget
constraints.

In order to provide a decision support tool, allowing the software engineer
to make decisions based in different preferences and priorities, a multiobjec-
tive version of the NRP was proposed by Zhang et al. (2007). Here, the
release total cost is treated as an objective instead of a constraint like in the
single objective version. A multiobjective evolutionary algorithm can be em-
ployed to generate a pareto front of solutions, i.e., releases that are equally
good between themselves. The software engineer can choose a solution from
this set of solutions and can also make some kind of ‘what if analysis’ like:
“how much would be lost in total importance if the release total cost was 20%
higher than estimated”?. However, this approach does not consider any im-
portance uncertainty and these cost uncertainties analysis can only be done
based on the total release cost.

The changing nature of the requirements’ importance values during the
software lifecycle has been addressed by Zhang et al. (2010). In this work,
each requirement receives an importance value called “today value”, which
represents the company needs at the release planning phase. It is assumed
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that this value, in some moment after the release development, would change
to a certain “future value”, representing a possible future importance value
for the requirement. The approach, therefore, seeks to balance the company’s
today and future needs by considering these two requirement importance
values, along with the release total cost, via a multiobjective formulation.
Considering a long time usage of a software system, it is unlikely that the
requirements would have just one possible future importance value, tough.
These values can change constantly during the software life and consider all
these values via a multiobjective approach is not scalable.

In regard to another requirements related problems modeled as optimiza-
tion problems and tainted with uncertainties, the optimal release time can
be mentioned. The NRP and the aforementioned problem have different
meanings for the ‘release’ term. The first one considers release as the next
version of the software to be delivered to the client and tries to select the
requirements to be implemented in this next version. The last one considers
‘release time’ as the time the software system, after developed, spends being
tested before being delivered to the client, in order to guarantee a certain
degree of reliability. Some papers have tackled this problem using Software
Reliability Models (SRM) to predict the system’s reliability and minimize
the time and cost spended in testing (Okumoto and Goel, 1980)(Yamada
et al., 1984)(Huang and Lyu, 2005). Such SRMs are based on some testing
estimates, which can contain uncertainties. Therefore, there exists a risk
that the reliability requirement cannot be guaranteed due to the parameter
uncertainties in the SRM. The paper by Peng et al. (2013) proposes a treat-
ment of the SRMs input parameters in order to generate a release time that
still guarantees reliability even when such parameters are uncertain.

Regarding uncertainty handling in another software engineering problems,
the work by Antoniol et al. (2004) proposes a search based approach to
project management in the presence of uncertainties. The proposal consists
in a tandem genetic algorithm used to find both the best sequence for work
packages and the best allocation of staff to project teams. The uncertainties
treatment is actually a sensitivity analysis of what would happen if some
problem aspects were wrong estimated, for example. It does not propose any
approach to deal with these situations, though.

Dynamic Adaptive Systems (DAS) are highly subject to environmental
uncertainties and changing conditions. Such systems must be able to adapt
their behavior in face of a series of possible unexpected situations. The paper
by Ramirez et al. (2012) proposes a search based approach to automatically
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define the RELAXation of the adaptation rules of a DAS. Adaptation rules
RELAXing consists in defining fuzzy rules that specify the extent to which a
goal can become temporarily unsatisfied and yet deliver acceptable behavior.
The approach has generated rules that are able to reduce the number of
adaptations and goal models of equal or greater quality than those manually
created by a requirements engineer.

It is noteworthy that, from the authors knowledge and from a literature
review, none of the previous related work have handled the Next Release
Problem uncertainties through the robust optimization framework. Such
framework is presented with more details in the following section.

3. The Robust Optimization Framework

The robust optimization is an operational research framework that han-
dles uncertainties in generic optimization problems and generates robust solu-
tions for these problems (Beyer and Sendhoff, 2007). A solution is considered
robust if, even with noisy input data, it still fulfills all problem’s constraints.

Despite previous works dating from the 80s (Taguchi, 1986), robust opti-
mization has gained more visibility after the works by Mulvey et al. (1995)
and Bai et al. (1997). It has been successfully applied to several engineering
disciplines including, but not limited to, production (Leung et al., 2007),
aeronautical (Du et al., 2000), electronic (Malcolm and Zenios, 1994), me-
chanical (Li and Azarm, 2008), chemical (Wang and Rong, 2009) and met-
allurgical engineering (Dulikravich and Egorov-Yegorov, 2005).

It basically consists in three steps: i) identify and quantify the problem’s
uncertainties; ii) build up a robust model which generates robust solutions;
iii) solve the robust model using some optimization technique;.

Regarding the first step, uncertainties in a generic optimization problem
fit into one of the following types (Beyer and Sendhoff, 2007):

(A) Changing environmental and operating conditions: the prob-
lem’s model is usually developed from a pre-determined operating en-
vironment configuration. However, a real environment changes its fea-
tures constantly.

(B) Decision variables imprecision: when the decision variables are
subject to some kind of perturbation during the optimization process.
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(C) Results uncertainties: related to the use of simulations. When em-
ploying the solution computed by the optimization algorithm in a real
operating environment, the real results may be different from the sim-
ulated ones.

(D) Constraints feasibility uncertainties: constraints defined from es-
timates and simulations can be uncertain. Moreover, when considering
the uncertainties (A) and/or (B), the solution must continue to fulfill
all problem’s constraints.

The uncertainties types above can also be called fralty points (Roy, 2010),
which represent the source of the uncertainty. After identifying the uncer-
tainties from each fralty point, one must quantify them. The uncertainties
types presented above (A-D), can be quantified in a discrete or continuous
way (Aissi et al., 2009), following at least one of the strategies next (Beyer
and Sendhoff, 2007):

(1) Deterministic: defines especific domains in which the uncertainties
can vary. Usually represented as a finite set.

(2) Probabilistic: defines probability measures by which a certain event
may occur.

(3) Possibilistic: uses fuzzy logic to deal with subjective uncertainties,
indicating the occurrence possibility of certain event.

As one can see, an uncertainty can be quantified using different strategies.
The selection of a specific set of strategies to quantify each of the problem’s
uncertainties characterizes what is called in the literature as a version of the
robust model (Roy, 2008).

A robust optimization model is similar to a regular optimization model,
being composed by a set of objective functions and a set of constraints.
Differently, a robust model has to be designed considering the problem’s
uncertainties, in such a way that it became able to generate robust solutions.
From that point, any optimization algorithm can be used to solve the robust
model, from mathematical programming to metaheuristics and evolutionary
algorithms.

The Robust Next Release Problem model used in this paper is presented
in the next section.
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4. A Robust Next Release Problem Formulation

The following robust NRP model was first proposed by Paixao and Souza
(2013). This section explains this model with more details and gives a prac-
tical example of its usage.

Consider N the number of requirements. Given a set of requirements
R = {r1, r2, . . . , rN}, the requirement ri importance value and effort cost
are represented by vi and ci, respectively. A basic Next Release Problem
formulation is presented next:

maximize
N∑
i=1

vixi (1)

subject to
N∑
i=1

cixi ≤ b (2)

where b is the release budget. It maximizes the release overall importance
while respects the budget constraint. The decision variable is represented as
a vector X = {x1, x2, . . . , xN}, where xi = 1 indicates that requirement ri is
included in the next release and xi = 0 otherwise.

As pointed out by Harker et al. (1993), the occurrence of certain events
can change the requirements’ importance values during the release develop-
ment. The requirements’ importance uncertainty can be therefore, classified
as a Changing environmental and operating conditions (type A) un-
certainty. Imagine a Commercial off-the-shelf (COTS) software development
company, for example. A potentially innovative functionality would be pos-
sibly considered a highly valuable requirement and would be developed as
soon as possible. But, in the case where a competitor company releases its
software with the same or similar functionality before the first company does,
the importance of this requirement for the first company will decrease. In
this situation, the first company would have wasted resources in developing
this requirement with such priority. As one can see, the range a requirement
importance can vary is discrete and depends on the set of events that actually
have some influence in the requirement importance.

