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Single-Task Learning

Problem: given a set z = {(x1,)1),..., (Xn, ¥n)} € X x Y of i.i.d.
input/output examples drawn from a fixed probability distribution, we wish
to find a deterministic function

f:X—-Y

which best approximates the probabilistic relation between X and Y,
allowing us to predict the output for new unseen input examples.

Example: 12
y:W0—|-W1X—|-W2X2—|-6 L
Goal is to find the parameter 08
vector w 06
Difficulty: d > n >

High dimensional setting

02
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Regularization Approach

Solution: search within a “large” space of functions for a “low
complexity” function which fits well the data

n
2
min>" (yi—w'é(x)) + AQw)
i=1
Data Error + Penalty

A is called the regularization parameter. balances trade-off between fitting
the data and choosing a simpler estimator.
Learnable and computationally efficient methods based on:

@ Smoothness: ) = weighted 2-norm
(SVM, kernel methods)

@ Sparsity: Q = number of non-zero coefficients
(relaxed to 1-norm, Lasso)

Baldassarre and Pontil (UCL) Multi-Task Learning



Kernel methods

@ Use a non-linear feature map ¢ : X — V/, with potentially
dim(V) = +o0.
o Consider linear functions on the feature space: f(x) = w' ¢(x).

feature map @
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Scalar kernels

The feature map defines a kernel K: X x X — R
K(x,x') = 6(x) T 6(x).
Examples:

o Linear: K(x,x') =x"x'
o Polynomial: K(x,x") = (1+x"x")4

T

o Gaussian: K(x,x') =e 22

@ The estimator can be written as

f(X) = Za;K(x,x,-)
i=1

Gram matrix: (K);j = K(xi, xj).
If]|% = a' Ka.
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Multi-Task Learning

@ What if we have multiple supervised tasks?

i i X—=Y
L X—=Y
fr : X—=Y

o Typical scenario: many tasks but only few examples per task

@ If the tasks are related, learning them jointly should perform better
than learning each task independently
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Example 1: User Modeling

@ Each task is to predict a user’s ratings to products

| CPU [CD | RAM | --- | HD | Screen | Price || Rating |
1GHz Y 1GB | --- | 40G 15in $1000 7
1GHz N 1.5GB | --- | 20G 13in $1200 3
15GHz | Y | 15GB | --- | 40G 17in $1700 5
2GHz Y 2GB -+ | 80G 15in $2000 ?
15GHz | N 2GB | --- | 40G 13in $1800 ?

@ The ways different people make decisions about products are related.
How do we exploit this?
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Example 2: Recommendation Systems

@ As above, but now products are discrete objects (e.g. Netflix): ratings
of products by different users

@ Reformulate as a matrix completion problem

TV 7171917
71213]7]5
7117173
517172717
71711157

@ How can we fill in the unobserved entries?
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Example 3: Object Detection

@ Multiple object detection in scenes: detection of each object
corresponds to a classification task

@ Learning common visual features enhances performance

@ Character recognition: very few examples should be needed to
recognize new characters
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More Applications

Multi-task learning is ubiquitous

Integration of medical / bioinformatics databases
Robotics: learn multiple actions

Networks: different tasks may be distributed over a (social) network

Finance: predict multiple related stocks
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Related Work

o Neural network approach: use a hidden layer with few nodes and a set
of network weights shared by all the tasks [Baxter 96, Caruana 97,
Silver and Mercer 96, etc.|

@ Hierarchical Bayes [Bakker & Heskes 03, Lenk et al. 96, Xue et al. 07,
Yu et al. 05, Zhang et al., 06 etc.]: enforce task relatedness through
a common prior probability distribution on the tasks' parameters

@ Related areas: conjoint analysis, canonical correlation analysis,
longitudinal data analysis, seemingly unrelated regression (SUR) in
econometrics
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Objective and Questions

Learnable and computationally efficient models, which work within a high
dimensional setting.
@ How to model task structure ?

@ What is the multi-task counterpart of smoothness/sparsity
assumptions used in single-task learning?

@ Pooling data across tasks?
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Regularization Approach

@ For each task we have a separate training set

Zt = {(Xitv)/it)}7;1 cCXxY

We can define a combined training set
zZ= {(Xia ti:yi)}?:]_ CXXxTxY

where n = Ethl neand ti € T = {1,..., T} is the task index.
We assume the task functions fi,..., fT to be related.

We want to minimize

T n
SN (i — filx)? + A QA .., fr)

t=1 i=1

The penalty term encodes the relationships among the tasks

Other loss functions possible (e.g. SVMs)
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Linear Case |

e X CRY

o i(x)=ufx, withu, eRY, t=1,... T.

o Define u=(u],...,ur)" € R and let Q(u) = u' Eu.

o Eisa dT x dT symmetric positive definite matrix, which captures

the relations between the tasks.

