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Abstract

The perceptron may incur mistakes linear in the dimension of the input
for an input set of cardinality three for the target concept of a single literal.

1 A lower bound

In this research note we show that the Perceptron with an input set X :=
{x1,x2,x3} with inputs,

x1 := (1, 1, . . . , 1︸ ︷︷ ︸
n−1

), x2 := (1, 1, . . . , 1︸ ︷︷ ︸
3(n−1)

4

, −1, . . . ,−1︸ ︷︷ ︸
n−1

4

),

x3 := (1,−1, . . . ,−1︸ ︷︷ ︸
3(n−1)

4

, 1, . . . , 1︸ ︷︷ ︸
n−1

4

) , (1)

may incur Θ(n) mistakes for the target concept of a single literal. Very general
linear lower bounds for a wide class of algorithms (with |X| = n) including
the perceptron and online linear least squares for this problem have been given
in [KWA97, WV05]. Novikoff’s Theorem [Nov63] for the perceptron gives an
upper bound of n mistakes for this problem as the squared radius of the input
space is n and the margin of the optimal classifier is one. The Winnow [Lit88]
algorithm gives an an upper bound of Θ(log n) for this problem. Any algorithm
that “memorizes” the input can obtain a constant upper bound for this problem
such as online linear least squares. In Figure 1 we recall the primal Perceptron
algorithm.
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Input: {(xt, yt)}`t=1⊆ IRn×{−1,1}.
Initialization: w1 = 0; mistakes = 0.
for t = 1, . . . do

Predict: receive xt

ŷt = sign(x>t wt)
Update: receive yt

if ŷt = yt then
wt+1 = wt

else
wt+1 = wt + ytxt

mistakes = mistakes + 1
end

Figure 1: Perceptron Algorithm (Primal)

Theorem 1. The Perceptron algorithm incurs n+1
2 mistakes if the inputs are

selected uniformly at random from the set X (see equation (1)) with labels y1 =
y2 = y3 = 1 and if x1 is the first input selected in an unbounded trial sequence.

Proof. As the hypothesis vector w of the perceptron is a linear combination of
inputs; we will summarize through a simplifying state diagram. The state w is
determined by three quantities (a, b, c) where

w = (a, b, . . . , b︸ ︷︷ ︸
3(n−1)

4

, c, . . . , c︸ ︷︷ ︸
n−1

4

) . (2)

The state diagram (Figure 2) shows the dynamics of the perceptron with input-
label pairs {(x1, 1), (x2, 1), (x3, 1)} given the followings simplifications,

1. The first input is assumed to be x1.

2. The pair in each node are the values of (b, c).

3. The perceptron converges at mistake n+1
2 .

Every transition in the diagram between distinct states corresponds to a mistake.
For every mistake a is incremented by one. Furthermore the transitions (1, 1)⇒
(0, 2) and (1, 1)⇐ (0, 2) can only occur if a ≤ n−1

2 thus the exact bound of n+1
2

mistakes.

2 A connection to graph label prediction

We observe that the inputs corresponding implicitly to a signed graph Lapla-
cian [Her08]. First, set r = n− 1 and compute the dual (kernel) matrix,

K =

 〈x1,x1〉 〈x1,x2〉 〈x1,x3〉
〈x2,x1〉 〈x2,x2〉 〈x2,x3〉
〈x3,x1〉 〈x3,x2〉 〈x3,x3〉

 =

 1 + r 1 + r
2 1− r

2
1 + r

2 1 + r 1− r
1− r

2 1− r 1 + r

 . (3)
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Figure 2: State Diagram

Now we compute the primal matrix M = K−1

M =

 4
3r − 1

r − 1
3r

− 1
r

1
4 + 1

r
1
4

− 1
3r

1
4

1
4 + 1

3r

 . (4)

Thus M is a symmetrically diagonally dominant matrix with a positive diagonal
hence a signed Laplacian. Therefore the Pounce algorithm [Her08, Theorem 1]
will incur four mistakes on this example. Finally we observe although Pounce is
described in dual form the algorithm may be equally implemented in the primal
form with no need to know the inputs in advance (neither M or K is needed).
In the primal case the Pounce bound will be obtained if the inputs after the
fact determine a primal matrix M which is either a irreducible Laplacian or a
positive definite signed Laplacian.
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