

GI01/M055 – Supervised Learning Proximal Methods

Massimiliano Pontil
(based on notes by Luca Baldassarre)

Today's Plan

- Problem setting
- Convex analysis concepts
- Proximal operators
- $O(1/T)$ algorithm
- $O(1/T^2)$ algorithm
- Empirical comparison

Problem setting

We are interested in the following optimization problem

$$\min_{w \in \mathbb{R}^d} F(w) := f(w) + r(w).$$

We assume that r is convex and f is convex and differentiable
Examples:

- SQUARE LOSS: $f(w) = \frac{1}{2} \|Aw - y\|^2$
- LASSO: $r(w) = \lambda \|w\|_1$
- TRACE NORM: $r(w) = \lambda \|w\|_*$

Convex Analysis I

We assume that f has Lipschitz continuous gradient:

$$\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|.$$

Lemma

The above assumption is equivalent to

$$f(w) \leq f(v) + \langle \nabla f(v), w - v \rangle + \frac{L}{2}\|w - v\|^2.$$

Convex Analysis II

Define the linear approximation of F in v , w.r.t. f

$$\tilde{F}(w; v) := f(v) + \langle \nabla f(v), w - v \rangle + r(w).$$

Lemma (Sandwich)

$$F(w) - \frac{L}{2} \|w - v\|^2 \leq \tilde{F}(w; v) \leq F(w).$$

Proof.

The left inequality follows from Lemma 1, the right inequality follows from the convexity of f , $f(w) \geq f(v) + \langle \nabla f(v), w - v \rangle$. □

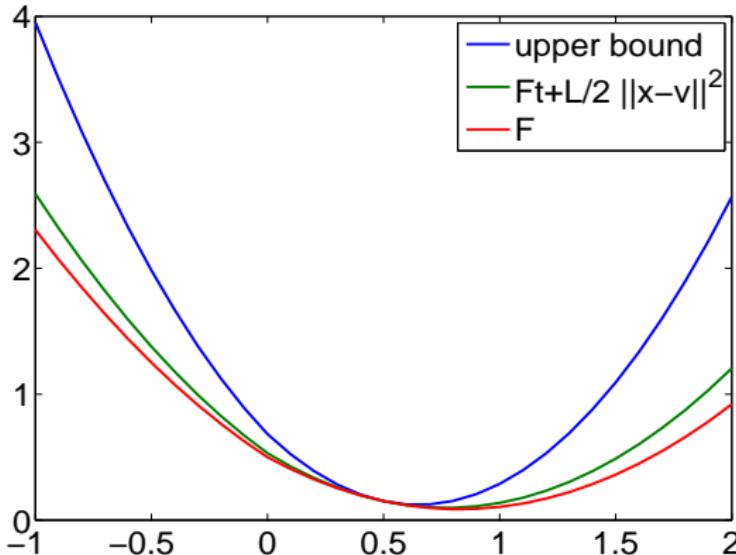
Equivalent version

$$F(w) \leq \tilde{F}(w; v) + \frac{L}{2} \|w - v\|^2 \leq F(w) + \frac{L}{2} \|w - v\|^2.$$

Sandwich example

$$F(w) = \frac{1}{2}(aw - 1)^2 + \frac{1}{2}|w|$$

$$\tilde{F}(w; v) = \frac{1}{2}(av - 1)^2 + a(av - 1)(w - v) + \frac{1}{2}|w|$$



Subdifferential

If $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex, its **subdifferential** at w is defined as

$$\partial f(w) = \{u : f(v) \geq f(w) + \langle u, v - w \rangle, \forall v \in \mathbb{R}^d\}$$

- ∂f is a set-valued function
- the elements of $\partial f(w)$ are called the subgradients of f at w
- intuition: $u \in \partial f(w)$ if the affine function $f(w) + \langle u, v - w \rangle$ is a global underestimator of f

Theorem

$$\hat{w} \in \operatorname{argmin}_{w \in \mathbb{R}^d} f(w) \iff 0 \in \partial f(\hat{w})$$

Proximal operator

The **proximal operator** of a convex function $r : \mathbb{R}^d \rightarrow \mathbb{R}$ is defined as

$$\text{prox}_r(v) = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|w - v\|^2 + r(w).$$

Convexity of r ensures that the minimizer always exists and is unique.