T ng
R(u) = Z Z(Yti — uf x¢)? + \u" Eu.

t=1 i=1
Remark. If E is diagonal and each d x d block is a multiple of the
identity, uT Eu =" c||ue| 3

.
R(u) = re(uy)

where re(ur) = 357 (v — uf xei)* + Ace||uel 3.
@ The problem decouples and the task are learned independently.

Baldassarre and Pontil (UCL) Multi-Task Learning



Linear Case Il

Feature space point of view:

o fi(x) = w'B:x;

o weRP (p>dT) is a common coefficient vector;

@ B; are p x d matrices which are connected to the matrix E.

o We equivalently have u; = B w.

@ Since u; are arbitrary, By must be full rank d forany t =1,..., T.
o Define the p x dT matrix B = (Bx,..., Br).

@ Assume B is also full rank dT.
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Linear Case Il

Feature space point of view:
o fi(x) = w'B:x;
w € RP (p > dT) is a common coefficient vector;
B; are p x d matrices which are connected to the matrix E.
We equivalently have u; = BtTw.
Since u; are arbitrary, B; must be full rank d forany t=1,...,T.
Define the p x dT matrix B = (B, ..., BT).
@ Assume B is also full rank dT.
Linear Multi-Task Kernel:
o The real-valued function f(x,t) = w' Byx has squared norm w'w.
@ The Hilbert space of all such functions has the reproducing kernel

Q((Xa t)v (le t/)) = XTBtTBt/X/.

@ The learning problem can be rewritten as:

T n
T 2 T
S(w) = E E (yie —w Bxit)” + Aw ' w.
t=1 j=1
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Linear Case IlI

ZZ(ytl ut th + )\UTEU

t=1 i=1
T nt

= Z Z(}/it —w ! Bxit)? + Aw'w
t=1 i=1

The problems are related S(w) = R(BT w)
o Given B full rank, let E = (BT B)™!
o Given E, be A a square root of E (E = ATA) and let B=ATE~!
@ We then have u' Eu = w'w, with u=BTw
Proof sketch:
o First case: u'Eu=wB(B"B)'BTw =w'w.

@ Second case: u' Eu = wATE1EE"1Aw = w'w.
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Multi- Task Estimators

@ By the representer theorem

T n¢
= E Cit Bexit
t=1 i

i=1
@ The task functions are then given by

T ne
ft*(x) = Z Z CitQ((X7 t)? (Xih t,))
r' 1i=1
—Zc, (x, 1), (xi, ;)

o Pooling data across the tasks:
Each task depends also on the examples from the other tasks.
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Linear Multi-Task Kernels |

Consider the regularizer

-
Q(u) =u' Eu= Z u/ uy Gy

t,t/=1
with G a T x T positive definite matrix.
Guily Gy -+ Gitly

E— G2.1|d G2.2|d —Galy

Grilg Grolg ... Grrlyg

Due to previous result, E = (B B)™! implies B"B=E"' =G 1®ly,.
The corresponding Linear Multi-Task Kernel is

Q((x, 1), (X', ") = XTBtTBt/x' = xTx/(Gfl)tt/

since B, By is the (t,t') block of E71, that is (G 1)ulg.
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Linear Multi-Task Kernels: Example |

B! =[v/1—~14,0 0.0 ,0,4/7T14,0,...,0

1 T—t
where v € (0,1) and 0 is the d x d matrix of all zero entries.

BBy = (1 —y)lg+~Tdwly
The Linear Multi-Task Kernel is
Q((x,t), (X', ")) =x"B Byx' = (1 =7 + T w)x"x
Furthermore
=[(1-lr+9TI7] @l
(B'B) =1~ ’y)lT + 'yTIT] L@ lg

v
= 1 —I |
~T?2 T+7TT®d

E
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Linear Multi-Task Kernels: Example | Cont'd

Recall that if E = G ® Iy,

-
u' Eu= E u;r uy Gypr .

t,t'=1

In our case G = 1—.}%17- + WLTIT' hence

uTEu=" T2 Z Uy ut/+—ZHUt||2

t/_
.
(leut\lfr ”Zuut Zum%)
t’:l

where v sets the trade-off between size and variance of the task
parameters. (7 = 1: independent tasks, v — 0: identical tasks)
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Graph regularization

@ Use symmetric connectivity matrix A to enforce similarities

Z Astllus — uel|* + Z ]| Ace

st 1
-
- Z <||“t”§Ast - U;rutAst) + Z el |3Ae
s,t=1 t=1
= Z|’Ut|’2 Z(1+5st st — Z ug T uAg

t= s, t=1
d
_ ; T
where L = D — A, with Dot = bz (71 Aor + Ast ).
Q(x: 1), (X', 1) = x "X (L)
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Task Clustering

