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Single-Task Learning

Problem: given a set z = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y of i.i.d.
input/output examples drawn from a fixed probability distribution, we wish
to find a deterministic function

f : X → Y

which best approximates the probabilistic relation between X and Y ,
allowing us to predict the output for new unseen input examples.

Example:
y = w0 + w1x + w2x

2 + ε
Goal is to find the parameter
vector w
Difficulty: d � n
High dimensional setting
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Regularization Approach

Solution: search within a “large” space of functions for a “low
complexity” function which fits well the data

min
w

n∑
i=1

(
yi − w>φ(xi )

)2
+ λ Ω(w)

Data Error + Penalty

λ is called the regularization parameter: balances trade-off between fitting
the data and choosing a simpler estimator.
Learnable and computationally efficient methods based on:

Smoothness: Ω = weighted 2-norm
(SVM, kernel methods)

Sparsity: Ω = number of non-zero coefficients
(relaxed to 1-norm, Lasso)
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Kernel methods

Use a non-linear feature map φ : X → V , with potentially
dim(V ) = +∞.
Consider linear functions on the feature space: f (x) = w>φ(x).
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Scalar kernels

The feature map defines a kernel K : X × X → R
K (x , x ′) = φ(x)>φ(x ′).

Examples:

Linear: K (x , x ′) = x>x ′

Polynomial: K (x , x ′) = (1 + x>x ′)d

Gaussian: K (x , x ′) = e−
||x−x′||2

2σ2

The estimator can be written as

f (x) =
n∑

i=1

aiK (x , xi )

Gram matrix: (K )ij = K (xi , xj).

||f ||2K = a>Ka.
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Multi-Task Learning

What if we have multiple supervised tasks?

f1 : X → Y

f2 : X → Y

...

fT : X → Y

Typical scenario: many tasks but only few examples per task

If the tasks are related, learning them jointly should perform better
than learning each task independently
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Example 1: User Modeling

Each task is to predict a user’s ratings to products

CPU CD RAM · · · HD Screen Price Rating

1GHz Y 1GB · · · 40G 15in $1000 7
1GHz N 1.5GB · · · 20G 13in $1200 3

1.5GHz Y 1.5GB · · · 40G 17in $1700 5
2GHz Y 2GB · · · 80G 15in $2000 ?

1.5GHz N 2GB · · · 40G 13in $1800 ?

The ways different people make decisions about products are related.
How do we exploit this?
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Example 2: Recommendation Systems

As above, but now products are discrete objects (e.g. Netflix): ratings
of products by different users

Reformulate as a matrix completion problem

7 ? ? 9 ?

? 2 3 ? 5

? 1 ? ? 3

5 ? ? ? ?

? ? 1 5 ?

How can we fill in the unobserved entries?
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Example 3: Object Detection

Multiple object detection in scenes: detection of each object
corresponds to a classification task

Learning common visual features enhances performance

Character recognition: very few examples should be needed to
recognize new characters
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More Applications

Multi-task learning is ubiquitous

Integration of medical / bioinformatics databases

Robotics: learn multiple actions

Networks: different tasks may be distributed over a (social) network

Finance: predict multiple related stocks
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Related Work

Neural network approach: use a hidden layer with few nodes and a set
of network weights shared by all the tasks [Baxter 96, Caruana 97,
Silver and Mercer 96, etc.]

Hierarchical Bayes [Bakker & Heskes 03, Lenk et al. 96, Xue et al. 07,
Yu et al. 05, Zhang et al., 06 etc.]: enforce task relatedness through
a common prior probability distribution on the tasks’ parameters

Related areas: conjoint analysis, canonical correlation analysis,
longitudinal data analysis, seemingly unrelated regression (SUR) in
econometrics
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Objective and Questions

Learnable and computationally efficient models, which work within a high
dimensional setting.

How to model task structure ?

What is the multi-task counterpart of smoothness/sparsity
assumptions used in single-task learning?

Pooling data across tasks?
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Regularization Approach

For each task we have a separate training set

zt = {(xit , yit)}nt
i=1 ⊂ X × Y

We can define a combined training set

z = {(xi , ti , yi )}n
i=1 ⊂ X × T × Y

where n =
∑T

t=1 nt and ti ∈ T = {1, . . . ,T} is the task index.

We assume the task functions f1, . . . , fT to be related.

We want to minimize

T∑
t=1

n∑
i=1

(yti − ft(xti ))
2 + λ Ω(f1, . . . , fT )

The penalty term encodes the relationships among the tasks

Other loss functions possible (e.g. SVMs)
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Linear Case I

X ⊆ Rd

ft(x) = u>t x , with ut ∈ Rd , t = 1, . . . ,T .

Define u = (u>1 , . . . , u>T )> ∈ RdT and let Ω(u) = u>Eu.

E is a dT × dT symmetric positive definite matrix, which captures
the relations between the tasks.

R(u) =
T∑

t=1

nt∑
i=1

(yti − u>
t xti )

2 + λu>Eu.

