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Problem setting

We are interesting in the following optimization problem

anlgd F(w) = f(w) + r(w).

We assume that r is convex and f is convex and differentiable
Examples:

o SQUARE LOSS: f(w) = 1| Aw — y|2

@ LASSO: r(w) = A||w||1

@ TRACE NORM: r(w) = A|jw/|.
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Convex Analysis |

We assume that f has Lipschitz continuous gradient:

IVE(w) = VEW)II < Lllw — v,

The above assumption is equivalent to

F(w) < F(4) + (VA w v} + 2w VI
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Convex Analysis Il

Define the linear approximation of F in v, w.r.t. f

F(w;v):=f(v)+(Vf(v),w —v) + r(w).

Lemma (Sandwich)

Fw) = 51w = vIP < Flwiv) < F(w)

The left inequality follows from Lemma 1, the right inequality follows from
the convexity of f, f(w) > f(v) 4+ (Vf(v),w — v). O

v

Equivalent version

~ L L
F(w) < Fwiv) + 5w = vI[? < F(w) + S [lw — v|.
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Sandwich example

1 1
F(w) = 5(aw = 1)+ 5w

Flw;v) = %(av S 1) 4 a(av — 1)(w — v) + %|W|

4 : :
—upper bound
—Ft+L/2 ||x-v||?

3, - F 4

% 5 0o o5 1 15 2
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Subdifferential

If f:RY — R is convex, its subdifferential at w is defined as

of(w) = {u: f(v) > f(w)+ (u,v —w), Yv e R}

@ Of is a set-valued function

@ the elements of Of (w) are called the subgradients of f at w

@ intuition: u € Of (w) if the affine function f(w) + (u,v — w) is a
global underestimator of f

w € argmin f(w) <= 0 € 0f(W)
weR
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Proximal operator

The proximal operator of a convex function r : RY — R is defined as

1
prox,(v) = argmin = ||w — v||2 + r(w).
weRd 2

Convexity of r ensures that the minimizer always exists and is unique.
Examples:

@ LASSO: r(w) = A||w/|1, prox,(v) = Hx(v), which is the
component-wise soft-thresholding operator
(HA(v))i = sign(vi)(|vi] — A)+
@ /, NORM: r(w) = A||w||2, prox,(v) = ||VVH2 (vila = A) 4.
@ GROUP LASSO: r(w) = >3 [|wy,[|2.

VUZ

(prOXr(V))U[ = Vi3, T (HV|J5||2 — M)t
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O(1/T) algorithm

Algorithm
wp < 0
fort=0,1,..., T do
Wer1 = argmin,, %HW — w2+ F(w; we)
end for

Recall,
:E(W; we) = f(we) + (VF(we), w — we) + r(w)

The term f(w;) does not depend on w and can be discarded.
By completing the square, we also obtain

= el + (7). — i)+ (%Vf(vvt))z = 5w (e 7)) |

where the extra term (%Vf(wt))2 does not depend on w.
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O(1/T) algorithm (cont'd)

Algorithm 1
wp — 0
fort=0,1,..., T do
Wei1 = Prox: (Wt — %Vf(wt))
end for

Remark. If r = 0, we recover Gradient Descent,

1
Wiyl = We — sz(Wt)

Theorem (Convergence rate)

Let w* € argmin,, F(w), then, at iteration T, Algorithm 1 yields a
solution wt that satisfies

_ L = wol?

Flwr) - F(w') < = — &)
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O(1/T) algorithm - Examples

o f(w) = 3[Aw — y|?
o r(w) = Allwlly

1
Wiyl = H% <Wt — zAT(AWt - _y))

GROUP LASSO

o f(w) = 3[Aw — y|?

o r(w) =AYy w2

1
V= w; — ZAT(AWt —y)
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O(1/T) algorithm - convergence rate proof

Sandwich: F(w) — |jw — v|]2 < F(w; v) < F(w)
Lemma: 3-point property.
If W = argmin,,cra 3w — wol|?> + ¢(w), then, for any w € R

R 1. 1 1 .
O(W) + 51 = wol[2 < ¢(w) + 5llw — wol® = lw — w|
Proof of the convergence rate.

