
Supervised Learning Lab 1

Tom Diethe Dorota Glowacka Mark Herbster Guy Lever
John Shawe-Taylor

20 October 2014
Due : 16 January, 2015

Abstract

Using a series of synthetic examples, in this exercise session you will acquaint yourselves with linear
regression, regularization, and nonlinear regression using kernel methods.
Keywords: least squares regression (LSR), ridge regression (RR) — regularization, generalization —
training set, test set, validation set.

Submission

You may work in groups of up to two if desired, only one report need be given for your group.
You should produce a report about your results. You will not only be assessed on the correctness/quality

of your experiment but also on clarity of presentation. You are to submit the code as part of your assignment.
Additionally, please email your Matlab code to sl-support@cs.ucl.ac.uk. Please make sure that your code is
indented and well commented.

PART I [50%]

1 Concepts

Basic idea of regression: we want to fit a function g(x) through a set of samples S = {(x1, y1), (x2, y2), . . . , (xl, yl)},
where (usually) xi ∈ <n and y ∈ <. Thus, we look for a function g such that yi ' g(xi) for all i.

There are two possible reasons why one may want to do regression:

• Modeling of the functional relation between points xi and yi by the function g.

• Prediction of the labels ytest,i corresponding to test points xtest,i (drawn from the same population as
the training set) as g(xtest,i).

The latter is the most common, however both goals are related.
The points xi along with their given label yi make up the training set ; they are used during training

to do the ‘interpolation’ or ‘function estimation’. We use the term test set to denote the set of test points
xtest,i on which we afterwards make predictions. In practice, the true labels ytest,i of the test points are
unknown. However, since we are interested in studying methods for regression and not yet in applying them
to real problems, we will generate our data artificially, such that we do know the actual test set labels to
compare with the predictions made by the regression algorithms.

1



2 Linear regression

In linear regression, the functional relation we are looking for is of the form:

yi ' g(xi) = x′iw (1)

where w is called the weight vector.

2.1 Least Squares Regression (LSR)

In LSR, in order to try to achieve that g(xi) = x′iw ' yi, we look for the weight vector that minimizes the
mean of the squared errors on all training samples:

w∗ = argminw

1

l

l∑
i=1

(x′iw − yi)2. (2)

Using the notation X = (x1x2 · · ·xl)′, a matrix containing the training sample vectors as its rows, we can
rewrite the cost function as:

1

l

l∑
i=1

(x′iw − yi)2 =
1

l
(Xw − y)′(Xw − y) =

1

l
(w′X′Xw − 2y′Xw + y′y) . (3)

Taking the derivative with respect to w and setting this to 0 give the conditions for optimality:

X′Xw∗ = X′y, (4)

such that, for non-singular X′X:

w∗ = (X′X)−1X′y. (5)

Note that in the special case where xi ∈ < is one-dimensional, X is a column vector, and X′X is a scalar
then w will also be a scalar.

Exercise 1 (LSR — effect of the training set size.) In this exercise we experimentally investigate the
effect of the training set size. Make plots wherever this helps your understanding.

a. Pick a random value for w ∈ < from the standard normal distribution, and generate a noisy random
data set, containing 600 samples, as yi = x′iw +ni where each xi and ni are drawn from the standard
normal distribution. (To generate random w, xi, and ni, use the matlab function randn.) Split the
data set into a training set of size 100 a test set of size 500.

b. Using equation (5), estimate w based on the training set. (Note that in Matlab you should not in
general use the inv function (or A−1) as the results can be numerically unstable and computationally
inefficient. Instead use the left division operator: help mldivide.) Using equation (3) compute the
mean squared error on both the training and test sets.

c. In order to investigate the influence of the training set size, repeat part b while using only a 10-sample
training set and a 500-sample test set. Compute the mean squared error on the training and test set.

d. Repeat parts a, b and c, 200 times, each time selecting a different random weight vector and a different
random data set. Average the mean squared errors for both the training and test sets, on both the 100
and 10 element-size training sets. Make a “ 2 × 2 ” table of these averages. What is the effect of
training set size on the training and test set errors? What is larger, the training or the test set error?
Try to explain.

Exercise 2 (LSR — effect of the dimensionality.) Whereas the previous exercise investigated the in-
fluence of the training set size on training set and test set error, here we investigate the influence of the
dimensionality. We now use a data set with x ∈ <10.