Thus, the requirements’ importance value uncertainty seems adequate to
be quantified using the robust optimization concept of scenarios (Yu, 1996).
A scenario can be defined as a set of values which represent different con-
texts due to the occurrence of certain events, like in the given example.
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Thus, based on the set of events that have some influence in the require-
ments’ importance values, the requirements engineer can formally define a
set of scenarios S = {s1, s2, . . . , sM}, where each scenario is represented
by sj ⊂ S|sj = {vj1, v

j
2, . . . , v

j
N}, with vji expressing the importance of re-

quirement ri in scenario j. In order to consider all possible scenarios of the
requirements’ importance values, one must define the occurrence probability
of each scenario. Thus, for each scenario j, it is defined an occurrence prob-
ability pj, with

∑M
j=1 pj = 1. The requirement’s importance vi in the robust

model is then defined as:

vi =
M∑
j=1

vji pj (3)

The robust requirement’s importance formulation above considers all pos-
sible scenarios, weighting each scenario importance value by its occurrence
probability. In a situation where the occurrence probabilities are unlikely to
foresee, one can consider a equal probability for all scenarios. The above re-
queriment importance can be looked at as a generalization of the importance
in the basic NRP formulation. In fact, by considering a single scenario j,
with a probability pj = 1, the requirement’s importance will be the same as
the one in Equation 1.

The uncertainty related to the cost of the requirements is intrinsically
distinct. When considering the effort cost uncertainties, the model has to
ensure that the solution will still respect the budget constraint. Such uncer-
tainty can be identified as a Constraint feasibility (type D) uncertainty.
Regarding the quantification, it seems unreasonable to expect one to raise
a set of scenarios based on certain events, since those costs usually vary
independently and this change may not be discrete. Since the effort cost un-
certainties are continuous random variables, they are likely to be quantified
using variance intervals (Yang et al., 2008).

Thus, the uncertainty related to the requirements’ effort costs will be
quantified as follows. Let ci be the estimated cost of requirement ri. It is
defined a value ĉi, which indicates the maximum expected cost variation.
The requirement cost at the end of the release development is represented
by c̄i and is a function of its own estimate and expected variation, so that
ci − ĉi ≤ c̄i ≤ ci + ĉi. In other words, the real effort cost of a requirement in
the release planning phase is unknown, but it will necessarily be within the
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range defined by its own estimate and expected variation.
Therefore, a possible robust formulation for the release total cost is as

follows:

N∑
i=1

cixi +
N∑
i=1

ĉixi (4)

In the above case, besides the sum of all requirements’ costs selected
to the next release, the total release cost will also consider the sum of all
respective cost variations ĉi. This approach will guarantee that, even in the
worst case, when all selected requirements will cost their upper bounds (given
by ci + ĉi), the release budget will be satisfied. This, clearly, represents a
very conservative approach, since it assumes that all cost estimates will be
missed by the maximum amount.

In real software development projects, however, different development
teams have divergent estimating skills, usually related to the team’s expe-
rience. These skills can be measured through a historical analysis among
previous projects. For a certain development team, one can determine, in
average, how many requirements cost estimates were actually precise. To
consider this assumption, in order to generate a more realistic model, it is
defined a control parameter Γ (Bertsimas and Sim, 2004), which indicates
the expected level of failure in the cost estimations. Thus, in a situation
where the team’s estimates are historically 30% incorrect, in a project with
50 requirements, for example, the control parameter would be Γ = 15. It
indicates that there is an expectation that 15 requirements will have real
effort costs different from those that were originally predicted.

Using this new control parameter, the release total cost in the robust
NRP model presented in this paper is computed as:

N∑
i=1

cixi +maxW⊆R,|W |≤Γ

∑
i∈W

ĉixi (5)

The release total cost is composed by the sum of the cost estimates ci
and a second factor, which was added to guarantee a certain robustness level
controlled by Γ, as explained next. Considering that there is an expectation
that Γ requirements will have costs that were wrongfully predicted, the for-
mulation will seek a subset W ⊆ R with cardinality |W | ≤ Γ, where the sum
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of cost variations ĉi is maximum. In other words, since there is no way to
know in advance which requirements may have erroneous cost estimates, the
model guarantees that, even if the development team misses the costs of the
requirements with highest variations, the solution will still be valid.

Once again, it is straightforward to reach the basic NRP model or the
conservative approach. Using Γ = 0, it is assumed that the team won’t miss
a single cost estimate. In this case, the total release cost in Equation 5 will
be the same as described in Equation 2, the classic NRP model. In addition,
all cost variations will be taken into account when Γ = N , which carries
the formulation back to the conservative approach materialized by Equation
4. Finally, it is noteworthy that it is also possible to return to the basic
formulation by setting all cost variations ĉi to 0.

Therefore, the robust Next Release Problem formulation used in this pa-
per is formally described as:

maximize
N∑
i=1

M∑
j=1

vji pjxi

subject to
N∑
i=1

cixi +maxW⊆R,|W |≤Γ

∑
i∈W

ĉixi ≤ b

where, xi ∈ {0, 1}
R is the set of requirements

N is the number of requirements

M is the number of scenarios

vji is the importance of requirement ri in scenario j

pj is the scenario j occurrence probability

ci is the cost estimate of requirement ri

ĉi is the expected cost variation of ri

Γ is the robustness control parameter

b is the release budget

The behavior of the robust model presented above is outlined in the fol-
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lowing example.
Consider a NRP instance with six requirements R = {r1, r2, r3, r4, r5, r6}.

The customer(s) indicated two possible scenarios, s1 and s2, for the require-
ments importance values. They are represented by s1 = {4, 1, 9, 3, 8, 5} and
s2 = {6, 5, 8, 2, 3, 5}. The occurrence probability of each scenario is p1 = 0.7
and p2 = 0.3. The importance value of each requirement is then calculated
by Equation 3, which generates the set of requirements importance values
V = {4.6, 2.2, 8.7, 2.7, 6.5, 5}. Because the first scenario is more likely to
occur than the second, the resulting values of V are closer to the s1 val-
ues than to the s2 values. By using the requirements’ importance values V,
the model can maximize the release total importance considering all possible
requirements importance values.

Consider that the development team defined the effort cost estimate
of each requirements as C = {4, 5, 5, 4, 6, 3}. The expected cost variation
was configured to be half the requirement cost and it is represented by
Ĉ = {2, 2.5, 2.5, 2, 3, 1.5}. The release budget was set to b = 22. Consid-
ering the robustness level Γ = 0, the model falls back to the classic NRP
and the optimum solution is the subset {r1, r3, r4, r5, r6}, which consists in a
total importance of 27.5 (the sum of the importance values of requirements
r1, r3, r4, r5 and r6). As the robustness level is Γ = 0, none of the cost varia-
tions are considered and the total effort cost is 22 (the sum of the estimate
cost of requirements r1, r3, r4, r5 and r6). As stated earlier, the optimum so-
lutions are usually found at the edge of the constraints. When considering
the cost uncertainties, such solutions may be actually infeasible.

When the robustness level is setted to Γ = N , for example, it is reached
the worst case, when all requirements estimates are considered wrong. In
such situation, all cost variations would be considered and all requirements
would cost their upper bounds (ci + ĉi). In this new environment, the op-
timum solution would be the subset {r3, r5, r6}, which presents a release
importance of 20.2 and a effort cost of 21. Because of the cost uncertainties,
the requirements r1 and r4 had to be removed from the previous optimum
solution. Despite being robust, this solution is very conservative because it is
unlikely that the development team misses the estimates of all requirements’
costs.

The presented NRP robust model handles this conservatism by allowing
a possible variation of the robustness control parameter Γ. For example, if
the team’s effort cost estimates are historically 40% of the number of re-
quirements wrong, the robustness level would be Γ = 2, indicating that
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two requirements are expected to have effort costs different from those origi-
nally estimated. In this situation, the optimum solution would be the subset
{r1, r3, r4, r6}, which presents a release value of 21 and a total cost of 20.5.
Since it is impossible to know in advance which of the two requirements are
wrongfully estimated, the model considers the two bigger cost variations, i.e.,
ĉ1 and ĉ3. This way, during the release development, if any two of the four re-
quirements selected to the release cost their upper bounds, the release would
still respect the budget constraint. Therefore, an intermediate robustness
level allowed the addition of one more requirement, increasing the release
total importance when compared to the worst case situation (Γ = N).

The presented model, along with the robustness parameter Γ, can handle
the effort cost uncertainties by allowing the requirements engineer to con-
sider such uncertainties in different levels. The classic NRP model can be
viewed as an optimistic approach, which generates the best possible next
release planning. However, such solution is subject to infeasibility due to the
uncertainties. The worst case scenario can also be achieved by the robust
model, but it implies in a considerable loss in solution quality. An interme-
diate robustness level can, at the same time, guarantee a robust solution and
improve the solution quality when compared to the conservative approach.

Hence, the next release formulation proposed by Paixao and Souza (2013)
and presented in more details in this paper, is a robust optimization model
which considers the uncertainties related to the input variables of this rele-
vant problem which, therefore, answers the research question RQ1.