Examples:

- LASSO: $r(w) = \lambda \|w\|_1$, $\text{prox}_r(v) = H_\lambda(v)$, which is the component-wise soft-thresholding operator
 $(H_\lambda(v))_i = \text{sign}(v_i)(|v_i| - \lambda)_+$
- ℓ_2 NORM: $r(w) = \lambda \|w\|_2$, $\text{prox}_r(v) = \frac{v}{\|v\|_2} (\|v\|_2 - \lambda)_+$.
- GROUP LASSO: $r(w) = \sum_{\ell=1}^K \|w_{|J_\ell}\|_2$,
 $(\text{prox}_r(v))_{|J_\ell} = \frac{v_{|J_\ell}}{\|v_{|J_\ell}\|} (\|v_{|J_\ell}\|_2 - \lambda)_+$.

$O(1/T)$ algorithm

Algorithm

```
w0 ← 0
for t = 0, 1, . . . , T do
     $w_{t+1} = \operatorname{argmin}_w \frac{L}{2} \|w - w_t\|^2 + \tilde{F}(w; w_t)$ 
end for
```

Recall,

$$\tilde{F}(w; w_t) := f(w_t) + \langle \nabla f(w_t), w - w_t \rangle + r(w)$$

The term $f(w_t)$ does not depend on w and can be discarded.
By completing the square, we also obtain

$$\frac{L}{2} \|w - w_t\|^2 + \langle \nabla f(w_t), w - w_t \rangle + \left(\frac{1}{L} \nabla f(w_t) \right)^2 = \frac{L}{2} \left\| w - \left(w_t - \frac{1}{L} \nabla f(w_t) \right) \right\|^2$$

where the extra term $\left(\frac{1}{L} \nabla f(w_t) \right)^2$ does not depend on w .

$O(1/T)$ algorithm (cont'd)

Algorithm 1

```
w0 ← 0
for  $t = 0, 1, \dots, T$  do
     $w_{t+1} = \text{prox}_{\frac{r}{L}}(w_t - \frac{1}{L} \nabla f(w_t))$ 
end for
```

Remark. If $r = 0$, we recover *Gradient Descent*,

$$w_{t+1} = w_t - \frac{1}{L} \nabla f(w_t)$$

Theorem (Convergence rate)

Let $w^* \in \operatorname{argmin}_w F(w)$, then, at iteration T , Algorithm 1 yields a solution w_T that satisfies

$$F(w_T) - F(w^*) \leq \frac{L\|w^* - w_0\|^2}{2T} \quad (1)$$

$O(1/T)$ algorithm - Examples

LASSO

- $f(w) = \frac{1}{2} \|Aw - y\|^2$
- $r(w) = \lambda \|w\|_1$

$$w_{t+1} = H_{\frac{\lambda}{L}} \left(w_t - \frac{1}{L} A^\top (Aw_t - y) \right)$$

GROUP LASSO

- $f(w) = \frac{1}{2} \|Aw - y\|^2$
- $r(w) = \lambda \sum_{\ell=1}^K \|w_{|J_\ell}\|_2$

$$\begin{aligned} v &= w_t - \frac{1}{L} A^\top (Aw_t - y) \\ (w_{t+1})_{|J_\ell} &= \frac{v_{|J_\ell}}{\|v_{|J_\ell}\|} \left(\|v_{|J_\ell}\|_2 - \frac{\lambda}{L} \right)_+ \end{aligned}$$

$O(1/T)$ algorithm - convergence rate proof

Sandwich: $F(w) - \frac{L}{2}\|w - v\|^2 \leq \tilde{F}(w; v) \leq F(w)$

Lemma: 3-point property.