2



a. Pick a random weight vector w ∈ <10, and generate a noisy random data set containing 600 samples
as yi = x′iw + ni, where each ni and each component of the xi and w are drawn from the standard
normal distribution. Split the data set into a training set of size 100 a test set of size 500.

b. Repeat the tasks in b, c, d from the previous exercise, but with these (10-dimensional) data sets.

c. Provide an interpretation of your new table in light of the fact that the data is now 10-dimensional.

2.2 Ridge Regression (RR)

As you should have noticed, for a small sample size as compared to the dimensionality, the test set per-
formance may be poor even when the training set error is small. The reason for this is that the regression
function will fit the noise too much, while the interesting part of the signal is too small. This phenomenon
is called overfitting. In order to prevent this, a commonly used practice that can be theoretically motivated
is called regularization: the freedom of the classifier is restricted, such that it is less susceptible to the
influence of noise and generalization is better. The regularized version of LSR is Ridge Regression (RR).

2.3 Regularization

The way regularization is introduced here is by adding a so-called complexity term to the cost function to be
minimized. This complexity term biases the solution to weight vectors that have a small norm, but on the
other hand it reduces the noise sensitivity. As such, the optimal value w∗ will trade off the mean squared
error on the training set (also called the empirical error) with the complexity:

w∗ = argminwγw′w +
1

l

l∑
i=1

(x′iw − yi)2. (6)

The weight of the empirical error as opposed to the complexity in this cost function can be adjusted with
the regularization parameter γ.

Exercise 3 (Ridge Regression.)

1. Prove that solving the optimization problem (6) yields:

X′Xw∗ + γlw∗ = X′y

⇒ w∗ = (X′X + γlI)−1X′y. (7)

2. Prove that X′X + γlI is a positive definite matrix.

Exercise 4 (Effect of the regularisation parameter.) The effect of regularisation should be clearly il-
lustrated by:

a. Perform ridge regression on the data sets as generated in exercise 2 part a for γ ranging from 10−6

up to 103, and all powers of 10 in between. What are the training and test mean squared errors? Plot
the training and test set errors as a function of γ (use a log scale for the γ axis).

b. Repeat the experiment but with 10 training samples.

c. Now perform the ridge regressions of parts a and b, 200 times and then create the plots of the two parts
but with respect to the averaged “errors”. Do your results suggest a method to set the regularisation
parameter to minimise test set error? Write up your observations.

3



2.4 Tuning the regularization parameter: using a validation set

In the exercise 4, we tried a series of values for γ, and observed the resulting training and test set perfor-
mance. In this way, we discovered that the training set error is not a sufficiently good guidance to select
the regularization parameter. . . We need a better method to make an estimate of the expected test set error
for the different values of γ.

One way to proceed is by using a part of the training set for validation. I.e., we divide the training set
in a (smaller) training set and a separate validation set. Then, for different regularization parameter values,
we can compute w∗, and evaluate the mean squared error on the validation set. Then, the regularization
parameter leading to the smallest error on the validation set will be used to do RR on the original training
set (including the validation set).

Exercise 5 (Tuning the regularization parameter using a validation set) Use a validation set to
tune the regularization parameter in the following two cases:

Note: For a and b; do not plot the result of a single “run” but instead using 200 averaged runs.

a. For the data set of exercise 2 part a, make a split of the training set in two parts, 80% for the new
smaller training set and the remaining 20% for the validation set. Plot the validation error as a
function of the regularization parameter, together with the training and test set error. Perform RR
on the full training set (with 100 samples) selecting the regularization parameter that gives rise to the
smallest validation set error.

b. Do the same with only 8 and 2 training and validation samples respectively.

c. In the experiments above each of the 200 runs will have a different selected γ, for each experiment
compute an averaged γ̄ by averaging the 200 selected “γ”s, call them γ̄(100) and γ̄(10), respectively.

Compare γ̄(100) and γ̄(10) In which case is it larger and why?

d. Think about what would happen with the one-dimensional datasets from exercise 1. If you don’t know,
try it. Write up your observations or predictions.

2.5 Cross-validation

Of course, it’s a pity that part of the training set has to be sacrificed. Additionally, a validation set of size
2 is actually very small, such that the result will be very noise sensitive.

