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Abstract. We consider a two-layer network algorithm. The first layer consists of an uncount-
able number of linear units. Each linear unit is an LMS algorithm whose inputs are first
“kernelized.” Each unit is indexed by the value of a parameter corresponding to a parameter-
ized reproducing kernel, here an isotropic Gaussian Kernel parameterized by its width. The
first-layer outputs are then connected to an Exponential Weights algorithm which combines
them to produce the final output. We give performance guarantees for this algorithm.

As a guarantee of performance, we give a relative loss bound for this online algorithm. By
online, we refer to the fact that learning proceeds in trials where on each trial the algorithm
first receives a pattern, then it makes a prediction, after which it receives the true outcome,
and finally incurs a loss on that trial measuring the discrepancy between its prediction and
the true outcome. By relative loss bound, we refer to the fact on any trial, we can bound the
cumulative of loss of the algorithm by the cumulative loss of any predictor in a comparison
class of predictors plus an additive term. Hence the goal is that the performance of algorithm
be almost as good as any predictor in the class; therefore we desire a small additive term.
Often these bounds may be given without any probabilistic assumptions. In this note the
comparison class is the set of functions obtained by a union of reproducing kernel spaces
formed by isotropic Gaussian kernels of varying widths.

1 Introduction

The key contribution of this note is a lemma (cf. Lemma 1) and its application to bounding the
online loss of a particular algorithm (K-LMS-NET) on an adversarially chosen data sequence in terms
of the loss any predictor chosen a posteriori from a union of reproducing kernel spaces of Gaussian
kernels of varying width. In the lemma we consider a function chosen from a Gaussian reproducing
kernel space of particular width then its norm and its squared loss on an arbitrary data sequence are
used to bound the norm and squared loss on the same data sequence, of a function with essentially
the same representation in a Gaussian kernel space of slightly differing width.

In [3] a full introduction is given to the K-LMS-NET algorithm with an added additional application
to the convex combination of two kernels. Here, we consider only a bound for the case of Gaussian
kernel spaces. A major consideration in that paper is a demonstration that predictions for specific
kernels could be well approximated in polynomial time; in this note we do not discuss the polynomial
tractability or lack thereof of for prediction. In the following sections we give a minimal excerpt of
the results of [3] to motivate our final section where we present results for Gaussian kernel spaces.

1.1 Preliminaries and notation

The symbol X denotes an abstract space, for example X could be a set of strings. A Hilbert space
‘H denotes a complete inner product space. The inner product between vectors v and w in H is
denoted by (v,w) and the norm by ||v||. In this note, we will consider Hilbert spaces determined

* The results in this note have been incorporated into [3].



by a reproducing kernel k£ : X x X—R. The prehilbert space induced by kernel k is the set Hy =
span({k(z, -) }vzex) and the inner product of f = 371", Bik(x;,-) and g = >0, Bik(a},-) is (f, ) =
Zglzyzlﬁzﬂék(x“x;) The completion of Hj, is denoted Hj. Two kernels kg : X x X—R and
k1 : X' x X'—=R are termed domain compatible if X = X’. Further useful properties of reproducing
kernels (including conditions on a function k to be a kernel), and introductory material may be found
in [2]. In this note we are particularly interested in the parameterized kernels k, (x,x’) = esollx—x"|l"
with an associated Hilbert Space H,, inner product (-,-),, and norm ||-||,, for every a € [0,1]. We
denote the Lebesque measure of a set A by u(A).

We consider the following on-line learning model based on a model introduced by Littlestone [5,
6]. Learning proceeds in trials ¢ = 1,2,...,£. In each trial ¢ the algorithm receives a pattern x;. It
then gives a prediction denoted ¢;. The algorithm then receives an outcome y;, and incurs a loss
L(y¢, §¢) measuring the discrepancy between y; and ;. In this note z; is usually in the structureless
X; when X is a Hilbert space then x; will be in bold. Predictions y; and outcomes g; are always in
R. In this note L(y:, 9:) = (y¢ — 9¢)°.

In the usual methodology of relative loss bounds the total loss of the algorithm is expressed
as a function of the total loss of any member ¢ : X—R of a comparison class C of predictors [5].
Surprisingly, such bounds are achievable even when there are no probabilistic assumptions made
on the sequence of examples. These bounds are of the following form, for all data sequences S =

(1, 91), (T2,92), -+ (T, 92)),
‘ ’

ZL(yuﬁt) < ZL(yt, c(zy)) + O(r(S,C,c)) Veel

t=1 t=1

where 7(5,C, ¢) is known as the regret, since it measures our “regret” at using our algorithm versus
the “best” predictor ¢ in the comparison class. In the ideal case the regret is a slowly growing function
of the data sequence, the comparison class, and the particular predictor.

