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Today’s plan

• Optimal separating hyperplane

• Soft margin separation

• Support vector machines

• Connection to regularization

Bibliography: These lecture notes are available at:

http://www.cs.ucl.ac.uk/staff/m.herbster/GI01/
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Separating hyperplane

Let S = {(xi, yi)}
m
i=1 ∈ IRd × {−1,1} be a training set

By a hyperplane we mean a set Hw,b = {x ∈ IRd : w⊤x + b = 0}

(affine linear space) parameterized by w ∈ IRd and b ∈ IR

We assume that the data are linearly separable, that is, there

exist w ∈ IRd and b ∈ IR such that

yi(w
⊤
xi + b) > 0, i = 1, . . . , m (1)

in which case we call Hw,b a separating hyperplane

Note that we require the inequality in eq.(1) to be strict (we do

not admit that the data lie on a hyperplane)
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Separating hyperplane (cont.)

The distance ρx(w, b) of a point x from a hyperplane Hw,b is

ρx(w, b) :=
|w⊤x + b|

‖w‖

If Hw,b separates the training set S we define its margin as

ρS(w, b) :=
m

min
i=1

ρxi(w, b)

If Hw,b is a hyperplane (separating or not) we also define the

margin of a point x as w⊤x + b (note that this can be positive

or negative)
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Optimal separating hyperplane (OSH)

This is the separating hyperplane with maximum margin. It

solves the optimization problem

ρ(S) := max
w,b

min
i

{

yi(w
⊤xi + b)

‖w‖
: yi(w

⊤
xi + b) ≥ 0, i = 1, . . . , m

}

> 0

(a) (b)
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Choosing a parameterization

A separating hyperplane is parameterized by (w, b), but this

choice is not unique (rescaling with a positive constant gives

the same separating hyperplane). Two possible ways to fix the

parameterization:

• Normalized hyperplane: set ‖w‖ = 1, in which case ρx(w, b) =

|w⊤x + b| and ρS(w, b) = minm
i=1 yi(w

⊤xi + b)

• Canonical hyperplane: choose ‖w‖ such that ρS(w, b) = 1
‖w‖

,

i.e. we require that minm
i=1 yi(w

⊤xi+b) = 1 (a data-dependent

parameterization)

We will mainly work with the second parameterization

6



Optimal separating hyperplane

• If we work with normalized hyperplanes we have

ρ(S) = max
w,b

min
i

{

yi(w
⊤
xi + b) : yi(w

⊤
xi + b) ≥ 0, ‖w‖ = 1

}

• If we work with canonical hyperplanes, instead, we have

ρ(S) = max
w,b

{

1

‖w‖
: min

i
{yi(w

⊤
xi + b)} = 1, yi(w

⊤
xi + b) ≥ 0

}

= max
w,b

{

1

‖w‖
: yi(w

⊤
xi + b) ≥ 1

}

=
1

minw,b {‖w‖ : yi(w
⊤xi + b) ≥ 1}
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Optimal separating hyperplane (cont.)

We choose to work with canonical hyperplanes and, so, look at

the optimization problem

Problem P1

Minimize 1
2w⊤w

subject to yi(w⊤xi + b) ≥ 1, i = 1, . . . , m

The quantity 1/‖w‖ is the margin of the OSH
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Saddle point

The solution of problem P1 is equivalent to determine the saddle

point of the Lagrangian function

L(w, b;α) =
1

2
w

⊤
w −

m
∑

i=1

αi

{

yi(w
⊤
xi + b) − 1

}

(2)

where αi ≥ 0 are the Lagrange multipliers

We minimize L over (w, b) and maximize over α. Differentiating

w.r.t w and b we obtain:

∂L

∂b
= −

m
∑

i=1

yiαi = 0

∂L

∂w
= w −

m
∑

i=1

αiyixi = 0 ⇒ w =
m
∑

i=1

αiyixi (3)
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Dual problem

Substituting eq.(3) in eq.(2) leads to the dual problem

Problem P2

Maximize Q(α) := −1
2αα⊤Aαα +

∑

i αi

subject to
∑

i yiαi = 0
αi ≥ 0, i = 1, . . . , m

where A is an m × m matrix A = (yiyjx
⊤
i xj : i, j = 1, . . . , m)

