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Today’s plan

e Optimal separating hyperplane
e Soft margin separation
e Support vector machines

e Connection to regularization

Bibliography: These lecture notes are available at:
http://www.cs.ucl.ac.uk/staff/m.herbster/GI01/



Separating hyperplane
Let S = {(x;,9;)}™; € RYx {—1,1} be a training set

By a hyperplane we mean a set Hy, = {x € RY: w'x 4+ b = 0}
(affine linear space) parameterized by w € R% and b € R

We assume that the data are linearly separable, that is, there
exist w € R? and b € IR such that

yi(w'x; +0) >0, i=1,....m (1)

in which case we call HW,b a separating hyperplane

Note that we require the inequality in eq.(1) to be strict (we do
not admit that the data lie on a hyperplane)



Separating hyperplane (cont.)

The distance px(w,b) of a point x from a hyperplane Hy, j, is

'w'x + b

[l

pX(W7 b) =

If Hy , separates the training set S we define its margin as

m
pS(W7 b) L= I;Tﬂ]r:l pXi(Wa b)

If Hyp is @ hyperplane (separating or not) we also define the
margin of a point x as w'x + b (note that this can be positive
or negative)



Optimal separating hyperplane (OSH)

This is the separating hyperplane with maximum margin. It
solves the optimization problem

p(S) ;= maxmin
w,b 1

@ (b)



Choosing a parameterization

A separating hyperplane is parameterized by (w,b), but this
choice is not unique (rescaling with a positive constant gives
the same separating hyperplane). Two possible ways to fix the
parameterization:

e Normalized hyperplane: set ||w|| = 1, in which case px(w,b) =
l'w'x 4+ b and pg(w,b) = min2, y;(w'x; + b)

1=

e Canonical hyperplane: choose ||w|| such that pg(w,b) = Hvlv—u

i.e. we require that minl™; y;(w'x;+b) = 1 (a data-dependent
parameterization)

We will mainly work with the second parameterization



Optimal separating hyperplane

e If we work with normalized hyperplanes we have

w.b

p(8) = maxmin {y;(w'x; +b) 1 y;(w'x; +b) >0, |w]| =1}
e If we work with canonical hyperplanes, instead, we have
(1

p(S) = max{——:min{y;(w'x; +b)} = 1,y;(w'x; +b) > 0}

w,b | [[w]]

(1
= max{— :y;(w'x; +b) > 1}
w.b ([lw]

1
Ming s Wl - 5 (Wi, + ) > 1}




Optimal separating hyperplane (cont.)

We choose to work with canonical hyperplanes and, so, look at

the optimization problem

Problem P1

Minimize SW W

subject to y(wix;+b)>1,i=1,...,m

The quantity 1/||w|| is the margin of the OSH



Saddle point

The solution of problem P1 is equivalent to determine the saddle
point of the Lagrangian function
1 - — T
L(w,bja) = —w'w — Y o {y,é(w x; + b) — 1} (2)
i=1
where o; > 0 are the Lagrange multipliers

We minimize L over (w,b) and maximize over «. Differentiating
w.r.t w and b we obtain:

oL di
— - Z YOy — O
ob 1=1
oL m m
= W — Z ayiX; =0 = w = Z Y X, (3)

ow i=1 i=1



Dual problem

Substituting eq.(3) in eq.(2) leads to the dual problem

Problem P2
Maximize Q(a) := —3aTAa+ ;o
subject to Yiyia; = 0
OéZ'ZO, i=1,...,m
where A is an m x m matrix A = (yy;x,x;: 4,5 =1,...,m)

Note that the complexity of this problem depends on m, not on
the number of input components d (same as ridge regression)
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Kuhn-Tucker conditions and support vectors

If @ is a solution of the dual problem then the solution (w,b) of
the primal problem is given by
m
W = Z O_éz'yz'Xi
=1

Note that w is a linear combination of only the x; for which
a; > 0. These x; are termed support vectors (SVs)

Parameter b can be determined by looking at the Kuhn-Tucker
conditions

ai (yi(W'x; +8) —1) =0
Specifically if x; is a SV we have that
E — Y; — V_VTXj
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Some remarks

e [ he fact that that the OSH is determined only by the SVs
IS most remarkable. Usually, the support vectors are a small
subset of the training data

e All the information contained in the data set is summarized
by the support vectors: The whole data set could be replaced
by only these points and the same hyperplane would be found

e A new point x is classified as sgn (Z%n:l yi&ix;x—l—g)
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Linearly nonseparable case

If the data is not linearly separable (or one simply ignores whether
this is the case) the previous analysis can be generalized by look-

ing at the problem

Problem P3
Minimize %WTw-I-C'Z%”:1&‘

subject to yi(w'x; +b) >1—¢,
62201 ’l::].,...,m

The idea is to introduce the slack variables &; to relax the sepa-

ration constraints (&, > 0 = x; has margin less than 1)
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New dual problem

A saddle point analysis (similar to that above) leads to the dual
problem

Problem P4
Maximize Qla) 1= —%aTAoz + >

subject to > ivic; =0
O<; <C, 1=1,....m

This is like problem P2 except that now we have “box con-
straints” on «;. If the data is linearly separable, by choosing C
large enough we obtain the OSH
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Nonseparable case (cont)