5. Empirical Study

The research question RQ2 consists in evaluating the “price of robustness”
of the NRP robust model under different next release planning situations.
The “price of robustness” represents how much is lost in solution quality
when a robust solution to a certain instance is compared to the non-robust
solution of the same instance. The quality of a solution is represented by its
fitness value. This loss in solution quality is measured through a ‘reduction
factor’ (Bertsimas and Sim, 2004), which indicates the percentage of loss in
fitness value due to robustness.

Consider αk as the average fitness value found for some instance when the
robustness level is set to Γ = k×N , where N is the number of requirements
and k represents the percentage of requirements which are wrongly estimated.
The ‘reduction factor’ is calculated by comparing αk to the fitness value found
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by the non-robust NRP model, i.e., when Γ = 0. Therefore, the ‘reduction
factor’ δk can be calculated as follows:

δk = 100× (1− αk

α0

) (6)

Consider the same example given in the previous section. The fitness
value of the classic NRP model (Γ = 0) is α0 = 27.5. Considering a 40%
robustness level, Γ = 0.4N , the fitness value is α0.4 = 21. Using Equation 6,
a reduction factor δ0.4 = 23.63 is found. This value indicates that, in order
to ensure 40% of robustness to the solution, one will lose 23.63% in solution
quality. Similarly, for Γ = N , a reduction factor δ1 = 26.64 is achieved,
representing a loss of 26.64% in fitness value.

Subsection 5.1 depicts the settings of the empirical evaluation. It shows
the instances set configuration and presents the search techniques used in the
evaluation. Subsection 5.2 presents the results of the empirical evaluation,
aiming at answer the research question RQ2, where each of its subquestions
are treated separetly.

5.1. Empirical Evaluation Settings

The instances and search techniques settings are presented apart from
each other.

5.1.1. Instances Configuration

The instances set is composed by both synthetical and real-world NRP
instances. The synthetical instances were randomly generated following an
uniform distribution and designed to present distinct next release planning
situations, including different number of requirements, different cost varia-
tions strategies and different interdependencies between requirements.

The synthetical instances were generated with a different number of re-
quirements, represented by {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, re-
spectively. Each instance has 2, 3 or 4 scenarios. The number of scenarios
in the instance was randomly chosen. The occurrence probability of each
scenario was also defined at random. The requirements’ importance values
vji can assume an integer between 1 and 10. The effort cost estimate ci also
varies from 1 to 10. Both the requirements’ cost and importance value in
each scenario were randomly defined.
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Different cost variations strategies were considered. The cost variation
ĉi was set to one of the following values {10%, 20%, 30%, 40%, 50%}. A cost
variation of 10% means that each cost variation ĉi is considered to be 10% of
the respective requirement estimated cost ci. Besides varying the percentage
from 10% to 50% of the original cost, a random approach was also introduced,
where each requirement cost variation ĉi is independently generated as a
random number between 0 and 50% of ci.

Requirements usually present different relationships between each other,
which are called in the literature as interdependencies (Carlshamre et al.,
2001). These interactions can be divided into two groups: functional inter-
dependencies and value interdependencies (Del Sagrado et al., 2011). The
first ones are related to strong functional interactions, usually translated into
problem’s constraints, like:

• Precedence: ri ⇒ rj. A requirement ri cannot be selected to the next
release if a requirement rj has not been implemented yet.

• Coupling : ri� rj. Requirements ri and rj must be implemented in the
same release

• Exclusion: ri ⊕ rj. Requirements ri and rj cannot be implemented in
the same release

Functional interdependencies present a considerable impact in the search
space and must be taken into account when selecting requirements to the
next release. However, value interdependencies can be ignored because they
only cause variations in the characteristics of other requirements, without
affecting the search space (Del Sagrado et al., 2011).

The interdependencies density between requirements can assume one of
the following values {0, 10%, 20%}. The interdependency density indicates
the percentage of requirements which will have interdependencies. Two re-
quirements are randomly chosen and the type of interdependency they will
have is also chosen at random. This process is repeated until the interdepen-
dency density is reached.

All possible next release planning aspects described above (number of re-
quirements, cost variation strategy and interdependency density) were com-
bined, resulting in a set with 180 synthetical instances. The synthetical
instances names are in the format I S R C I, where R represents the num-
ber of requirements, C indicates the cost variation strategy and I denotes
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the interdependency density. The instance I S 250 20 10, for example, is a
synthetical one, has 250 requirements, ĉi is set to be 20% of ci and presents
an interdependency density of 10%.

The real-world instances were adapted from Xuan et al. (2012). In that
paper, the instances to the NRP were extracted from bug repositories of
two big open source projects, Eclipse (a java integrated development envi-
ronment) (Eclipse, 2014) and Mozilla (a set of web applications) (Mozilla,
2014).

A bug repository is a forum where users (end users, developers, testers,
etc) can report bugs related to the project. Each bug is then considered as
a requirement. In this forum, one bug report may be commented by many
users. Each requirement importance value is then calculated as the number
of users that commented on that particular bug report, which represents
the only possible scenario. In addition, the bug severity is mapped to the
requirement cost estimate. Both the requirement’s importance and cost are
normalized to fall into the 1 to 10 interval.

Several instances were extracted from each bug repository. They are com-
posed only by the most important requirements. The number of requirements
of the real-world instances are {20, 50, 100, 150, 200}, respectively. Regarding
the cost variation, the same strategies used in the synthetical instances were
also applied to the real ones. Since bugs are usually independent from each
other, there are no interdependencies in the real instances.

Therefore, the combination of the possible aspects of the real instances,
such as bug repositories, number of requirements and cost variation strate-
gies, resulted in 60 real-world NRP instances. The real instances names are
in the format I Re P R C, where P represents the project (E for Eclipse and
M for Mozilla), R is the number of requirements and C is the cost variation
strategy. The instance I Re E 150 50, for example, was generated from the
eclipse bug repository, has 150 requirements and the cost variation ĉi is set
to be 50% of the estimated cost ci.

Considering both synthetical and real-world NRP instances, the empirical
evaluation was performed over 240 instances.

5.1.2. Search Techniques Employed

In the empirical evaluation, the search techniques Genetic Algorithm,
Simulated Annealing and Random Search were considered, as described next:

• Genetic Algorithm: widely known evolutionary algorithm, already
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applied to many optimization problems and inspired by the Darwin’s
natural selection theory (Holland, 1975).

• Simulated Annealing: algorithm for solving ordinary optimization
problems, based on the thermodynamics’ annealing process (Kirkpatrick
et al., 1983).

• Random Search: algorithm that searches for solutions completely at
random. It is used as a sanity check, as suggested by Harman (2007).

Both Genetic Algorithm (GA) and Simulated Annealing (SA) were con-
sidered because they are two of the most used search techniques in SBSE
literature (Harman, 2007).

The GA and SA parameters were empirically obtained through a exper-
imentation process inspired by Souza et al. (2011). First, 20 of the 180
synthetical instances were randomly selected to participate in the configura-
tion process. For both GA and SA, different configurations were considered,
varying the values of each technique parameters. For the GA, a total of
27 configurations were produced, varying the values of crossover probability
(60%, 80%, 95%), mutation probability (1/N%, 0.1%, 1%) and elitism rate
(0, 10%, 20%), where N is the number of requirements. For the SA, initial
temperature (20, 50, 200) and cooling rate (1/N%, 0.1%, 1%) were examined.
It resulted in 9 different SA configurations. For all selected instances, the
robustness parameter was set to Γ = 0. Each algorithm configuration was
executed 30 times for each instance, in order to obtain fitness value averages
and standard deviations. The release budget is set to 70% of the sum of
all requirements’ costs. The selected configuration for each search technique
was the one which generated the best results among most of the 20 selected
instances.

The adaptation of the search techniques to the NRP, along with the
results of the parameters configuration process, are presented next.

Genetic Algorithm. Population with N individuals. The initial popu-
lation is randomly generated and composed only by feasible individuals. If
an initial random individual is infeasible, due to budget or interdependen-
cies constraints, it got repaired. The repairing method consists in randomly
remove requirements until the solution becomes feasible. Crossover probabil-
ity is set to 95%, using one point crossover. Mutation is performed for each
requirement in the solution with a 1/N% probability, consisting of a single re-
quirement inclusion/exclusion. If necessary, the repairing mechanism is also

18



performed after the crossover and mutation operators. The GA implemen-
tation employs elitism, with 20% of the best individuals in the population
being automatically included in the next generation. The algorithm returns
the best individual after 1000 generations.