Note that the complexity of this problem depends on m, not on

the number of input components d (same as ridge regression)
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Kuhn-Tucker conditions and support vectors

If ᾱ is a solution of the dual problem then the solution (w̄, b̄) of

the primal problem is given by

w̄ =
m
∑

i=1

ᾱiyixi

Note that w̄ is a linear combination of only the xi for which

ᾱi > 0. These xi are termed support vectors (SVs)

Parameter b̄ can be determined by looking at the Kuhn-Tucker

conditions

ᾱi

(

yi(w̄
⊤
xi + b̄) − 1

)

= 0

Specifically if xj is a SV we have that

b̄ = yj − w̄
⊤
xj

11



Some remarks

• The fact that that the OSH is determined only by the SVs

is most remarkable. Usually, the support vectors are a small

subset of the training data

• All the information contained in the data set is summarized

by the support vectors: The whole data set could be replaced

by only these points and the same hyperplane would be found

• A new point x is classified as sgn
(

∑m
i=1 yiᾱix

⊤
i x + b̄

)
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Linearly nonseparable case

If the data is not linearly separable (or one simply ignores whether

this is the case) the previous analysis can be generalized by look-

ing at the problem

Problem P3

Minimize 1
2w⊤w + C

∑m
i=1 ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi,
ξi ≥ 0, i = 1, . . . , m

The idea is to introduce the slack variables ξi to relax the sepa-

ration constraints (ξi > 0 ⇒ xi has margin less than 1)
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New dual problem

A saddle point analysis (similar to that above) leads to the dual

problem

Problem P4

Maximize Q(α) := −1
2αα⊤Aαα +

∑

i αi

subject to
∑

i yiαi = 0
0 ≤ αi ≤ C, i = 1, . . . , m

This is like problem P2 except that now we have “box con-

straints” on αi. If the data is linearly separable, by choosing C
large enough we obtain the OSH

14



Nonseparable case (cont)

Again we have

w̄ =
m
∑

i=1

ᾱiyixi,

while b̄ can be determined from ᾱα, solution of the problem P4,

and from the new Kuhn-Tucker conditions

ᾱi

(

yi(w̄
⊤
xi + b̄) − 1 + ξ̄i

)

= 0 (∗)

(C − ᾱi)ξ̄i = 0 (∗∗)

Again, points for which ᾱi > 0 are termed support vectors
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A closer look at the KKT conditions

Equation (*) tell us that if

• yi(w̄
⊤xi + b̄) > 1 ⇒ ᾱi = 0 (not a SV)

• yi(w̄
⊤xi + b̄) < 1 ⇒ ᾱi = C (a SV with positive slack ξ̄i)

• yi(w̄
⊤xi + b̄) = 1 ⇒ ᾱi ∈ [0, C] (if ᾱi > 0 a SV “on the

margin”)

Remark: Conversely, from eqs.(*),(**) if ᾱi = 0 then yi(w̄
⊤xi +

b̄) ≥ 1, ξ̄i = 0; if ᾱi ∈ (0, C) then yi(w̄
⊤xi + b̄) = 1, ξ̄i = 0; if

ᾱi = C then yi(w̄
⊤xi + b̄) ≤ 1, ξ̄i ≥ 0
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The role of the parameter C

(a) (b)

(c) (d)

Optimal separating hyperplane for four increasing values of C. Both the

margin and the training error are non-increasing functions of C
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The role of the parameter C (cont.)

The parameter C controls the trade-off between ‖w‖2 and the

training error
∑m

i=1 ξi

It can be shown that the optimal value of the Lagrange multi-

pliers ᾱi (and, so, w̄, b̄) are piecewise continuous functions of C.