Cluster tasks in r groups so as to make a partition of the tasks

Q(u) —612 Z ||ut—uc||2+€2zmc||uc”2

c=1tel(c

where
@ /(c) is the set of the indexes of the tasks that belong to cluster c;
@ U, is the average of the tasks in cluster c;

@ m. is the number of tasks in cluster c.
T
= Z U;l—ut/ Gtt’
t,t/'=1

where G depends on the cluster assignments.
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Non-linear Multi-Task Kernels

@ Non-linear extension:

Q(x, 1), (', 1)) = K(x, X') (6 V)ew

Regularizer:
-

Q(fl,...,fT) = Z <ft7 ft’>K G

t,t/'=1

o Gram matrix:
(Q)Zj:l = Q((Xia ti)a (Xj7 tj))

@ Solution: .
Fx, 1) =Y aQ((x,t), (%, 1)
i=1
o Example. Regularized Least Squares:

c=(Q+nmi)ty
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© Sparsity and Structure in Multi-Task Learning
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Penalty Function

Define

|

Consider
n

-
mMi/nZZyt, W, X7 —i—)\Q(W)

t=1 j=1

@ Quadratic: encodes closeness of task parameters

@ Structured sparsity: few common features
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2. Structured Sparsity

e Favour matrices with many zero rows (few features shared by the
tasks)

d d
QW)=Y Wil =3
j=1 j=1
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2. Structured Sparsity (cont.)

Compare matrices W favoured by different norms (green = 0, blue = 1):

#rows = 13 5 3
Q. =19 12 8
> lweil =29 29 29
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Penalty Function

T n

mmi/n Z Z(Yti —w i) + A QW)

t=1 i=1

© Quadratic: encodes closeness of task parameters
@ Structured sparsity: few common features

© Spectral: few common meta-features
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3. Rank Regularization

e Favour matrices with low rank: Q(W) = rank(W)

Input features

Intuition: task vectors w; lie on a low dimensional subspace
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Spectral Regularization

Recall the SVD of a matrix
W = U Diag(o1,...,0,) VT
where U € RY*" and V € RT*" are orthogonal, r = min(d, T)

Approximate the rank with the trace norm:

r

Qu(W) =D ai(W)

i=1
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Optimization Perspective: Trace Norm

Express Q in variational form
Qu(W) = 1 min {tr(WTD—lvv) + tr(D)}

2 D>0

. )‘ TPH-1
anbnwtz;; Vi — W] x4i)? 5 tr(W'D W) + tr(D)

-
tr(WTD™ W) = Z w, D tw, = w' Ew

t=1
D71 0 0
0 D~ 0
E= : :
0 D!

Jointly convex problem in W and D.
Related to problem of learning the kernel.
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Alternating Minimization Algorithm

@ W-minimization: solve T independent regularization problems
(e.g. SVM, ridge regression, etc.)

@ D-minimization: can be solved analytically (via an SVD)

1
(WW)}
D(W) = ————
tr(WWT)2
Theorem. By introducing a small perturbation

WWT £ el)3
D(W) = ( )l
tr(WWT 4 el)2

we can show that the algorithm converges to the optimal solution.
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Alternating Minimization

Objective function vs. #iterations Time [s] vs. #tasks
29 T T T T 6 T T
mimi = 0.05 —Alternating
1 =0.03 ---n=005 -

28 ===n=0.01 || 5 LemmnTT

4 Pt
27 -

3 Pt
261 L

2 .-”
251 1
240 20 40 60 80 100 %0 160 150 200

o Compare computational cost with a gradient descent approach
(n := learning rate)
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@ A simple experiment
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Experiment (Computer Survey)

Consumers’ ratings of products [Lenk et al. 96]

180 persons (tasks)

8 PC models (training examples); 4 PC models (test examples)
13 binary input features (RAM, CPU, price etc.) + bias term
Integer output in {0, ...,10} (likelihood of purchase)

The square loss was used
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Experiment (Computer Survey)

Test error vs. #tasks Eigenvalues of matrix D

5.3 0.8

5.2
5.1

491
4.81 b 0.4
a47r
4.6
451
4.4r

50 100 150 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14

@ Performance improves with more tasks

@ A single most important feature shared by everyone
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Experiment (Computer Survey)

0.25

0.2f

Method Test

o Independent 15.05
ot Aggregate 5.52
005 Structured Sparsity | 4.04
0 Trace norm 3.72
~00s Quadratic + Trace | 3.20

-0.1

TERAMSC CPUHD CD CA CO AV WA SW GU PR

@ The most important feature (eigenvector of D) weighs technical
characteristics (RAM, CPU, CD-ROM) vs. price
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Extensions / Not-covered

Convergence rates for the algorithms

Statistical Analysis

Additional structured sparsity constraints

Hierarchical models

Connections to vector-valued learning and multi-class classification

Use of unlabeled data / semi-supervised learning

Other multi-task structures / applications
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