Simulated Annealing. The initial solution is randomly generated using
the same procedure as in the GA initial population. Initial temperature and
cooling rate were set to 50 and 1/N%, respectively. At each iteration, N
neighbour solutions are evaluated. A neighbour solution is defined as a solu-
tion that can be produced from the original one with just one requirement
addition or removal. All search techniques were configured to perform the
same number of fitness evaluations. Thus, the final temperature is dynami-
cally calculated in order to permit only 1000×N fitness evaluations.

Random Search. The random search algorithm consists in generate
1000×N random solutions. The algorithm returns the best solution overall.
The random solution generation is the same as in the GA initial population.

Each search technique was executed for all 240 NRP instances, with dif-
ferent robustness levels for each instance. The robustness parameter value
Γ was set to {0, 0.05N, 0.1N, 0.15N, . . . , N}. For each instance and each ro-
bustness level, each algorithm was executed for 30 times, obtaining fitness
value average and standard deviation. The release budget is again setted to
70% of the total possible cost. Considering all search techniques, all instances
and all robustness levels, a total of 15120 executions were performed.

In order to permit the full replication of the whole empirical evalua-
tion, all synthetical and real-world instances, along with the source code
used, are available at the paper supporting webpage http://goes.uece.br/
mhepaixao/robustNRP/. It also contains all results that have to be omitted
from this paper due to space constraints.

5.2. Results and Analysis

The empirical study results are presented in this section. Each subques-
tion of the research question RQ2 is treated separetly as follows.

5.2.1. RQ2.1: What is the “price of robustness” for the presented NRP model
when using different robustness levels?

This question consists in evaluating how much is lost in solution quality
as the robustness parameter Γ varies. In order to perform a fair analysis, one
must consider instances with the same cost variation and same interdepen-
dency density. The different cost variations strategies and interdependency
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densities are addressed in questions RQ2.2 and RQ2.3, respectively. Therefore,
this analysis is based only upon instances with 10% cost variation and no
interdependencies. Since the real-world instances are addressed in question
RQ2.4, only synthetical instances are used in this analysis.

Table 1 presents the results computed by the Genetic Algorithm (GA),
Simulated Annealing (SA) and Random Search (RS) for the synthetical in-
stances with 10% cost variation and no interdependencies. Some of the ro-
bustness levels are omitted due to space constraints.

As can be seen from the table, as the robustness parameter Γ increases,
the fitness value tends to decrease. This behavior is the same for all instances
and all search techniques employed. Regarding solution quality, the GA
achieved the best results for all instances and all robustness levels. The GA
also presented the lowest standard deviation. The RS algorithm could not
find good solutions for the presented NRP robust model, being overcame in
solution quality by both GA and SA for all instances and robustness levels.

Figure 1 presents the fitness values results of the three search techniques
for some of the synthetical instances. The results for the other instances are
also similar to those presented in the figure. As stated above, the fitness
value clearly decreases as the robustness level increases. In addition, it is
also visible the best results found by the GA.

The reduction factor results for the synthetical instances with 10% cost
variation and no interdependencies are presented in Table 2. As can be seen
from this table, the fitness penalization due to robustness is considerably
small. Considering all instances, the GA can achieve 10% of robustness by
losing 1.2% in solution quality, in average. For higher robustness levels,
like 50% and 100%, the GA average loss is 4.22% and 4.79%, respectively.
In other words, using the GA, one can guarantee 100% of robustness by
losing a little amount of 4.79% in solution quality. For the SA, the reduction
factor for Γ = 0.5N and Γ = N are 6.94% and 7.21%, respectively. The
RS presented low reduction factor results, but since it is actually unable to
find good solutions, these results do not express the proper behavior of the
presented robust model.

The common assumption is that a different robustness level leads to a
different reduction factor. Actually, for low levels of robustness, the reduc-
tion factor difference seems to be significant. However, after Γ being set to
half the number of requirements, the reduction factor appears to stabilize,
as can also be viewed in Figure 1. In order to evaluate this behavior, sev-
eral samples are composed containing the reduction factors of all instances
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Table 1: Fitness values results for synthetical instances with 10% cost variation and no
interdependencies