If $\hat{w} = \operatorname{argmin}_{w \in \mathbb{R}^d} \frac{1}{2}\|w - w_0\|^2 + \phi(w)$, then, for any $w \in \mathbb{R}^d$

$$\phi(\hat{w}) + \frac{1}{2}\|\hat{w} - w_0\|^2 \leq \phi(w) + \frac{1}{2}\|w - w_0\|^2 - \frac{1}{2}\|w - \hat{w}\|^2.$$

Proof of the convergence rate.

$$F(w_{t+1}) \leq \tilde{F}(w_{t+1}; w_t) + \frac{L}{2}\|w_{t+1} - w_t\|^2 \quad (\text{Sandwich-left})$$

$$\leq \tilde{F}(w^*; w_t) + \frac{L}{2}\|w^* - w_t\|^2 - \frac{L}{2}\|w^* - w_{t+1}\|^2 \quad (\text{3-point with } w = w^*)$$

$$\leq F(w^*) + \frac{L}{2}\|w^* - w_t\|^2 - \frac{L}{2}\|w^* - w_{t+1}\|^2 \quad (\text{Sandwich-right})$$

$O(1/T)$ algorithm - convergence rate proof cont'd

Let us now define $\varepsilon_t := F(w_t) - F(w^*)$, so that

$$\varepsilon_{t+1} \leq \frac{L}{2} \|w^* - w_t\|^2 - \frac{L}{2} \|w^* - w_{t+1}\|^2$$

Lemma. The sequence ε_t , for $t = 0, \dots, T$ is monotone non-increasing.

$$\begin{aligned} F(w_{t+1}) &\leq \tilde{F}(w_{t+1}; w_t) + \frac{L}{2} \|w_{t+1} - w_t\|^2 && \text{(Sandwich-left)} \\ &\leq \tilde{F}(w_t; w_t) + \frac{L}{2} \|w_t - w_t\|^2 = F(w_t) && \text{(Def. of } w_{t+1}) \quad \square \end{aligned}$$

Since ε_t is monotone non-increasing,

$$T\varepsilon_T \leq \sum_{t=0}^{T-1} \varepsilon_{t+1} \leq \frac{L}{2} \|w^* - w_0\|^2 - \frac{L}{2} \|w^* - w_T\|^2 \leq \frac{L}{2} \|w^* - w_0\|^2$$

$$\varepsilon_T = F(w_T) - F(w^*) \leq \frac{L \|w^* - w_0\|^2}{2T} \quad \square$$

$O(1/T^2)$ algorithm

We want to accelerate Algorithm 1, by introducing some factors tending to zero. We define w_{t+1} by taking the linear approximation at an auxiliary point v_t :

$$w_{t+1} := \underset{w}{\operatorname{argmin}} \tilde{F}(w; v_t) + \frac{L}{2} \|w - v_t\|^2.$$

We perform the same analysis as above, letting v^* be a reference vector that will be chosen later

$$F(w_{t+1}) \leq \tilde{F}(w_{t+1}; v_t) + \frac{L}{2} \|w_{t+1} - v_t\|^2 \quad (\text{Sandwich-left})$$

$$\leq \tilde{F}(v^*; v_t) + \frac{L}{2} \|v^* - v_t\|^2 - \frac{L}{2} \|v^* - w_{t+1}\|^2 \quad (\text{3-point with } w = v^*)$$

$$\leq F(v^*) + \frac{L}{2} \|v^* - v_t\|^2 - \frac{L}{2} \|v^* - w_{t+1}\|^2 \quad (\text{Sandwich-right})$$

By introducing yet another sequence $\{u_t\}$, we would like to obtain

$$F(w_{t+1}) \leq F(v^*) + \frac{L\theta_t^2}{2} \|w^* - u_t\|^2 - \frac{L\theta_t^2}{2} \|w^* - u_{t+1}\|^2. \quad (\text{WANT})$$