Remark. If E is diagonal and each d × d block is a multiple of the
identity, u>Eu =

∑T
t=1 ct ||ut ||22

R(u) =
T∑

t=1

rt(ut)

where rt(ut) =
∑nt

i=1(yti − u>
t xti )

2 + λct ||ut ||22.
The problem decouples and the task are learned independently.
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Linear Case II

Feature space point of view:

ft(x) = w>Btx ;
w ∈ Rp (p ≥ dT ) is a common coefficient vector;
Bt are p × d matrices which are connected to the matrix E .
We equivalently have ut = B>

t w .
Since ut are arbitrary, Bt must be full rank d for any t = 1, . . . ,T .
Define the p × dT matrix B = (B1, . . . ,BT ).
Assume B is also full rank dT .

Linear Multi-Task Kernel:

The real-valued function f (x , t) = w>Btx has squared norm w>w .
The Hilbert space of all such functions has the reproducing kernel

Q((x , t), (x ′, t ′)) = x>B>
t Bt′x

′.

The learning problem can be rewritten as:

S(w) =
T∑

t=1

nt∑
i=1

(yit − w>Btxit)
2 + λw>w .
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Linear Case III

R(u) =
T∑

t=1

nt∑
i=1

(yti − u>
t xti )

2 + λu>Eu

S(w) =
T∑

t=1

nt∑
i=1

(yit − w>Btxit)
2 + λw>w

The problems are related S(w) = R(B>w)

Given B full rank, let E = (B>B)−1

Given E , be A a square root of E (E = A>A) and let B = A>E−1

We then have u>Eu = w>w , with u = B>w .

Proof sketch:

First case: u>Eu = wB(B>B)−1B>w = w>w .

Second case: u>Eu = wA>E−1EE−1Aw = w>w .
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Multi-Task Estimators

By the representer theorem

w∗ =
T∑

t=1

nt∑
i=1

citBtxit

The task functions are then given by

f ∗t (x) =
T∑

t′=1

nt∑
i=1

citQ((x , t), (xit , t
′))

=
n∑

i=1

ciQ((x , t), (xi , ti ))

Pooling data across the tasks:
Each task depends also on the examples from the other tasks.
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Linear Multi-Task Kernels I

Consider the regularizer

Ω(u) = u>Eu =
T∑

t,t′=1

u>t ut′Gtt′

with G a T × T positive definite matrix.

E =


G11Id G12Id · · · G1T Id

G21Id G22Id · · ·
...

...
...

. . .
...

GT1Id GT2Id . . . GTT Id

 = G ⊗ Id

Due to previous result, E = (B>B)−1 implies B>B = E−1 = G−1 ⊗ Id .
The corresponding Linear Multi-Task Kernel is

Q((x , t), (x ′, t ′)) = x>B>
t Bt′x

′ = x>x ′(G−1)tt′

since B>
t Bt′ is the (t, t ′) block of E−1, that is (G−1)tt′Id .
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Linear Multi-Task Kernels: Example I

B>
t = [

√
1− γId , 0, . . . , 0︸ ︷︷ ︸

t−1

,
√

γT Id , 0, . . . , 0︸ ︷︷ ︸
T−t

]

where γ ∈ (0, 1) and 0 is the d × d matrix of all zero entries.

B>
t Bt′ = (1− γ)Id + γT δtt′Id

The Linear Multi-Task Kernel is

Q((x , t), (x ′, t ′)) = x>B>
t Bt′x

′ = (1− γ + γT δtt′)x
>x ′

Furthermore

B>B = [(1− γ)1T + γT IT ]⊗ Id

E = (B>B)−1 = [(1− γ)1T + γT IT ]−1 ⊗ Id

=
γ − 1

γT 2
1T +

1

γT
IT ⊗ Id
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Linear Multi-Task Kernels: Example I Cont’d

Recall that if E = G ⊗ Id ,

u>Eu =
T∑

t,t′=1

u>t ut′Gtt′ .

In our case G = γ−1
γT 2 1T + 1

γT IT , hence

u>Eu =
γ − 1

γT 2

T∑
t,t′=1

u>t ut′ +
1

γT

T∑
t=1

||ut ||22

=
1

T

(
T∑

t=1

||ut ||22 +
1− γ

γ

T∑
t=1

||ut −
1

T

T∑
t′=1

ut′ ||22

)

where γ sets the trade-off between size and variance of the task
parameters. (γ = 1: independent tasks, γ → 0: identical tasks)
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Graph regularization

Use symmetric connectivity matrix A to enforce similarities

Ω(u) =
1

2

T∑
s,t=1

Ast‖us − ut‖2 +
T∑

t=1

‖ut‖2Att

=
T∑

s,t=1

(
||ut ||22Ast − u>s utAst

)
+

T∑
t=1

||ut ||22Att

=
T∑

t=1

||ut ||22
T∑

s=1

(1 + δst)Ast −
d∑

s,t=1

u>s utAst

=
d∑

s,t=1

u>s utLst

where L = D − A, with Dst = δst

(∑T
h=1 Ash + Ast

)
.