Instance ST
Γ

0 0.1N 0.3N 0.5N 0.7N 0.9N N

I S 50 10 0

GA 247.18
± 2.37

244.34
± 2.42

239.14
± 1.47

235.41
± 2.31

233.38
± 2.52

234.28
± 2.31

233.9 ±
2.21

SA 221.37
± 3.77

219.21
± 3.45

213.8 ±
3.54

211.91
± 3.52

210.81
± 3.31

209.94
± 3.07

210.9 ±
2.83

RS 216.59
± 4.46

213.95
± 3.36

211.53
± 3.83

208.71
± 3.15

207.58
± 4.12

207.25
± 3.46

208.3 ±
3.89

I S 100 10 0

GA 442.02
± 1.77

436.79
± 1.24

427.41
± 2.21

422.09
± 2.07

421.1 ±
1.91

419.59
± 2.06

420.19
± 1.72

SA 374.03
± 7.14

370.97
± 5.05

362.23
± 5.35

359.38
± 5.3

358.05
± 6.05

356.76
± 4.36

359.77
± 5.48

RS 365.71
± 6.66

363.56
± 6.56

357.52
± 4.93

355.83
± 4.55

355.21
± 4.52

355.57
± 4.37

355.82
± 6.0

I S 150 10 0

GA 726.53
± 2.6

718.86
± 2.54

709.97
± 2.09

703.17
± 2.46

698.73
± 3.39

699.14
± 2.4

699.03
± 2.76

SA 571.66
± 14.79

565.89
± 18.9

555.91
± 12.7

545.41
± 11.7

545.45
± 8.08

542.24
± 8.63

546.08
± 7.68

RS 548.74
± 10.04

545.02
± 9.33

545.89
± 10.64

541.67
± 6.55

541.31
± 7.76

538.73
± 6.71

545.0 ±
9.63

I S 200 10 0

GA 954.89
± 1.41

942.07
± 2.64

924.52
± 1.92

911.59
± 2.71

905.24
± 2.72

905.23
± 1.84

904.86
± 2.43

SA 786.23
± 18.64

764.01
± 21.8

739.73
± 18.62

725.13
± 12.71

723.47
± 12.81

725.2 ±
11.12

723.95
± 13.14

RS 720.08
± 11.59

722.52
± 10.68

719.31
± 10.98

717.45
± 9.83

715.73
± 8.32

716.09
± 10.54

714.66
± 7.48

I S 250 10 0

GA 1143.95
± 2.83

1129.95
± 3.21

1108.57
± 2.99

1094.12
± 3.34

1088.55
± 2.97

1087.74
± 2.51

1087.15
± 3.12

SA 941.78
± 24.0

915.15
± 26.8

881.67
± 21.36

867.41
± 22.0

862.25
± 18.84

857.91
± 17.76

869.01
± 16.08

RS 849.4 ±
10.87

848.74
± 10.67

846.99
± 9.67

848.46
± 9.07

849.3 ±
9.47

847.99
± 10.86

848.58
± 11.38

I S 300 10 0

GA 1469.1
± 3.82

1453.43
± 3.16

1427.47
± 4.91

1412.69
± 2.78

1406.98
± 3.76

1405.29
± 2.91

1405.84
± 3.71

SA 1162.39
± 24.26

1129.45
± 35.45

1090.82
± 39.95

1069.84
± 25.68

1055.64
± 19.3

1060.28
± 28.04

1063.2
± 20.69

RS 1037.7
± 15.38

1035.03
± 11.91

1032.42
± 12.49

1038.18
± 14.54

1032.91
± 11.72

1034.29
± 12.77

1036.44
± 10.15

I S 350 10 0

GA 1674.29
± 3.26

1654.59
± 3.0

1624.21
± 3.28

1605.46
± 4.25

1596.94
± 4.54

1596.16
± 3.71

1596.66
± 3.25

SA 1340.63
± 24.98

1316.59
± 26.96

1249.19
± 22.7

1229.91
± 26.63

1223.46
± 22.15

1226.32
± 30.14

1229.05
± 29.26

RS 1190.15
± 17.95

1189.73
± 15.16

1194.7
± 16.25

1190.77
± 14.23

1197.38
± 17.01

1190.05
± 15.23

1195.32
± 14.39

I S 400 10 0

GA 1889.65
± 2.97

1866.14
± 3.77

1831.72
± 4.71

1812.2
± 4.72

1804.9
± 4.25

1804.19
± 5.02

1803.19
± 5.11

SA 1487.35
± 34.28

1459.83
± 34.11

1384.28
± 24.31

1370.63
± 39.38

1364.46
± 29.07

1359.43
± 33.8

1356.56
± 34.57

RS 1313.27
± 19.02

1311.23
± 15.39

1304.73
± 15.68

1309.03
± 17.98

1302.14
± 12.27

1308.73
± 16.42

1303.68
± 16.13

I S 450 10 0

GA 2141.9
± 5.03

2113.57
± 4.3

2071.92
± 5.36

2045.75
± 5.22

2031.64
± 5.39

2031.18
± 5.62

2030.51
± 5.81

SA 1758.86
± 25.95

1705.22
± 32.22

1645.25
± 32.19

1608.39
± 32.09

1610.41
± 27.25

1603.45
± 29.08

1605.75
± 22.72

RS 1310.17
± 16.28

1311.23
± 15.39

1304.73
± 15.68

1309.03
± 17.98

1302.14
± 12.27

1308.73
± 16.42

1303.68
± 16.13

I S 500 10 0

GA 2385.36
± 3.1

2356.31
± 4.45

2310.83
± 4.65

2283.37
± 4.28

2271.31
± 5.99

2270.22
± 4.47

2268.79
± 4.87

SA 1920.01
± 34.36

1871.46
± 30.91

1794.33
± 38.5

1760.09
± 35.33

1749.81
± 30.49

1748.15
± 30.9

1744.9
± 39.74

RS 1643.72
± 11.84

1646.83
± 21.31

1647.24
± 16.07

1647.95
± 21.04

1647.01
± 15.94

1647.96
± 20.51

1647.55
± 21.66
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Figure 1: GA, SA and RS fitness value results for some synthetical instances with 10%
cost variation and no interdependencies

for a certain robustness level and search technique. Considering the GA,
for example, the sample containing the reduction factors for Γ = 0.05N is
{0.51, 0.74, 0.58, 0.77, 0.65, 0.53, 0.57, 0.64, 0.69, 0.77}.

As suggested by Arcuri and Briand (2011), the Wilcoxon test of the statis-
tical computing tool R (R-Project, 2014) was employed to compare different
samples and state if they are statistically different. Such test takes two sam-
ples as input and results in a p-value. This p-value can be understood as the
probability of the two samples being actually the same. In this paper, two
samples are considered statistically different when the Wilcoxon test results
in a p-value ≤ 0.05, which represents a significance level of 95%. For this
particular analysis, let pSTa,b be the p-value for the comparison between the
sample with robustness level a and the sample with robustness level b, for
the search technique ST .

Considering the GA, for low levels of robustness, like Γ = 0.05N and
Γ = 0.1N , the p-value is pGA

0.05,0.1 = 1.79 × 10−3. This value means that
the probability of the samples being really different is greater than 99%. In
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Table 2: Reduction factor results for synthetical instances with 10% cost variation and no
interdependencies

Instance ST
Γ

0.05N 0.1N 0.3N 0.5N 0.7N 0.9N N

I S 50 10 0
GA 0.51 1.15 3.25 4.76 5.58 5.22 5.37
SA 0.23 0.98 3.42 4.27 4.77 5.16 4.73
RS 0.33 1.22 2.34 3.64 4.16 4.31 3.83

I S 100 10 0
GA 0.74 1.18 3.31 4.51 4.73 5.07 4.94
SA 0.82 0.82 3.15 3.92 4.27 4.62 3.81
RS 0.3 0.59 2.24 2.7 2.87 2.77 2.7

I S 150 10 0
GA 0.58 1.06 2.28 3.22 3.83 3.77 3.79
SA 0.54 1.01 2.76 4.59 4.58 5.15 4.47
RS 0.71 0.68 0.52 1.29 1.35 1.82 0.68

I S 200 10 0
GA 0.77 1.34 3.18 4.53 5.2 5.2 5.24
SA 2.16 2.83 5.91 7.77 7.98 7.76 7.92
RS 0.42 0.34 0.11 0.37 0.6 0.55 0.75

I S 250 10 0
GA 0.65 1.22 3.09 4.36 4.84 4.91 4.97
SA 1.4 2.83 6.38 7.9 8.44 8.91 7.73
RS 0.26 0.08 0.28 0.11 0.01 0.17 0.1

I S 300 10 0
GA 0.53 1.07 2.83 3.84 4.23 4.34 4.31
SA 1.48 2.83 6.16 7.96 9.18 8.78 8.53
RS 0.49 0.26 0.51 0.05 0.46 0.33 0.12

I S 350 10 0
GA 0.57 1.18 2.99 4.11 4.62 4.67 4.64
SA 1.02 1.79 6.82 8.26 8.74 8.53 8.32
RS 0.33 0.04 0.38 0.05 0.61 0.01 0.43

I S 400 10 0
GA 0.64 1.24 3.07 4.1 4.48 4.52 4.58
SA 1.28 1.85 6.93 7.85 8.26 8.6 8.79
RS 0.24 0.08 0.42 0.09 0.61 0.11 0.5

I S 450 10 0
GA 0.69 1.32 3.27 4.49 5.15 5.17 5.2
SA 0.86 3.05 6.46 8.55 8.44 8.84 8.71
RS 0.13 0.16 0.19 0.19 0.28 0.21 0.23

I S 500 10 0
GA 0.77 1.22 3.12 4.28 4.78 4.83 4.89
SA 0.99 2.53 6.55 8.33 8.86 8.95 9.12
RS 0.21 0.19 0.21 0.26 0.2 0.26 0.23

other words, it is almost certain that a increase in the robustness level from
Γ = 0.05N to Γ = 0.1N leads to a significant change in solution quality.
For other low values of Γ, this behavior continues: pGA

0.1,0.15 = 1.78 × 10−3,
pGA

0.15,0.2 = 3.24 × 10−3, pGA
0.2,0.25 = 4.0 × 10−2. But, as the robustness level

increases, the differences between samples became statistically less obvious.
For Γ = 0.5N and Γ = 0.55N , for example, the test result is pGA

0.5,0.55 = 0.40,
which indicates a 40% probability that the samples are actually the same.
For bigger values of Γ, the p-values are even bigger: pGA

0.9,0.95 = 0.96 and
pGA

0.95,1 = 1. Such results indicate that, for higher levels of robustness, small
changes in Γ do not influence the “price of robustness”.

For the SA the results are similar. For small values of Γ, the p-values are
pSA0.05,0.1 = 0.028, pSA0.1,0.15 = 0.053 and pSA0.15,0.2 = 0.075. For bigger robustness
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levels, the p-values are pSA0.85,0.9 = 0.59, pSA0.9,0.95 = 0.79 and pSA0.95,1 = 0.63. As
one can see, the same behavior was found by the SA. For small robustness
levels, a minor increase in Γ leads to a statistically significant change in fitness
value. For greater values, a increase in Γ does not influence the reduction
factor.

An interesting fact is that the reduction factor results between instances
seem to be similar. The Wilcoxon test is also used to evaluate this statement.
In this case, a sample consists in the reduction factor results of a single
instance for all robustness levels, including the ones that are not presented
in Table 2. For this analysis, let pSTa,b be the p-value for the comparison
between the sample with number of requirements a and the sample with
number of requirements b, for the search technique ST .

Considering the GA results for the instances with 200 and 450 require-
ments, for example, the p-value computed is pGA

200,450 = 0.56, which higlhy
indicates no differences between results. In the other hand, for the instances
with 50 and 150 requirements, the p-value is pGA

50,150 = 0.01, which statisti-
cally states a difference between the reduction factor of the two instances.
Thus, in order to compare the “price of robustness” between instances with
different number of requirements, the test was executed for all possible pairs
of such instances.

As a result, 36 out of 45 tests presented a p-value smaller than 0.05.
Therefore, there is strong empirical and statistical evidence that the “price
of the robustness” of the presented model is independent of the number of
requirements in the instance.

The question RQ2.1 is related to the “price of robustness” of the pre-
sented robust NRP model and its variance as the robustness level changes.
The analysis presented above shows that, as the robustness level increases,
the fitness value tends to decrease. However, this loss in solution quality is
only statistical significant for small values of Γ. From Γ = 0.5N , there is
no statistical evidence to comprove that a higher level of robustness leads
to a greater loss in solution quality. In other words, ensure a robustness
level of 50% is not much different than ensure a robustness level of 55% or
even more. In addition, regarding the “price of robustness”, the presented
model performs nearly the same for instances with different number of re-
quirements. Encouraged by this stability, it is possible to claim that a high
level of robustness can be achieved by losing a considerably small amount
of fitness. Considering the GA, a 100% robustness can be ensured with a
average fitness loss of just 4.79%.
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Since the GA has found the best solutions and has presented the lowest
standard deviation for all instances and all robustness levels, it will be the
only search technique considered in the further analysis.