$O(1/T^2)$ algorithm - cont'd

$$\begin{aligned} F(w_{t+1}) &\leq F(v^*) + \frac{L}{2} \|v^* - v_t\|^2 - \frac{L}{2} \|v^* - w_{t+1}\|^2 \\ F(w_{t+1}) &\leq F(v^*) + \frac{L\theta_t^2}{2} \|w^* - u_t\|^2 - \frac{L\theta_t^2}{2} \|w^* - u_{t+1}\|^2. \end{aligned} \quad (\text{WANT})$$

In order for (WANT) to hold, we need

$$\begin{aligned} v^* - v_t &= \theta_t(w^* - u_t) \\ v^* - w_{t+1} &= \theta_t(w^* - u_{t+1}). \end{aligned}$$

To satisfy the second relation we can choose

$$\begin{aligned} v^* &= \alpha_t + \theta_t w^* \\ u_{t+1} &= \frac{w_{t+1} - \alpha_t}{\theta_t} \end{aligned}$$

In order to exploit the convexity of F , we can choose

$$\alpha_t = (1 - \theta_t)w_t$$

so that v^* becomes a convex combination of w^* and the previous point w_t .

$O(1/T^2)$ algorithm - cont'd

In summary, we have

$$\begin{aligned}v^* &= (1 - \theta_t)w_t + \theta_t w^* \\u_{t+1} &= \frac{w_{t+1} - (1 - \theta_t)w_t}{\theta_t} \\v_t &= (1 - \theta_t)w_t + \theta_t u_t.\end{aligned}$$

Accelerated Algorithm

```
w0, u0 ← 0
for t = 0, 1, ..., T do
    vt ← (1 - θt)wt + θt ut
    wt+1 ← argminw F̃(w; vt) + L/2 ||w - vt||² = prox_L/(1-L) (vt - 1/L ∇f(vt))
    ut+1 ← (wt+1 - (1 - θt)wt) / θt
end for
```

$O(1/T^2)$ algorithm - convergence rate

Let $w^* \in \operatorname{argmin}_w F(w)$, then, at iteration T , *Algorithm 2* yields w_T that satisfies

$$F(w_T) - F(w^*) \leq \frac{L}{2} \theta_T^2 \|w^*\|^2 \quad (2)$$

Let us consider the sequence $\{\theta_t\}$

$$\begin{aligned} \theta_0 &= 1 \\ \frac{1 - \theta_{t+1}}{\theta_{t+1}^2} &= \frac{1}{\theta_t^2}. \end{aligned} \quad (\text{Theta-Def})$$

The sequence $\{\theta_t\}$ satisfies

$$\theta_t \leq 2/(t+2), \quad (3)$$

Proof by induction: use arithmetic-geometric inequality on (Theta-Def).

We then have the following convergence rate

$$F(w_{T+1}) - F(w^*) \leq \frac{L}{2} \theta_T^2 \|w^*\|^2 \leq \frac{2L}{T^2} \|w^*\|^2$$

$O(1/T^2)$ algorithm - convergence rate proof

$$F(w_{t+1}) \leq F(v^*) + \frac{L\theta_t^2}{2} \|w^* - u_t\|^2 - \frac{L\theta_t^2}{2} \|w^* - u_{t+1}\|^2. \quad (\text{WANT})$$

$$F(w_{t+1}) \leq (1 - \theta_t)F(w_t) + \theta_t F(w^*) + \frac{L\theta_t^2}{2} \|w^* - u_t\|^2 - \frac{L\theta_t^2}{2} \|w^* - u_{t+1}\|^2.$$