This helps re-computing the solution when varying C

C is often selected by minimizing the leave-one-out cross valida-

tion error
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Support Vector Machines (SVMs)

The above analysis holds true if we work with a feature map

φφ : X → W. We simply replace x by φφ(x) and x⊤t by 〈φφ(x), φφ(t)〉 =

K(x, t)

An SVM with kernel K is the function

f(x) =
m
∑

i=1

yiαiK(xi,x) + b, x ∈ X

where the parameters αi solve problem P4 with A = (yiyjK(xi,xj) :

i, j = 1, . . . , m) and b is obtained as discussed above

A new point x ∈ X is classified as sgn(f(x))

19



Connection to regularization

The SVM formulation above is equivalent to the problem

Eλ(w, b) =
m
∑

i=1

max(1 − yi(〈w, φφ(xi)〉 + b),0) + λ‖w‖2

with λ = 1
2C

In fact, we have

min
w,b,ξξ







C
m
∑

i=1

ξi +
1

2
‖w‖2 : yi(〈w, φφ(xi)〉 + b) ≥ 1 − ξi, ξi ≥ 0







=

min
w,b







min
ξξ







C
m
∑

i=1

ξi +
1

2
‖w‖2 : ξi ≥ 1 − yi(〈w, φφ(xi)〉 + b), ξi ≥ 0













=

min
w,b







C
m
∑

i=1

max (1 − yi(〈w, φφ(xi)〉 + b),0) +
1

2
‖w‖2







= CE 1
2C

(w, b)
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SVM regression

SVM’s can be developed for regression as well. Here we choose

the loss = |y − f(x)|ǫ = max(|y − f(x)| − ǫ,0)

Minimize 1
2w⊤w + C

∑m
i=1(ξi + ξ∗i )

subject to w⊤xi + b − yi ≤ ǫ + ξi,
yi − w⊤xi − b ≤ ǫ + ξ∗i ,
ξi, ξ

∗
i ≥ 0, i = 1, . . . , m

SVMs loss functions (both for classification and regression) are

scale sensitive: errors below a certain resolution do not count.

This leads to sparse solutions!
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Solution methods

The above optimization problems are Quadratic Programming

(QP) problems. Several methods (eg, interior point methods)

from convex optimization exist for solving QP problems

If we work with a non-linear kernel, the number of underlying

features, N , is typically much larger (or infinite) than the number

of examples. Thus, we need to solve the dual problem

However, if m ≫ N it is more efficient to solve the primal problem
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Decomposition of the dual problem

For large datasets (say m > 105) it is practically impossible to

solve the dual problem with standard optimization techniques

(matrix A is dense!)

A typical approach is to iteratively optimize wrt. an “active set”

A of variables. Set αα = 0, choose q ≤ m and a subset A of q
variables, A = {αi1, . . . , αiq}. We repeat until convergence:

• Optimize Q(α) wrt. the variables in A

• Remove one variable from A which satisfies the KKT condi-

tions and add one variable, if any, which violates the KKT

conditions. If no such variable exists stop

One can show that after each iteration Q increases
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Removing b

If we are looking for a hyperplane which passes through the origin

we do not need to optimize wrt. b (set b ≡ 0)

In this case we have the simplified dual problem

Problem P4’

Maximize −1
2

∑m
i,j=1 αiαjyiyjK(xi,xj) +

∑

i αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , m

(the constraint
∑m

i=1 yiαi = 0 disappears)
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b or not b?

In general, however, it is important to learn b as well

A simple way is to introduce a small regularization on b, i.e. to

set K ′(x, t) = K(x, t)+λ0 and solve problem P4’ using this new

kernel

In the limit λ0 → ∞, the regularization on b is removed and we

get the additional constraint
∑m

i=1 αiyi = 0 (see why?), so, we

are back to problem P4
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Conditionally positive semidefinite kernels

Note that in order to have a solution to problem P4 the kernel

only needs to be conditionally positive semidefinite (cpsd)

Definition: A kernel K is cpsd if for every m > 0 and x1, . . . , xm ∈
IRd,

∑m
i,j=1 cicjK(xi,xj) ≥ 0 if

∑m
i=1 ci = 0

Example: The kernel K(x, t) = −‖x−t‖2 is conditionally positive

semidefinite but not positive semidefinite

In fact, for every xi ∈ IRd, ci ∈ IR, i = 1, . . . , m such that
∑

i ci = 0 we have that

−
∑

i,j

cicj‖xi − xj‖
2 = −2

∑

i

ci

∑

j

cj‖xj‖
2 + 2

∑

i,j

cicjx
⊤

ixj

= 2
∑

i,j

cicjx
⊤

ixj = 2

∥

∥

∥

∥

∥

∑

i

cixi

∥

∥

∥

∥

∥

2

≥ 0

(however, this is not psd because if all ci are non-negative we get “≤”)
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