5.2.2. RQ2.2: What is the “price of robustness” for the presented NRP model
when using different variations in the requirements’ costs?

As stated earlier, different development teams have divergent estimat-
ing skills. This question RQ2.2 is related to the “price of robustness” when
different cost variation strategies are employed. Table 3 presents the reduc-
tion factor results computed by the GA for different cost variation strategies
and different robustness levels. The different cost variations (CV) consid-
ered were: 10%, 20%, 30%, 40%, 50% and random (RD), as presented in the
empirical study settings. Interdependencies between requirements are not
considered. Some instances results are omitted due to space contraints.

As can be noticed and as expected, considering a single instance, the
higher the cost variation, the higher is the reduction factor. This growth is
not linear, tough. For the instance with 300 requirements, for example, with
a 10% cost variation, a robustness level of 30% leads to a reduction factor
of 2.83%. Changing the cost variation to 30% and 50%, the lost in fitness
grows to 8.39% and 13.77%, respectively. A cost variation of 50% can be
considered a big one, and even with this high variation, it is still possible
to reach significant robustness levels with considerably little loss in solution
quality. Considering all instances and setting the expected cost variation to
be half of the requirement’s original cost (ĉi = 50%), a 100% robustness level
can be achieved by sacrificing only around 19% in fitness value.

Figure 2 presents the GA reduction factor results for some of the syn-
thetical instances that are not presented in Table 3. As can be noticed, the
reduction factor visibly increases as the cost variation also increases. It is
also noteworthy the results similarities between all different instances.

Considering any of the instances in Figure 2, the reduction factor results
of different cost variations strategies seem to be almost completely different
from each other. In order to evaluate this behavior, the samples are now
formed by the reduction factors of a certain cost variation strategy for a
certain instance. Let pNR

a,b be the p-value for the comparison between the
sample with cost variation a% and the sample with cost variation b%, for the
instance with number of requirements NR.

For the instance with 250 requirements, for example, the results are:
p250

10,20 = 3 × 10−3, p250
20,30 = 3.3 × 10−2, p250

30,40 = 0.012, p250
40,50 = 0.017 and
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Table 3: Genetic Algorithm reduction factor results for synthetical instances with different
cost variation and no interdependencies

Instance CV
Γ

0.05N 0.1N 0.3N 0.5N 0.7N 0.9N N

I S 100 CV 0

10% 0.74 1.18 3.31 4.51 4.73 5.07 4.94
20% 1.31 2.53 6.31 8.37 9.03 9.16 9.11
30% 2.04 4.01 9.31 12.14 13.0 12.84 13.01
40% 2.53 5.09 12.13 15.3 16.2 16.02 15.94
50% 3.3 6.35 15.19 18.45 19.19 18.93 18.98
RD 2.8 5.09 9.02 10.17 10.44 10.39 10.41

I S 200 CV 0

10% 0.77 1.34 3.18 4.53 5.2 5.2 5.24
20% 1.34 2.47 6.37 8.85 9.85 9.85 9.84
30% 1.99 3.84 9.33 12.84 13.87 13.83 13.81
40% 2.8 5.13 12.31 16.42 17.48 17.39 17.55
50% 3.41 6.26 15.24 19.78 20.73 20.77 20.75
RD 2.33 4.09 8.83 10.79 11.28 11.38 11.29

I S 300 CV 0

10% 0.53 1.07 2.83 3.84 4.23 4.34 4.31
20% 1.18 2.3 5.69 7.55 8.21 8.3 8.35
30% 1.85 3.44 8.39 11.02 11.87 11.95 11.84
40% 2.35 4.59 11.1 14.15 15.06 15.12 14.89
50% 3.03 5.74 13.77 17.28 18.11 17.98 17.98
RD 2.38 4.16 7.99 9.51 10.03 9.95 9.88

I S 400 CV 0

10% 0.64 1.24 3.07 4.1 4.48 4.52 4.58
20% 1.23 2.33 5.92 7.81 8.59 8.53 8.51
30% 1.91 3.66 8.93 11.51 12.31 12.19 12.32
40% 2.57 4.85 11.68 14.79 15.67 15.7 15.71
50% 3.19 6.16 14.31 18.01 18.6 18.6 18.65
RD 2.33 4.1 8.03 9.87 10.27 10.15 10.24

I S 500 CV 0

10% 0.77 1.22 3.12 4.28 4.78 4.83 4.89
20% 1.28 2.39 6.08 8.18 9.02 9.01 9.03
30% 1.83 3.7 9.0 11.8 12.83 12.91 12.78
40% 2.59 4.87 11.98 15.38 16.39 16.31 16.31
50% 3.22 6.04 14.62 18.56 19.49 19.54 19.41
RD 2.47 4.28 8.29 9.94 10.46 10.41 10.53

p250
50,RD = 4.9× 10−3. As one can see, the reduction factor results for different

cost variations are really different from each other. These results statistically
state that a change in the cost variation strategy leads to a different “price
of robustness”. For all other instances the results are similar.

It was stated in the previous section that, for a cost variation of 10% and
no interdependencies, the “price of robustness” is only statistically influenced
by the robustness level for small values of Γ. When all possible cost variation
strategies are considered, this behavior remains the same. For this analysis,
the samples are formed by the reduction factor results of all instances and
all cost variations for a certain robustness level. Interdependencies are not
considered. For the GA, the p-values for small values of Γ are pGA

0.05,0.1 = 5.32×
10−9, pGA

0.1,0.15 = 3.33× 10−3 and pGA
0.15,0.2 = 8.09× 10−2. For bigger robustness

levels the p-values are pGA
0.5,0.55 = 0.62, pGA

0.9,0.95 = 0.97 and pGA
0.95,1 = 0.96.
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Figure 2: GA reduction factor results for some synthetical instances with different cost
variations and no interdependencies

Thereby, the “price of robustness” behavior of becoming almost constant
from Γ = 0.5N is statistically proved for all cost variation strategies.

The cost variation strategy plays an important role in the “price of ro-
bustness”. It is statistically proved that different cost variations leads to
different reduction factors, in a way that as higher the variation, higher is
the reduction. This increase in the “price of robustness” is not linear, though.
Even with high cost variation, like 50%, it is possible to achieve a 100% of ro-
bustness losing, in average, just 19% in solution quality. It is also statistically
proved, for all cost variations considered in this analysis, that a change in the
robustness level is only significant at low values of Γ. For bigger robustness
levels, the “price of robustness” can be considered the same.

5.2.3. RQ2.3: What is the “price of robustness” for the presented NRP model
when there are interdependencies between requirements?

In a next release planning situation, requirements can have interdepen-
dencies between each other. The interdependency density (ID) represents the
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percentage of requirements which have interdependencies in the instance, as
presented in the empirical study settings.

In this empirical study, the different interdependency densities considered
were: 0, 10% and 20%. Since the different cost variation strategies were
addressed in the previous section, this analysis considers only the instances
with 10% cost variation. Table 4 presents the GA reduction factor results for
the instances with 10% cost variation and different interdependency densities.