An alternative approach that is used very often is called k-fold cross-validation. It divides the training
set in k disjoint sets. Each of these k sets of samples is once lifted out as the validation set, and the
remaining k − 1 sets are used for training. As a result, we get k validation scores. The average of these
scores is used as a good estimate of the test set performance.

Exercise 6 (Tuning the regularization parameter using cross-validation) Use 5-fold cross valida-
tion to tune the regularization parameter.

a. For the data set of exercise 2 part a. Plot the cross-validation score on top of the training and test
set errors for different values γ = {10−6, 10−5, . . . , 103} of the regularization parameter.

b. Do the same with the training set of size 10.

Exercise 7 (Comparison of γ tuning methods) Generate 200 such data sets as above, and tune the
regularization parameter γ using each of these three methods:

• by minimizing the training error (exercise 4),

• by minimizing the validation error (based on a 80%/20% split) (exercise 5,

• by minimizing the 5-fold cross validation error (exercise 6).

For each of these approaches, compute the average test set error and the standard deviation of the errors
on both. Report on both the 100 sample set and the 10 sample set-up.

4



3 Boston housing and kernels

In this section we will use kernel methods to extend linear regression. Boston housing is a classic dataset
where you are given 13 values and a goal is to predict the 14th which is the median house price. It
is described in more detail at http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html.
There are 506 entries which we will split into train and test.

The boston housing data set as “.mat” file is located at

http://www.cs.ucl.ac.uk/staff/M.Herbster/boston

Exercise 8 (Unassesed: Load the data) Load the file ‘boston.mat’ into Matlab. We will be using
the first 13 attributes of the data as our independent variables (regressors) and the 14th as the dependent
variable.

Exercise 9 (Baseline versus full linear regression.) Rather than use all of our attributes for predic-
tion it is often useful to see how well a baseline method works for a problem. In this exercise, we will
compare the following:

1. Predicting with the mean y-value on the training set.

2. Predicting with a single attribute and a bias term.

3. Predicting with all the attributes

The training set should be 2/3, and the test set should be 1/3, of your data in (a)-(c). In the following
average your results over 20 runs (each run based on a different (2/3,1/3) random split).

a. Naive Regression. Create a vector of ones that is the same length as the training set using the function
ones. Do the same for the test set. By using these vectors we will be learning the simple equation
ŷ = b. Perform linear regression on the training set. Calculate the MSE on the training and test sets
and note down the results.

b. Linear Regression with single attributes. For each of the thirteen attributes, perform a linear regression
using only the single attribute but incorporating a bias term so that the inputs are augmented with an
additional 1 entry, (xi, 1), so that we learn a weight vector w ∈ <2.

c. Linear Regression using all attributes. Now we would like to perform linear regression using all of the
data attributes at once.

Perform linear regression on the training set using this regressor, and incorporate a bias term as above.
Calculate the MSE on the training and test sets and note down the results. You should find that this
method outperforms any of the individual regressors.

3.1 Duality

The optimal value w∗ as obtained by Ridge Regression was given by (7). From this we can derive that:

X′Xw∗ + γlw∗ = X′y

γlw∗ = X′y −X′Xw∗

w∗ =
1

γl
X′ [(y −Xw∗)] , (8)

showing that w∗ can be expressed as a linear combination of the columns of X′:

w∗ = X′α∗. (9)

The vector α∗ ∈ <n will be referred to as the dual weight vector.

5

http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
http://www.cs.ucl.ac.uk/staff/M.Herbster/boston


Using this dual vector, the so-called dual version of RR can be derived as follows:

α∗ =
1

γl
(y −Xw∗)

⇒ γlα∗ = (y −XX′α∗)

⇒ (XX′ + γlIl)α
∗ = y

⇒ α∗ = (XX′ + γlIl)
−1y (10)

3.2 Nonlinear regression

For nonlinear regression, the dual version will prove important. Obviously, linear regression is not capable
of achieving a good predictive performance on a nonlinear data set. Here, the dual formulation will prove
extremely useful, in combination with the kernel trick.

This kernel trick is based on nothing more than the observation that equation to compute α∗ (equation
(10)) only contains the vectors xi in inner products with each other. Therefore, it is sufficient to know these
inner products only, instead of the actual vectors xi.