~ L .
F(Wet1) < F(Wegr; we) + §||Wt+1 — w2 (Sandwich-left)
- * L * 2 L * 2 . . *
< F(w™;we) + §||W — W] — §||W — Wep1]® (3-point with w = w™)

L L
< F(w*)+ EHW* - Wt||2 - EHW* - W;:+1||2 (Sandwich-right)
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O(1/T) algorithm - convergence rate proof cont'd

Let us now define £, := F(w;) — F(w™), so that
L L
Ee+1 < §||W* - we|? - §||W* — Wi |
Lemma. The sequence ¢, for t =0,..., T is monotone non-increasing.
- L ) _
F(Wt+1) S F(Wt+1; Wt) + §||Wt+1 — Wt” (SandWlCh—left)
. L
S F(Wt, Wt) + E”Wt — Wt||2 = F(Wt) (Def of Wt+1) O

Since &, is monotone non-increasing,

L
= wrll? < Sllw* = o
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O(1/T?) algorithm

We want to accelerate Algorithm 1, by introducing some factors tending to zero.
We define wyy1 by taking the linear approximation at an auxiliary point v;:

= L
Wit i= argmin F(w; v¢) + §||W — w2

We perform the same analysis as above, letting v* be a reference vector that will
be chosen later
- L .
F(wer1) < F(wegr; ve) + §||Wt+1 —ve? (Sandwich-left)

L L
< F(vw) + §||v* —w|]? - §||v* — w1 (3-point with w = v*)

IA

L L
F(v*) + E”V* - Vt||2 - EHV* - Wt+1||2 (Sandwich-right)

By introducing yet another sequence {u;}, we would like to obtain

Lo?

L6?
t [ w* Ut||2 -+ ||W - Ut+1|| (WANT)

F(wea) < F(v©) +
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O(1/T?) algorithm - cont'd

L L
Flwesn) < F() 5 v = vl = S v = wesa?

w2

* Le? * 2
F(wei1) < F(v )+7||W — uel|” — >

[ w* — uesr|*. (WANT)
In order for (WANT) to hold, we need
v — vy = 0w — )
v = w1 = 0w’ — upgq).

To satisfy the second relation we can choose

v = + 0:w”

Wi — Oy
e = T
t

In order to to exploit the convexity of F, we can choose
Qr = (1 — et)Wt

so that v* becomes a convex combination of w* and the previous point w;.
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O(1/T?) algorithm - cont'd

In summary, we have

* = (1 — et)Wt + etW*

Wiyl — (1 — Gt)wt

U1 = 9
t

Vi = (1 - Ht)Wt + Htut.

Accelerated Algorithm

wo, Up < 0
fort=0,1,..., T do
ve — (1 — 0wy + 0cur
Wep1 < argmin,, F(w; v¢)

ut+1 — Wii1 _(1_0t)Wt

end for

0

1 %Hw — vt||2 = prox

(vt — %Vf(vt))

L
L

(UCL)

Proximal Methods

16 / 20



O(1/T?) algorithm - convergence rate

Let w* € argmin,, F(w), then, at iteration T, Algorithm 2 yields wr that satisfies

Flwr) — F(w*) < 203w P @)

Let us consider the sequence {6;}

6o =1
1—6:1 1
TH =5 (Theta-Def)
t+1 t
The sequence {0;} satisfies
0 < 2/(t +2), (3)

Proof by induction: use arithmetic-geometric inequality on (Theta-Def).

We then have the following convergence rate
. L . 2L,
F(wri1) — F(w") < 592T||W [ 7allw I
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O(1/T?) algorithm - convergence rate proof

162 162
F(wer1) < F(v¥) 4+ —* 5 llw™ — uel® — =+ 5 lw™ = e 2. (WANT)
9? 2 L9? 2
F(wei1) < (1 —0:)F(we) + 0. F(w™) + [w* — uel|* - [w* — ueya ]

Define e, := F(w;) — F(w*) and &, := §||W — ut)?,
5t+1 < (1= 0e)ee + 07(Pr — Prya)

1 -0
9—¥5t+1 9% Tl <O — by
1-46 1-6 i
7 A o S Lo < ®p — Dypy Using (Theta-Def)
t+1 t
Taking the sum from t =1 to t = T gives
1-6 1-6
TTHETH <SP —Pria + TOEO
T+1 0
1—011

1 L
= < ®g==|lw*—wl? O
s ET41 02T€T+1_ 0 2||W uo ||
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Simple numerical comparison

Solve LASSO with d = 100 variables and
@ Regression vector w has 20 nonzero components with random +1
@ n =40 examples, xjj ~ N(0,1) and y = Xw +¢, ¢; «~ N(0,0.01).

Objective value
600 ‘ ;

o
° O(1IT?)|
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@ Proximal algorithms are fast first-order methods.

@ The accelerated algorithm has O(1/T?2) convergence rate.
o All you need is:

o The gradient of the smooth part
o The proximal operator of the non-smooth part
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