2 Predicting well relative to a function in a union of Gaussians kernel
spaces of varying width with the K-LMS-NET algorithm

In this section we prove a relative loss bound for the K-LMS-NET algorithm with Gaussian kernels.
It is not obvious that it is tractable polynomially or otherwise to calculate (well-approximate) the
predictions (cf (2)) of the algorithm. In [3] we show that it possible to give predictions of guaranteed
quality for the width parameterized Gaussian kernel in polynomial time when the patterns are drawn
from a boolean domain; that result is easily extended to an arbitrarily discretized pattern domain,
where though polynomial, the algorithm must “pay” computationally in the degree of discretization.
Here we are not concerned with that computational issue hence the data may be arbitrary real
vectors. The following general bound for the K-LMS-NET algorithm is given in [3]. The bound is a
straightforward chaining of the well known loss bounds [1] of the LMs (GD) algorithm and a variant
of the exponential weights algorithm [7,6,4] that implements direct clipping of the inputs and an
amortized clipping of the cumulative loss.

Theorem 1. The K-LMS-NET algorithm with parameterized kernel function k, (o € [0,1]) with
any data sequence ((x1,y1), (x2,Y2),-- ., (xg,y0)) € (X, [r1,72])" when the algorithm is tuned with
constants r1, 12, and 1, the total square loss of the algorithm will satisfy

1
n(A)

4 14
> L(ys, ) < sup (ZL(yt,ha@:t))) +2\/ LaHaX A+ H3X% +2(r2 —71)?In (5)
t=1

=1 acA
for all measurable sets A C [0, 1] for which there exists a tuple of functions (ha)aca € [Jocs Ha
and constants f/A, I;TA, and, XA, where for all a € A the following conditions must hold:
¢
> Lye, ha(@1)) < La, [hall, < HE, and, ¥t : ko(zy,20) < X3, (6)

t=1



Parameters: &': a pattern space;
ko : X x X—R: a parameterized kernel function («a € [0, 1]);
{Ha} : a set of Hilbert spaces induced by kq;
7 : a learning rate; [r1,r2] : an outcome range.
Data: An online sequence {(1,y1), (z2,y2), ..., (e, ye)) € (X, [r1,72])".
Initialization: r = (r2 — 1), c = 2r?, wi, 1 () =0, wi(a) =1,
&' (z) = max(r1, min(rg, z)) ; ¢;'(w) = max(exp(—%), w).
fort=1,...,¢do
Predict: receive ¢,

=03 (y; — 93(0) o, 20 M
o = oW (@2 (Fi(a))da o

fo wit(a)da

Update: receive y;,

Wet41(2) = Wo o () + (e — 1())ka (21, 7) (3)
Lig(e) = Lige—1y(@) + (g — §1(@))?
witi(a) = @; (GXP(—EL[l,t](a))) (4)
end
Algorithm 1: K-LMS-NET algorithm
and

(7)
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In the following Lemma, the loss and the norm of a particular predictor in H,, is used to bound the
loss and norm of “near” comparable predictors in H,» when |’ — &”| is small. First we define the
surfeit of a function which we use instead of the norm induced by Hilbert space to bound the size

of a function in H,. In this note we avoid the technicalities of defining the surfeit for the complete
Hilbert space Hy; we consider the definition only on the prehilbert space Hy.

Definition 1. Given a positive kernel (Va,y € X2 : k(x,y) > 0), let f € Hy; then define the surfeit
by
. 2 _2
SHf) =mt |17+ 1717 - (3)
The infimum is taken over all decompositions f¥ 4+ f~ = f, where fT = Zi:ﬁpo Bik(z;, ) and

f~ = Zi:6i<0 Bik(x;,+) are a positive linear and negative linear combination of kernel functions,
respectively, such that f = ft+ f==>"", Bik(xi,-).