Again we have
m
W = Z O_éz'yz'XZ',
i=1

while b can be determined from a, solution of the problem P4,
and from the new Kuhn-Tucker conditions

& (y(Wx+8) —14+&) = 0 (x)

Again, points for which a; > 0 are termed support vectors
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A closer ook at the KK'T conditions

Equation (*) tell us that if

o y,(W'x;+b)>1=a,=0 (notaSV)

o y;(W'x;+b) <1=a;=C (a SV with positive slack &;)

e y;(W'x; +0) =1=a € [0,C] (ifa >0aSV “on the
margin’’)

Remark: Conversely, from eqgs.(*),(**) if a; = 0 then y;(w'x; +
E) > 1,57; = 0O; |if O_éi & (O,C) then yi(V_VTXZ' —I—E) = 1,52' = 0; if
a; = C then y;(W'x; +0) <1, §>0
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The role of the parameter C

© (d)
Optimal separating hyperplane for four increasing values of C'. Both the

margin and the training error are non-increasing functions of C
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The role of the parameter C (cont.)

The parameter C controls the trade-off between ||w|/2 and the
training error > 1 &;

It can be shown that the optimal value of the Lagrange multi-
pliers &; (and, so, v‘v,E) are piecewise continuous functions of C.
This helps re-computing the solution when varying C

C is often selected by minimizing the leave-one-out cross valida-
tion error
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Support Vector Machines (SVMs)

The above analysis holds true if we work with a feature map
¢ X — W. We simply replace x by ¢(x) and x't by (¢(x), ¢(t)) =
K(x,t)

An SVM with kernel K is the function

f(x) = > yio;K(x;,x)+b, x€X

1=1
where the parameters o; solve problem P4 with A = (y;y; K(x;,X;) :
i,7=1,...,m) and b is obtained as discussed above

A new point x € X is classified as sgn(f(x))
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Connection to regularization

The SVM formulation above is equivalent to the problem

Ex(w,b) = Y max(1 — y;((w, ¢(x;)) + b),0) + Allw]|?
1=1

: _ 1
with A—T

In fact, we have

W7b7

m 1
min {C > &+ §||W||2 Ly ((w, (X)) +0) > 1 —6,6 > 0} =
i=1

min 4 mé!” {C > &t %HWH2 & > 1 —yi({w, (x4)) +0),& > 0}} =
i=1

\
(

L =1
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SVM regression

SVM's can be developed for regression as well. Here we choose
the loss = |y — f(x)[e = max(Jy — f(x)] —¢,0)

Minimize %WTW + O (& + &)

subject to w'x; +b—y; <e+§;,
yi—WTXi—b§€+§;<,
£Z7§;k201 7::17”'7m

SVMs loss functions (both for classification and regression) are
scale sensitive: errors below a certain resolution do not count.

This leads to sparse solutions!
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Solution methods

The above optimization problems are Quadratic Programming
(QP) problems. Several methods (eg, interior point methods)
from convex optimization exist for solving QP problems

If we work with a non-linear kernel, the number of underlying
features, N, is typically much larger (or infinite) than the number
of examples. Thus, we need to solve the dual problem

However, if m > N it is more efficient to solve the primal problem

22



Decomposition of the dual problem

For large datasets (say m > 10°) it is practically impossible to
solve the dual problem with standard optimization techniques

(matrix A is dense!)

A typical approach is to iteratively optimize wrt. an “active set”
A of variables. Set a = 0, choose ¢ < m and a subset A of ¢
variables, A = {a,;,...,a;,}. We repeat until convergence:

e Optimize Q(«) wrt. the variables in A

e Remove one variable from A which satisfies the KKT condi-
tions and add one variable, if any, which violates the KKT
conditions. If no such variable exists stop

One can show that after each iteration ) increases
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Removing b

If we are looking for a hyperplane which passes through the origin
we do not need to optimize wrt. b (set b= 0)

In this case we have the simplified dual problem

Problem P4’
Maximize —% Z}:l Q‘io‘jyiyjK(Xia Xj) -+ EZ Q
subject to O<; <(C, 21=1,....m

(the constraint > ; y;o; = O disappears)
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b or not b7
In general, however, it is important to learn b as well
A simple way is to introduce a small regularization on b, i.e. to
set K'(x,t) = K(x,t) + \g and solve problem P4’ using this new
kernel
In the limit A\g — oo, the regularization on b is removed and we

get the additional constraint > ; oyy; = 0 (see why?), so, we
are back to problem P4
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Conditionally positive semidefinite kernels

Note that in order to have a solution to problem P4 the kernel
only needs to be conditionally positive semidefinite (cpsd)

Definition: A kernel K is cpsd if for every m > 0 and x1,...,Xy €
R?, M1 ciciK (x4,%5) > 0 if Y1 ¢; =0
Example: The kernel K(x,t) = —||x—t||? is conditionally positive

semidefinite but not positive semidefinite
In fact, for every x; € R% ¢; e R,i =1,...,m such that }_.¢; = 0 we have that

=Y agllxi—xl1P = 2> e clxlP 42 ciexix;
i, i J 4J

2
>0

g CiX;

)

— . . T . —
= 2 g CiCjX; X = 2
0J

(however, this is not psd because if all ¢; are non-negative we get “<")
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