Table 4: Genetic Algorithm reduction factor results for synthetical instances with 10%
cost variation and different interdependency densities

Instance ID
Γ

0.05N 0.1N 0.3N 0.5N 0.7N 0.9N N

I S 50 10 ID
0 0.51 1.15 3.25 4.76 5.58 5.22 5.37

10% 0.41 1.29 3.75 4.93 5.28 6.03 5.12
20% 3.22 3.53 5.58 4.9 7.79 7.12 5.39

I S 100 10 ID
0 0.74 1.18 3.31 4.51 4.73 5.07 4.94

10% 0.83 1.55 3.58 4.62 5.29 5.27 5.22
20% 0.24 1.26 2.97 4.68 4.83 4.14 4.72

I S 150 10 ID
0 0.58 1.06 2.28 3.22 3.83 3.77 3.79

10% 0.4 0.55 2.4 3.35 3.09 3.57 3.24
20% 1.1 0.98 0.14 1.89 1.11 1.25 0.69

I S 200 10 ID
0 0.77 1.34 3.18 4.53 5.2 5.2 5.24

10% 1.19 1.61 3.27 4.13 5.41 4.69 5.01
20% 0.89 1.28 3.07 4.8 5.16 4.82 4.89

I S 250 10 ID
0 0.65 1.22 3.09 4.36 4.84 4.91 4.97

10% 0.65 1.7 3.46 4.4 5.08 5.38 5.41
20% 1.1 1.37 3.58 4.24 5.1 5.33 5.17

I S 300 10 ID
0 0.53 1.07 2.83 3.84 4.23 4.34 4.31

10% 0.5 1.0 2.63 3.3 4.01 3.75 3.83
20% 0.08 0.86 2.49 3.36 3.96 3.45 3.68

I S 350 10 ID
0 0.57 1.18 2.99 4.11 4.62 4.67 4.64

10% 0.25 0.76 2.99 4.02 4.38 4.4 4.72
20% 0.01 0.88 2.86 4.09 4.11 4.03 4.18

I S 400 10 ID
0 0.64 1.24 3.07 4.1 4.48 4.52 4.58

10% 0.57 0.98 2.94 3.73 4.26 4.44 4.35
20% 0.2 0.15 2.06 3.64 3.58 3.36 3.52

I S 450 10 ID
0 0.69 1.32 3.27 4.49 5.15 5.17 5.2

10% 0.77 1.43 3.85 4.88 5.34 5.56 5.48
20% 0.34 0.27 1.51 2.49 3.19 3.12 3.1

I S 500 10 ID
0 0.77 1.22 3.12 4.28 4.78 4.83 4.89

10% 1.28 1.16 3.46 4.94 4.95 5.18 5.04
20% 0.2 0.1 0.9 2.17 2.35 2.27 2.18

For an interdependency density of 10%, for example, one can achieve a
30% of robustness by losing 3.23% in fitness value, in average. Regarding
an interdependency density of 20%, 70% of robustness is reached by losing,
in average, 4.11% in solution quality. When the interdependencies between
requirements are considered, the “price of robustness” is still considerably
small.
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As one can see, considering any of the instances presented in Table 4, the
reduction factor results seem to be similar, regardless the interdependency
density considered. In order to statistically evaluate this statement, the
samples are formed by the reduction factor results of a certain instance for
a certain value of interdependency density. Let pNR

a,b be the p-value for the
comparison between the sample with interdependency density a% and the
sample with interdependency density b%, for the instance with number of
requirements NR.

For the instance with 200 requirements, for example, the p-values found
are: p200

0,10 = 0.696, p200
0,20 = 0.489 and p200

10,20 = 0.959. For the other in-
stances presented in the table, the results are also quite similar. Such results
statistically state that the “price of robustness” is the same for different in-
terdependency densities between requirements. For the same instances, with
different cost variation strategies, the results are also similar.

Even when interdependencies are considered, the impact of the robust-
ness level in the “price of robustness” is pretty much the same as stated in
the previous sections. Being the samples now formed by the reduction factor
results of a certain robustness level for the instances with different interdepen-
dency densities and 10% cost variation, the p-values for small values of Γ are:
pGA

0.05,0.1 = 4.77× 10−5, pGA
0.1,0.15 = 2.95× 10−5 and pGA

0.15,0.2 = 8.10× 10−3. For
bigger robustness levels, the p-values are: pGA

0.6,0.65 = 0.437, pGA
0.9,0.95 = 0.727

and pGA
0.95,1 = 0.767. A variation in the robustness level only has a significant

influence in the “price of robustness” for small values of Γ. From Γ = 0.6N ,
the loss in solution quality became almost constant.

From the results presented, it is possible to state that, in general, the
interdependency density does not influence the “price of robustness” of the
presented model. As in the previous analysis, the penalization due to robust-
ness is small and the reduction factor for different interdependency densities
are statistically the same, regardless the number of requirements and cost
variation strategy. Moreover, the robust model behavior for different robust-
ness levels is not affected by the differences in the interdependency densities.
Variations in the Γ parameter are only statistically significant for small ro-
bustness levels.

5.2.4. RQ2.4: What is the “price of robustness” for the presented NRP model
when it is applied to real-world NRP instances?

In order to answer this question, the same analysis that have been done
for the synthetical instances are also performed for the real-world instances.
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Table 5 presents the GA results for some of the real-world instances with
different cost variation strategies. Results from both Eclipse and Mozilla
projects are preseented. The results of the remaining real-world instances
are omitted due to space constraints.

Table 5: Genetic Algorithm reduction factor results for real-world instances with different
cost variations

Instance PD
Γ

0.05N 0.1N 0.3N 0.5N 0.7N 0.9N N

I Re E 20 CV

10% 3.02 3.22 4.45 6.24 6.03 7.33 8.22
20% 1.45 3.94 8.37 12.24 11.68 11.34 11.89
30% 2.96 4.82 10.74 15.91 16.53 16.53 15.91
40% 4.33 7.49 14.85 18.56 21.92 21.24 21.03
50% 3.96 7.5 17.98 22.29 24.38 24.38 22.98
RD 4.3 5.93 11.39 13.51 13.51 13.78 13.71

I Re M 50 CV

10% 0.22 0.86 3.03 4.29 5.02 4.87 4.9
20% 0.84 2.28 6.1 8.67 9.89 10.06 10.26
30% 1.58 3.87 9.57 13.09 14.03 14.24 14.16
40% 2.04 4.73 12.77 16.62 17.24 16.95 16.85
50% 2.31 5.58 15.29 19.42 20.09 20.21 20.09
RD 2.0 4.32 8.29 10.53 11.32 11.09 10.68

I Re E 100 CV

10% 0.72 1.31 3.54 5.59 6.49 6.44 6.28
20% 1.91 2.72 7.49 11.7 12.25 12.16 12.12
30% 2.56 4.21 10.79 16.04 16.86 16.73 16.96
40% 2.76 5.66 14.3 20.12 20.65 21.04 20.84
50% 4.06 7.42 18.0 23.82 24.89 24.59 24.88
RD 3.45 5.68 11.46 13.55 13.95 14.31 14.17

I Re M 150 CV

10% 0.47 0.98 2.52 4.12 4.76 4.66 4.78
20% 1.04 2.19 5.56 8.57 9.3 9.15 9.29
30% 1.69 3.23 8.26 12.12 13.02 13.1 13.17
40% 2.38 4.53 11.19 16.11 16.74 16.57 16.51
50% 2.91 5.45 13.81 19.08 19.48 19.64 19.56
RD 2.04 4.11 8.94 10.94 11.14 10.99 11.22

I Re E 200 CV

10% 0.85 1.55 3.75 5.91 6.84 6.65 6.7
20% 1.59 2.76 7.42 11.64 12.21 12.35 12.42
30% 2.66 4.84 11.36 16.42 17.55 17.54 17.34
40% 2.96 5.62 14.94 20.5 21.58 21.49 21.28
50% 3.82 7.28 18.59 24.65 25.11 25.14 25.26
RD 3.14 5.5 11.78 13.45 13.47 13.97 14.09

For a cost variation of 10%, a robustness level of 100% is achieved by
losing 6.17% in fitness value, in average. For the real-world NRP instances,
as well as for the synthetical instances, the presented NRP robust model al-
lows a high level of robustness with a considerably low penalization regarding
solution quality. As the cost variation increases, the reduction factor also in-
creases, which is a behavior also present in the synthetical instances results.
For a high value of cost variation, like 50%, one can ensure a 100% of robust-
ness by losing around 22% in solution quality. Such “price of robustness”
can still be considered a small one.
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When comparing the reduction factors of a same instance with different
cost variations, as presented by the synthetical instances, the differences
in the results are statistically proved. Let pP NR

a,b be the p-value for the
comparison between the sample with cost variation a% and the sample with
cost variation b%, for the instance from project P (E for Eclipse and M for
Mozilla) and number of requirements NR. For the instance from the Eclipse
project with 100 requirements, for example, the p-values are: pE 100

10,20 = 7.1×
10−3, pE 100

20,30 = 6.3 × 10−2, pE 100
30,40 = 0.015, pE 100

40,50 = 0.014 and pE 100
50,RD = 7.8 ×

10−3. For all others real instances, the p-values are similar. Therefore, the
cost variation strategy has a significant influence in the “price of robustness”
of the real-world instances.