The infimum exists since || f||> < S2(f).
Lemma 1. Let ko(vy,va) = exp(—soal|vy — va||?) denote a parameterized (o € [0,1]) Gaussian

kernel with fized scale constant sg > 1 over the domain [x1,x2|™ X [x1, x2]™ with associated prehilbert
spaces Hq. Given o function hor € Hy such that ||har||,, > 1 with representation

Rt () = Zﬁimvi, ) (9)




then let

a +6 Zﬂz o +6 Vu *) (10)
Then the square loss and squared norm of ha15 may be bounded by those of hy plus any constant 0 <
c < 1 for all sequences ((X1,v1), (X2,%2), - - -, (Xe,y¢)) € ([w1, 22]™, [r1,72])" where max(|ry], |r2|) > 1.
Hence
’ ‘
D W= hars(x0))* <Y (g — har(x2))* + ¢ (11)
t=1 t=1
”ha +6Ha [ — ”ho/” (12)
for all'§ € [0, s s n@—e 22t
Proof. We will need the inequality,
(1+2) < e?, o€ (—o0,00). (13)

Let € = soon(z1 — 22)* and given hq/ () = Y1, Bikas (Vi, ) define

Zﬁzavz;'; Zﬁza‘ﬁa'?

:3;>0 :0; <0
a+6 § Bik a’+6 V1,7' ; a+5 § Bik a’+6 sz ,
1:3;>0 4:3; <0

and assume without loss of generality that
82(har) = 13512 + 211, (14)

(we discuss this simplifying assumption at the end of this proof). We have Vx € [z1,x2]" that

hér (%) 2 h (%) 2 (1= )hg (%) 5 g (%) < hgry5(x) < (1= e)hg (x) (15)
by (13). Since hqs(x) = hY,(x) + h_,(x) we have that
(ot (%) = har45(x)| < emax(hf, (x), |hg: (x)])- (16)

We now bound the square loss. Let h,, = maxx(h,,(x), |h2,(x)|); then

¢ ‘ ¢
D W = harss(x1))? § (Z/t — har (x0))* + > _2€lys — hor (%) [T + Y €D,
t=1 t=1

t=1

M“ M-~

(Y — hov (x0))? + lehm[2max (|1, [r2]) + 2{lhor | o) + €han]

o~
Il
-

observing that we may bound |ha/(x)| < |ha||,, by the Cauchy-Schwarz inequality applied to
har(x). We now bound the norm squared,

ool s = ZZM; /(vi, vi)ks(Vi, V)

i=1j5=1

<RS2 4R 12 +20-6 S S BiBka (vi,v))
{2 Bi >O} {] BJ <0}

2
< Nhar 2 + € (103 1% + 1185 112,)
< |hall, + €S?(hav).- (17)



Here (17) follows from the assumption in (14). Equations (11) and (12) now hold by substitution
of the upper bound of § into the definition € with use of the assumption that [|hq|, > 1 and
the inequalities [|hy |2, < 8%(hyr) and b2, < §2(has). Regarding the simplifying assumption (14) it
could be the case that there does not exist a decomposition {h,,, h_,} for which the infimum &2 (h,)
is obtained; in this case S?(hy/) in (14) is then simply an upper bound for the true surfeit derived
from the particular decomposition {h,,h_,}. This upper bound holds (and also (17)), however, for
every decomposition, hence there is always a decomposition whose upper bound is as arbitrarily
close to the surfeit as desired. O

Theorem 2. Given the K-LMS-NET algorithm with learning rate 1, an outcome range [r1,73] a pa-
rameterized (o € [0,1]) Gaussian kernel, ko/(v1,va) = exp(—soal|vy — va||*) with fized scale constant
so = 1 over the domain [x1,x2]™ X [x1,x2]™ with associated prehilbert spaces H,, a data sequence
(x1,91), (X2,92)s - - -, (Xe, y¢)) € ([1, 22]™, [r1,72])", and the constants ¢ € (0,1], so > 1, L > 0,
H > 1+ ¢ and with

1
n=——7pm— (18)
Vi
(1+ %)
then the total loss of the algorithm satisfies
l4 ¢
Z Yi, t) Z Yty ha (X)) —|—2\/>H—|—H2—|—c
t=1 t=1
1
ro —11) [lnf—l— 2InS(he) +Insp + Inn + 2In(xs — 1) + Inmax(|r1],|r2|) + In — + 1n 5
c
(19)
for every ha € U, co1) Ha such that ||ha||i +c¢<H?, Zt Ly ha(x:) + ¢ < L,
and o € (0,1 — < (20)
T Ssolmax(|ril, [re))n(z2 — 21)28%(ha)

Proof. The Theorem follows immediately from Theorem 1 and Lemma 1.
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