Define $\varepsilon_t := F(w_t) - F(w^*)$ and $\Phi_t := \frac{L}{2} \|w^* - u_t\|^2$,

$$\varepsilon_{t+1} \leq (1 - \theta_t)\varepsilon_t + \theta_t^2(\Phi_t - \Phi_{t+1})$$

$$\frac{1}{\theta_t^2}\varepsilon_{t+1} - \frac{1 - \theta_t}{\theta_t^2}\varepsilon_t \leq \Phi_t - \Phi_{t+1}$$

$$\frac{1 - \theta_{t+1}}{\theta_{t+1}^2}\varepsilon_{t+1} - \frac{1 - \theta_t}{\theta_t^2}\varepsilon_t \leq \Phi_t - \Phi_{t+1} \quad \text{Using (Theta-Def)}$$

Taking the sum from $t = 1$ to $t = T$ gives

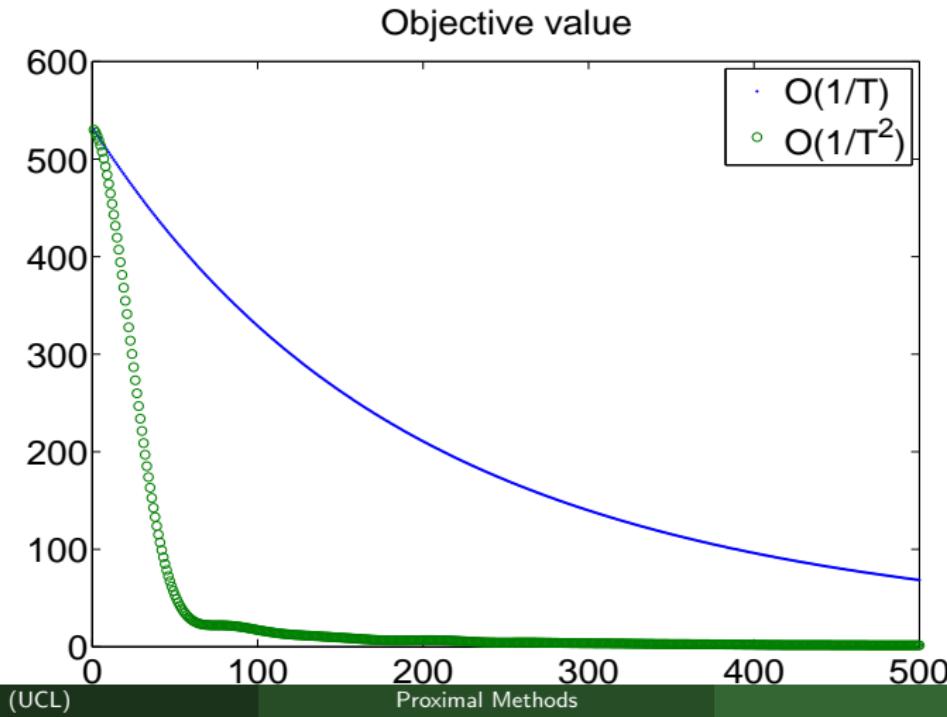
$$\frac{1 - \theta_{T+1}}{\theta_{T+1}^2}\varepsilon_{T+1} \leq \Phi_0 - \Phi_{T+1} + \frac{1 - \theta_0}{\theta_0^2}\varepsilon_0$$

$$\frac{1 - \theta_{T+1}}{\theta_{T+1}^2}\varepsilon_{T+1} = \frac{1}{\theta_T^2}\varepsilon_{T+1} \leq \Phi_0 = \frac{L}{2} \|w^* - u_0\|^2 \quad \square$$

Simple numerical comparison

Solve LASSO with $d = 100$ variables and

- Regression vector \tilde{w} has 20 nonzero components with random ± 1
- $n = 40$ examples, $x_{ij} \sim \mathcal{N}(0, 1)$ and $y = Xw + \varepsilon$, $\varepsilon_i \sim \mathcal{N}(0, 0.01)$.



Summary

- Proximal algorithms are fast first-order methods.
- The accelerated algorithm has $O(1/T^2)$ convergence rate.
- All you need is:
 - The gradient of the smooth part
 - The proximal operator of the non-smooth part