Regarding the “price of robustness” for the real-world instances when the
robustness level varies, the results are also similar to the synthetical instances.
Samples are composed by the reduction factor results of a certain robustness
level for all real instances, including the ones that are not presented in the
table. For small values of Γ, a change in robustness presents a significant
change in the reduction factor. The p-values are: pGA

0.05,0.1 = 1.21 × 10−8,
pGA

0.1,0.15 = 3.65 × 10−3 and pGA
0.15,0.2 = 5.1 × 10−2. For bigger values of Γ, the

change in reduction factor is almos negligible: pGA
0.5,0.55 = 0.7, pGA

0.9,0.95 = 0.98
and pGA

0.95,1 = 0.96.
In conclusion, all results reported in this analysis are consistent to show

that the behavior of the presented robust NRP formulation, regarding its
“price of robustness”, are similar to those found over synthetical instances.
That is, the penalization due to robustness is very small and the cost variation
strategy employed has a major role in the “price of robustness”. In addition,
the robustness level presents a statistical influence in the “price of robustness”
only for small values of Γ.

Finally, the results presented in the above sections have helped in fully
answering the reasearch question RQ2, pointing out the ability of the model
to produce robust solutions with significantly small loss in solution quality,
regardless the number of requirements, cost variation strategy and interde-
pendency density.

5.2.5. Threats to Validity

In the paper by Barros and Dias-Neto (2011), several threats to the valid-
ity of SBSE empirical studies are presented. Such threats are potential risks
involved in the design and execution of empirical studies that may limit the
reliability of the study and complicate the generalization of the results to a
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larger population of instances. These threats can be classified into different
types: conclusion, internal, external and construct threats.

In this subsection, the major threats to validity in SBSE empirical studies
are considered and it is presented how this paper tried to handle such threats
in order to minimize their effects.

• Conclusion

Not accounting for random variation. In order to account for the
non-deterministic aspect of the search techniques employed, each algorithm
was executed 30 times for each instance and each robustness level. Despite
30 being a well accepted number of runs by the SBSE literature (Arcuri and
Briand, 2011), a greater number of runs would have provided more reliable
results.

Lack of good descriptive statistics. Most of the conclusions drawed
from the empirical study results are based on statistical tests.

Lack of a meaningful comparison baseline. The Random Search is
used as a sanity check for the search techniques employed in the empirical
study. Since this paper is focused in evaluating the behavior of the presented
robust model, there is no actually need to use more sophisticated search
techniques.

• Internal

Poor parameter settings. The search techniques parametrization pro-
cedure is well discussed in this paper. Various different configurations were
evaluated in more than 10% of the total number of instances used in the em-
pirical study. The best configuration of each search technique was choosen.
This parametrization process is actually based in the procedure presented by
Souza et al. (2011).

Lack of discussion on instrumentation of code. The instrumenta-
tion of the source code used in the empirical study is not discussed in the
paper but the code is available at the paper supporting webpage. All in-
stances are also available, which makes the empirical study fully replicable.

Lack of description of data collection procedures. The design and
generation of the synthetical instances are well discussed in the empirical
study settings section. Although the instances were generated presenting
different next release planning situations, a bigger number of instances would
have provided more generalizable results.
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Lack of using real problem instances. This paper uses real-world
NRP instances from the work by Xuan et al. (2012), which were adapted
from bug repositories. Due to the nature of these instances, they do not
present different scenarios. Therefore, different kinds of real instances, not
only from bug repositories, that could fully explore the model’s features,
would have also provided more generalizable results.

• External

Lack of a definition of target instances. The motivation for the
design of the synthetical instances is discussed along the instances generation
procedure.

Lack of instances of growing size. Instances of different sizes were
used in the empirical study, including considerably big instances, with 400,
450 and 500 requirements.

Lack of instances of growing complexity. Regarding the NRP, the
complexity of a instance is directly related to its size. Thus, the empirical
study considered instances with different complexities as well.

• Construct

Lack of validity of cost measures. This empirical study does not
assess nor compare execution cost and performance of search techniques.

Lack of validity of effectiveness measures. Related to the adap-
tation of a software engineering problem to a fitness function. The fitness
function used in this empirical study is a generalization of the fitness function
found in the NRP literature, which is highly studied and accepted as a good
representation of a real next release planning situation.

6. Conclusion and Future Works

The next release problem is an important task in the iterative and incre-
mental software development model. For this problem, optimization models
have been proposed to search for solutions based on estimates of require-
ments’ importance and cost. However, such estimates may turn out to be
erroneous, which can invalidate the search process.

The robust optimization is a framework that identifies and quantifies
uncertainties in optimization problems. It can be used to handle the NRP
input uncertainties and produce robust solutions for this problem. A robust
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optimization model for the NRP have already been proposed by Paixao and
Souza (2013) and this paper is intended to be a extension of this original
work.

In the presented robust model, the uncertainties related to the require-
ment’s importance were modeled in a discrete way using the concept of
scenarios. Differently, the uncertainties regarding requirement’s cost were
treated in a continuous way by considering the expected cost variation for
each requirement, along with a control parameter which allows for the ad-
justment of the desired level of robustness based on the development team
estimating history.

The model was applied to both synthetical and real-world NRP instances.
The first ones were randomly generated and the second ones were extracted
from bug repositories of two large open source software projects (Eclipse and
Mozilla). The instances set was designed to present different next release
planning situations, including instances with different number of require-
ments, different cost variations strategies and different interdependencies be-
tween requirements. In order to evaluate the “price of robustness” for the
presented model, an empirical study was designed, executed and analyzed.

First, the model was applied to synthetical instances, using a cost varia-
tion set to 10% of the original requirement’s cost and no interdependencies.
As a result, it was demonstrated that the gain in robustness was obtained
with a considerably small loss in fitness value for all instances. Statistical
tests were used to evaluate the impact of the robustness level in the “price
of robustness”. As a result, the model presented a nearly constant fitness
loss when the robustness control parameter was calibrated to at least half
the number of requirements. Furthermore, statiscal tests also stated that the
“price of robustness” is pratically independent from the number of require-
ments in the instance.

After that, the “price of robustness” was computed for the synthetical
instances with different cost variation approaches. As expected and statisti-
cally proved, the higher the cost variation, the higher the fitness value loss.
Nonetheless, even with high variations, it was still possible to achieve high
robustness levels by losing only a small fitness fraction. Despite influencing
in the “price of robustness” itself, the cost variation does not influence the
model behavior of presenting an almost constant fitness loss after intermedi-
ate robustness levels.

In sequence, the model was applied to instances with different interde-
pendencies between requirements. It was proved that different interdepen-
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dencies do not have influence in the “price of robustness”. The model could
still generate solutions with little penalization due to robustness and could
still maintain the same loss in solution quality at intermediate levels of ro-
bustness.

At the end, the robust model was applied to the set of real-world in-
stances. The results were nearly the same as for the synthetical instances.
Accordingly, all results indicate that the proposed formulation can be em-
ployed to produce robust solutions with very little loss with regard to quality,
even in large-scale real-world projects.

Based on the results of both synthetical and real instances, a summary of
the main findings of the empirical study performed in this paper is presented
next:

• The “price of robustness” is considerably small, even in worst case
situations.

• The loss in solution quality is only influenced by the level of robustness
on its low values. For robustness levels bigger than half the number of
requirements, the “price of robustness” is almost constant.

• As higher the cost variation, higher is the “price of robustness”.

• Interdependencies do not influence the “price of robustness”.

• The “price of robustness” is independent of the number of requirements.

As an extension of the work by Paixao and Souza (2013), this paper
presents a separated section for both related works and the robust optimiza-
tion framework. The first one is useful to contextualize this paper in the NRP
literature and the second one is helpful in provide more information about
the robust optimization, which makes the robust NRP model easy to under-
stand. Regarding the model’s evaluation, the new empirical study presents
a considerably increase in the number and diversity of instances. Interde-
pendencies between requirements are now considered. Since the number of
algorithms executions was more than three times greater, the results found
by this empirical study are more reliable. In addition, almost all model’s be-
haviors drawed from the results are based on statistical tests, which increases
the generalization of the conclusions.

Since the robust optimization framework has been only applied to prob-
lems related to requirements engineering, a natural future research direction
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points out to the application of this framework to other software engineer-
ing problems subject to uncertainties. In addition, specifically related to the
next release problem, other empirical studies could be proposed to evaluate
the “price of robustness” under different next release planning conditions.
It is also expected to look into different quantification strategies for the re-
quirements’ importance and cost uncertainties. Further studies on different
strategies to obtain the robustness control parameter are needed. Finally, it
seems also interesting to consider other metaheuristics, such as ant colony
optimization or particle swarm optimization, as well as exact techniques, to
evaluate whether different behaviors can be found.
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