As a result, we can also work with inner products between nonlinear mappings φ : xi → φ(xi) ∈ F of
xi into a so-called feature space F , as long as the inner product K(xi,xj) = φ(xi)

′φ(xj) can be evaluated
efficiently. In many cases, this inner product (from now on called the kernel function) can be evaluated
much more efficiently than the feature vector itself, which can even be of infinite dimensionality in principle.
A commonly used kernel function for which this is the case is the Gaussian kernel, which is defined as:

K(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(11)

Using the notation K = XX′ for the kernel matrix or Gram matrix containing the inner products
between all training points, we can rewrite equation (10) in its kernel formulation (KRR):

α∗ = (K + γlIl)
−1y (12)

The evaluation of the regression function on a test point can be reformulated as:

ytest =

l∑
i=1

α∗iK(xi,xtest) (13)

where the K is the kernel function.

The most efficient way to do this is to compute the kernel function for all the data (train and test), and
then select the appropriate portion of the kernel matrix as the testing data. If the train and test data were
contiguous, this would be the lower left portion of the matrix as follows:

K̄ =

[
K(xtrain,xtrain), K(xtrain,xtest)
K(xtest,xtrain), K(xtest,xtest)

]
(14)

The kernel for the test points is then:

Ktest = K̄(test, train)

The cost function (MSE) can then be calculated as follows:

1

l
(Ktestα− y)′(Ktestα− y) (15)

Effectively, by using such a kernel function corresponding to a nonlinear feature map, a linear regression
method such as RR can be carried out in the feature space, amounting to a nonlinear regression function
(equation (13)) in the original input space.

6



Exercise 10 (Kernel Ridge Regression) In this exercise we will perform kernel ridge regression (KRR)
on the data set. For this exercise, you will hold out 2/3 of data for training and report the test results on
the remaining 1/3.

a. Create a function called kridgereg.m to perform kernel ridge regression using equation (12). It should
take in a kernel matrix K, y vector, and scalar ridge parameter γ as inputs and return a vector α of
dual weights. Note: do not explicitly use a matrix inverse as in (12) instead use the matrix left division
operator: help mldivide. Please explain why your implementation correctly computes α.

b. Create a function called dualcost.m to calculate the Mean Squared Error (MSE) using equation (15).
It should take in a kernel matrix K, y vector, and dual weight vector α as inputs and return a single
value.

c. Create a vector of γ values [2−40, . . . , 2−26] and a vector of σ values [27, 27.5, . . . , 212.5, 213] (recall that
σ is the variance parameter in the Gaussian kernel see equation (11)). Perform kernel ridge regression
on the training set using five-fold cross-validation to choose among all pairing of the values of γ and
σ. Choose the indices of the γ and σ values that perform the best to compute the predictor that you
will use to report the test and training error.

1. Plot the “cross-validation error” (mean over folds of validation error) as a function of γ and σ.

2. Calculate the MSE on the training and test sets for the best γ and σ.

d. Repeat a-c over 20 random (2/3, 1/3) splits of your data record the train/test error and the standard
deviations of the train/test errors and summarise your results for exercise 9 and 10 in the following
type of table.

Method MSE train MSE test
Naive Regression ??.??± σ? ??.??± σ?
Linear Regression (attribute 1) ??.??± σ? ??.??± σ?
Linear Regression (attribute 2) ??.??± σ? ??.??± σ?
Linear Regression (attribute 3) ??.??± σ? ??.??± σ?
Linear Regression (attribute 4) ??.??± σ? ??.??± σ?
Linear Regression (attribute 5) ??.??± σ? ??.??± σ?
Linear Regression (attribute 6) ??.??± σ? ??.??± σ?
Linear Regression (attribute 7) ??.??± σ? ??.??± σ?
Linear Regression (attribute 8) ??.??± σ? ??.??± σ?
Linear Regression (attribute 9) ??.??± σ? ??.??± σ?
Linear Regression (attribute 10) ??.??± σ? ??.??± σ?
Linear Regression (attribute 11) ??.??± σ? ??.??± σ?
Linear Regression (attribute 12) ??.??± σ? ??.??± σ?
Linear Regression (attribute 13) ??.??± σ? ??.??± σ?
Linear Regression (all attributes) ??.??± σ? ??.??± σ?
Kernel Ridge Regression ??.??± σ? ??.??± σ?

In summary, by using the kernel trick, we can apply simple techniques for linear regression in the feature
space to perform nonlinear regression in the input space.

