
GI01/M055 – Supervised Learning
Proximal Methods

Massimiliano Pontil
(based on notes by Luca Baldassarre)

(UCL) Proximal Methods 1 / 20

Today’s Plan

Problem setting

Convex analysis concepts

Proximal operators

O(1/T) algorithm

O(1/T 2) algorithm

Empirical comparison

(UCL) Proximal Methods 2 / 20

Problem setting

We are interesting in the following optimization problem

min
w∈Rd

F (w) := f (w) + r(w).

We assume that r is convex and f is convex and differentiable
Examples:

SQUARE LOSS: f (w) = 1
2‖Aw − y‖2

LASSO: r(w) = λ‖w‖1

TRACE NORM: r(w) = λ‖w‖∗

(UCL) Proximal Methods 3 / 20

Convex Analysis I

We assume that f has Lipschitz continuous gradient:

‖∇f (w)−∇f (v)‖ ≤ L‖w − v‖.

Lemma

The above assumption is equivalent to

f (w) ≤ f (v) + 〈∇f (v),w − v〉+
L

2
||w − v ||2.

(UCL) Proximal Methods 4 / 20

Convex Analysis II

Define the linear approximation of F in v , w.r.t. f

F̃ (w ; v) := f (v) + 〈∇f (v),w − v〉+ r(w).

Lemma (Sandwich)

F (w)−
L

2
‖w − v‖2 ≤ F̃ (w ; v) ≤ F (w).

Proof.

The left inequality follows from Lemma 1, the right inequality follows from
the convexity of f , f (w) ≥ f (v) + 〈∇f (v),w − v〉.

Equivalent version

F (w) ≤ F̃ (w ; v) +
L

2
‖w − v‖2 ≤ F (w) +

L

2
‖w − v‖2.

(UCL) Proximal Methods 5 / 20

Sandwich example

F (w) =
1

2
(aw − 1)2 +

1

2
|w |

F̃ (w ; v) =
1

2
(av − 1)2 + a(av − 1)(w − v) +

1

2
|w |

−1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

upper bound

Ft+L/2 ||x−v||2

F

(UCL) Proximal Methods 6 / 20

Subdifferential

If f : R
d → R is convex, its subdifferential at w is defined as

∂f (w) = {u : f (v) ≥ f (w) + 〈u, v − w〉 , ∀v ∈ Rd}

∂f is a set-valued function

the elements of ∂f (w) are called the subgradients of f at w

intuition: u ∈ ∂f (w) if the affine function f (w) + 〈u, v − w〉 is a
global underestimator of f

Theorem

ŵ ∈ argmin
w∈Rd

f (w) ⇐⇒ 0 ∈ ∂f (ŵ)

(UCL) Proximal Methods 7 / 20

Proximal operator

The proximal operator of a convex function r : R
d → R is defined as

proxr (v) = argmin
w∈Rd

1

2
‖w − v‖2 + r(w).

Convexity of r ensures that the minimizer always exists and is unique.
Examples:

LASSO: r(w) = λ‖w‖1, proxr (v) = Hλ(v), which is the
component-wise soft-thresholding operator
(Hλ(v))i = sign(vi)(|vi | − λ)+

ℓ2 NORM: r(w) = λ‖w‖2, proxr (v) = v
‖v‖2

(‖v‖2 − λ)+.

GROUP LASSO: r(w) =
∑K

ℓ=1 ‖w|Jℓ
‖2,

(proxr (v))|Jℓ
=

v|Jℓ
‖v|J

ℓ
‖(‖v|Jℓ

‖2 − λ)+.

(UCL) Proximal Methods 8 / 20

O(1/T) algorithm

Algorithm

w0 ← 0
for t = 0, 1, . . . ,T do

wt+1 = argminw
L
2‖w − wt‖

2 + F̃ (w ;wt)
end for

Recall,
F̃ (w ;wt) := f (wt) + 〈∇f (wt),w − wt〉+ r(w)

The term f (wt) does not depend on w and can be discarded.
By completing the square, we also obtain

L

2
‖w −wt‖

2 + 〈∇f (wt), w − wt〉+

(

1

L
∇f (wt)

)2

=
L

2

∥

∥

∥
w −

(

wt −
1

L
∇f (wt)

)

∥

∥

∥

2

where the extra term
(

1
L
∇f (wt)

)2
does not depend on w .