Q((x , t), (x ′, t ′)) = x>x ′(L−1)tt′
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Task Clustering

Cluster tasks in r groups so as to make a partition of the tasks

Ω(u) = ε1

r∑
c=1

∑
t∈I (c)

||ut − uc ||22 + ε2

r∑
c=1

mc ||uc ||22.

where

I (c) is the set of the indexes of the tasks that belong to cluster c ;

uc is the average of the tasks in cluster c ;

mc is the number of tasks in cluster c .

Ω(u) =
T∑

t,t′=1

u>t ut′Gtt′

where G depends on the cluster assignments.
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Non-linear Multi-Task Kernels

Non-linear extension:

Q((x , t), (x ′, t ′)) = K (x , x ′)(G−1)tt′

Regularizer:

Ω(f1, . . . , fT ) =
T∑

t,t′=1

〈ft , ft′〉K Gtt′

Gram matrix:
(Q)ni ,j=1 = Q((xi , ti ), (xj , tj))

Solution:

f (x , t) =
n∑

i=1

ciQ((x , t), (xi , ti ))

Example. Regularized Least Squares:

c = (Q + nλI)−1y
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Penalty Function

Define

W =

w1 . . . wT

 =

 w1

...
wd


Consider

min
W

T∑
t=1

n∑
i=1

(yti − w>
t xti )

2 + λ Ω(W )

1 Quadratic: encodes closeness of task parameters

2 Structured sparsity: few common features
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2. Structured Sparsity

Favour matrices with many zero rows (few features shared by the
tasks)

Ωs(W ) =
d∑

j=1

||w j ||2 =
d∑

j=1

√√√√ T∑
t=1

w2
tj
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2. Structured Sparsity (cont.)

Compare matrices W favoured by different norms (green = 0, blue = 1):

#rows = 13 5 3

Ωs = 19 12 8∑
tj |wtj | = 29 29 29
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Penalty Function

min
W

T∑
t=1

n∑
i=1

(yti − w>
t xti )

2 + λ Ω(W )

1 Quadratic: encodes closeness of task parameters

2 Structured sparsity: few common features

3 Spectral: few common meta-features
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3. Rank Regularization

Favour matrices with low rank: Ω(W ) = rank(W )

Tasks

Input features

Meta−features

Intuition: task vectors wt lie on a low dimensional subspace
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Spectral Regularization

Recall the SVD of a matrix

W = U Diag(σ1, . . . , σr ) V >

where U ∈ Rd×r and V ∈ RT×r are orthogonal, r = min(d ,T )
Approximate the rank with the trace norm:

Ωtr(W ) =
r∑

i=1

σi (W )
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Optimization Perspective: Trace Norm

Express Ω in variational form

Ωtr(W ) =
1

2
min
D�0

{
tr(W >D−1W ) + tr(D)

}

min
W , D�0

T∑
t=1

n∑
i=1

(yti − w>
t xti )

2 +
λ

2
tr(W >D−1W ) + tr(D)

tr(W >D−1W ) =
T∑

t=1

w>
t D−1wt = w>Ew

E =


D−1 0 · · · 0

0 D−1 · · · 0
...

...
. . .

...
0 · · · · · · D−1


Jointly convex problem in W and D.
Related to problem of learning the kernel.
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Alternating Minimization Algorithm

W -minimization: solve T independent regularization problems
(e.g. SVM, ridge regression, etc.)

D-minimization: can be solved analytically (via an SVD)

D(W ) =
(WW >)

1
2

tr(WW >)
1
2

Theorem. By introducing a small perturbation

D(W ) =
(WW > + εI)

1
2

tr(WW > + εI)
1
2

we can show that the algorithm converges to the optimal solution.
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Alternating Minimization

Objective function vs. #iterations Time [s] vs. #tasks
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η = 0.05

Compare computational cost with a gradient descent approach
(η := learning rate)
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Experiment (Computer Survey)

Consumers’ ratings of products [Lenk et al. 96]

180 persons (tasks)

8 PC models (training examples); 4 PC models (test examples)

13 binary input features (RAM, CPU, price etc.) + bias term

Integer output in {0, . . . , 10} (likelihood of purchase)

The square loss was used
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Experiment (Computer Survey)

Test error vs. #tasks Eigenvalues of matrix D
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Performance improves with more tasks

A single most important feature shared by everyone
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Experiment (Computer Survey)

TE RAM SC CPU HD CD CA CO AV WA SW GU PR
−0.1

−0.05
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0.25

Method Test

Independent 15.05
Aggregate 5.52

Structured Sparsity 4.04
Trace norm 3.72

Quadratic + Trace 3.20

The most important feature (eigenvector of D) weighs technical
characteristics (RAM, CPU, CD-ROM) vs. price
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Extensions / Not-covered

Convergence rates for the algorithms

Statistical Analysis

Additional structured sparsity constraints

Hierarchical models

Connections to vector-valued learning and multi-class classification

Use of unlabeled data / semi-supervised learning

Other multi-task structures / applications
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