(UCL) Proximal Methods 9 / 20

O(1/T) algorithm (cont’d)

Algorithm 1

w0 ← 0
for t = 0, 1, . . . ,T do

wt+1 = prox r
L

(

wt −
1
L
∇f (wt)

)

end for

Remark. If r = 0, we recover Gradient Descent,

wt+1 = wt −
1

L
∇f (wt)

Theorem (Convergence rate)

Let w∗ ∈ argminw F (w), then, at iteration T , Algorithm 1 yields a

solution wT that satisfies

F (wT)− F (w∗) ≤
L‖w∗ − w0‖

2

2T
(1)

(UCL) Proximal Methods 10 / 20

O(1/T) algorithm - Examples

LASSO

f (w) = 1
2‖Aw − y‖2

r(w) = λ‖w‖1

wt+1 = Hλ

L

(

wt −
1

L
A⊤(Awt − y)

)

GROUP LASSO

f (w) = 1
2‖Aw − y‖2

r(w) = λ
∑K

ℓ=1 ‖w|Jℓ
‖2

v = wt −
1

L
A⊤(Awt − y)

(wt+1)|Jℓ
=

v|Jℓ

‖v|Jℓ
‖

(

‖v|Jℓ
‖2 −

λ

L

)

+

(UCL) Proximal Methods 11 / 20

O(1/T) algorithm - convergence rate proof

Sandwich: F (w)− L
2‖w − v‖2 ≤ F̃ (w ; v) ≤ F (w)

Lemma: 3-point property.

If ŵ = argminw∈Rd
1
2‖w − w0‖

2 + φ(w), then, for any w ∈ R
d

φ(ŵ) +
1

2
‖ŵ − w0‖

2 ≤ φ(w) +
1

2
‖w − w0‖

2 −
1

2
‖w − ŵ‖2.

Proof of the convergence rate.

F (wt+1) ≤ F̃ (wt+1; wt) +
L

2
‖wt+1 − wt‖

2 (Sandwich-left)

≤ F̃ (w∗; wt) +
L

2
‖w∗ − wt‖

2 −
L

2
‖w∗ − wt+1‖

2 (3-point with w = w∗)

≤ F (w∗) +
L

2
‖w∗ − wt‖

2 −
L

2
‖w∗ − wt+1‖

2 (Sandwich-right)

(UCL) Proximal Methods 12 / 20

O(1/T) algorithm - convergence rate proof cont’d

Let us now define εt := F (wt)− F (w∗), so that

εt+1 ≤
L

2
‖w∗ − wt‖

2 −
L

2
‖w∗ − wt+1‖

2

Lemma. The sequence εt , for t = 0, . . . , T is monotone non-increasing.

F (wt+1) ≤ F̃ (wt+1; wt) +
L

2
‖wt+1 − wt‖

2 (Sandwich-left)

≤ F̃ (wt ; wt) +
L

2
‖wt − wt‖

2 = F (wt) (Def. of wt+1)

Since εt is monotone non-increasing,

TεT ≤
T−1
∑

t=0

εt+1 ≤
L

2
‖w∗ − w0‖

2 −
L

2
‖w∗ − wT‖

2 ≤
L

2
‖w∗ − w0‖

2

εT = F (wT)− F (w∗) ≤
L‖w∗ − w0‖2

2T

(UCL) Proximal Methods 13 / 20

O(1/T 2) algorithm

We want to accelerate Algorithm 1, by introducing some factors tending to zero.
We define wt+1 by taking the linear approximation at an auxiliary point vt :

wt+1 := argmin
w

F̃ (w ; vt) +
L

2
‖w − vt‖

2.

We perform the same analysis as above, letting v∗ be a reference vector that will
be chosen later

F (wt+1) ≤ F̃ (wt+1; vt) +
L

2
‖wt+1 − vt‖

2 (Sandwich-left)

≤ F̃ (v∗; vt) +
L

2
‖v∗ − vt‖

2 −
L

2
‖v∗ − wt+1‖

2 (3-point with w = v∗)

≤ F (v∗) +
L

2
‖v∗ − vt‖

2 −
L

2
‖v∗ − wt+1‖

2 (Sandwich-right)

By introducing yet another sequence {ut}, we would like to obtain

F (wt+1) ≤ F (v∗) +
Lθ2

t

2
‖w∗ − ut‖

2 −
Lθ2

t

2
‖w∗ − ut+1‖

2. (WANT)

(UCL) Proximal Methods 14 / 20

O(1/T 2) algorithm - cont’d

F (wt+1) ≤ F (v∗) +
L

2
‖v∗ − vt‖

2 −
L

2
‖v∗ − wt+1‖

2

F (wt+1) ≤ F (v∗) +
Lθ2

t

2
‖w∗ − ut‖

2 −
Lθ2

t

2
‖w∗ − ut+1‖

2. (WANT)

In order for (WANT) to hold, we need

v∗ − vt = θt(w
∗ − ut)

v∗ − wt+1 = θt(w
∗ − ut+1).

To satisfy the second relation we can choose

v∗ = αt + θtw
∗

ut+1 =
wt+1 − αt

θt

In order to to exploit the convexity of F , we can choose

αt = (1− θt)wt

so that v∗ becomes a convex combination of w∗ and the previous point wt .
(UCL) Proximal Methods 15 / 20

O(1/T 2) algorithm - cont’d

In summary, we have

v∗ = (1 − θt)wt + θtw
∗

ut+1 =
wt+1 − (1− θt)wt

θt

vt = (1 − θt)wt + θtut .

Accelerated Algorithm

w0, u0 ← 0
for t = 0, 1, . . . , T do

vt ← (1− θt)wt + θtut

wt+1 ← argminw F̃ (w ; vt) + L
2‖w − vt‖2 = prox r

L

(

vt −
1
L
∇f (vt)

)

ut+1 ←
wt+1−(1−θt)wt

θt

end for

(UCL) Proximal Methods 16 / 20

O(1/T 2) algorithm - convergence rate

Let w∗ ∈ argminw F (w), then, at iteration T , Algorithm 2 yields wT that satisfies

F (wT)− F (w∗) ≤
L

2
θ2
T‖w

∗‖2 (2)

Let us consider the sequence {θt}

θ0 = 1

1− θt+1

θ2
t+1

=
1

θ2
t

. (Theta-Def)

The sequence {θt} satisfies
θt ≤ 2/(t + 2), (3)

Proof by induction: use arithmetic-geometric inequality on (Theta-Def).

We then have the following convergence rate

F (wT+1)− F (w∗) ≤
L

2
θ2
T‖w

∗‖2 ≤
2L

T 2
‖w∗‖2

(UCL) Proximal Methods 17 / 20

O(1/T 2) algorithm - convergence rate proof

F (wt+1) ≤ F (v∗) +
Lθ2

t

2
‖w∗ − ut‖

2 −
Lθ2

t

2
‖w∗ − ut+1‖

2. (WANT)

F (wt+1) ≤ (1− θt)F (wt) + θtF (w∗) +
Lθ2

t

2
‖w∗ − ut‖

2 −
Lθ2

t

2
‖w∗ − ut+1‖

2.

Define εt := F (wt)− F (w∗) and Φt := L
2‖w

∗ − ut‖
2,

εt+1 ≤ (1− θt)εt + θ2
t (Φt − Φt+1)

1

θ2
t

εt+1 −
1− θt

θ2
t

εt ≤ Φt − Φt+1

1− θt+1

θ2
t+1

εt+1 −
1− θt

θ2
t

εt ≤ Φt − Φt+1 Using (Theta-Def)

Taking the sum from t = 1 to t = T gives

1− θT+1

θ2
T+1

εT+1 ≤ Φ0 − ΦT+1 +
1− θ0

θ2
0

ε0

1− θT+1

θ2
T+1

εT+1 =
1

θ2
T

εT+1 ≤ Φ0 =
L

2
‖w∗ − u0‖

2

(UCL) Proximal Methods 18 / 20

Simple numerical comparison

Solve LASSO with d = 100 variables and

Regression vector w̃ has 20 nonzero components with random ±1
n = 40 examples, xij ∽ N (0, 1) and y = Xw + ε, εi ∽ N (0, 0.01).

0 100 200 300 400 500
0

100

200

300

400

500

600
Objective value

O(1/T)

O(1/T2)

(UCL) Proximal Methods 19 / 20

Summary

Proximal algorithms are fast first-order methods.

The accelerated algorithm has O(1/T 2) convergence rate.

All you need is:

The gradient of the smooth part
The proximal operator of the non-smooth part

(UCL) Proximal Methods 20 / 20