PART II [50%]

Questions

1. [5 pts] Suppose we perform linear regression with a Gaussian kernel Kβ(x, t) = exp(−β‖x − t‖2)
to train a classifier for two-class data (i.e., y ∈ {−1, 1}). This classifier depends on the parameter

7



β selected for the kernel. How should one choose β so that the learned linear classifier simulates a
1-Nearest Neighbor classifier? Explain your reasoning.

2. [10 pts] (Using a perceptron to learn a linear classifier with a bias)

fw,b(x) := sign(w>x + b) .

(a) Describe how we may change the perceptron to learn linear classifier with bias b ∈ IR.

(b) How does incorporating the bias term change the guarantee (perceptron convergence theorem
[Novikoff]) on the number of mistakes incurred by the perceptron algorithm? Specifically, will
the bound on the number of mistakes

i. Increase.

ii. Decrease.

iii. May increase or decrease depending on the dataset.

Discuss your answer.

3. [10 pts] Kernel modification Consider the function Kc(x, z) := c+
∑n
i=1 xizi where x, z ∈ IRn.

(a) For what values of c ∈ IR is Kc a positive semidefinite kernel? Give an argument supporting
your claim.

(b) Suppose we use Kc as a kernel function with linear regression (least squares). Explain how c
influences the solution.

4. [75 pts (a,b,c 45pts, d 30pts)] Sparse learning:

The ‘just a little bit’ problem. In the following problem we will consider the sample complexity of
the perceptron, winnow, least squares, and 1-nearest neighbours algorithms for a specific
problem.

Problem (‘just a little bit’): The m patterns x1, . . . xm are sampled uniformly at random from
{−1, 1}n, and each label is defined as yi := xi,1, i.e., the label of a pattern x is just its first coordinate.
Thus for example here is a typical data set with m = 4 examples in n = 3 dimensions,

X =


1 −1 1
1 1 −1
1 −1 1
−1 1 1

 Y =


1
1
1
−1


We are concerned with estimating the sample complexity as a function the dimension (n) of the data
of this problem. Where our “working definition” of sample complexity is the minimum number of
examples (m) to incur no more than 10% generalisation error (on average).

(a) In this part, you will implement the four classification algorithms and then aim to estimate the
sample complexity of these algorithms. Here you will plot m (left axis) versus n (bottom axis).
As an illustration I include an example plot1 of estimated sample complexity for least squares.

(b) Computing the sample complexity “exactly” by simulation would be extremely expensive compu-
tationally. Thus for your method in part (a) it is necessary to trade-off accuracy and computation
time. Hence i. Please describe your method for estimating sample complexity in detail. ii. Please
discuss the tradeoffs and biases of your method.

(c) Please estimate how m grows as a function of n as n → ∞ for each of the four algorithms
based on experimental or any other “analytical” observations. Here the use of O(·),Ω(·),Θ(·)
will be useful. For example experimentally from the plot given for least squares it seems that
sample complexity grows linearly as a function of dimension, i.e., it is m = Θ(n). Discuss your
observations and compare the performance of the four algorithms.

(d) [Challenge] Find a function f(n) which is a good lower bound of the sample complexity of
1-nearest neighbor algorithm for the ‘just a little bit’ problem. Prove m = Ω(f(n)).

1In the figure I have included “error bars” which indicate the standard deviation for the estimates of m, it is not necessary
for you to include them.

8



20 40 60 80 100 n
10

20

30

40

50

60

m

Figure 1: Estimated number of sample (m) to obtain 10% generalisation error versus dimension (n) for
least squares.
Please include sample complexity plots for all four all four algorithms.

Implementation Notes

1. Winnow: use {0, 1}n for the patterns and {0, 1} for the labels. This follows our presentation in the
notes.

2. Linear Regression:

(a) We use regression vector w to define a classifier fw(x) := sign(w>x).

(b) For this problem we are always in the underdetermined case. We use the convention that the linear
regression solution is a limiting case of the ridge regression solution. A technical presentation
of this is given in PMML (GI07) [Massi’s Lecture 2, see http://www.cs.ucl.ac.uk/staff/M.

Pontil/courses/2-gi07.pdf, equation (6) and details on p25-p26]. The practical “take away,”
is that in matlab we may use w = pinv(X) ∗ y to compute the “w” of minimal norm that is
consistent with the data. This is contrary to the usual advice to use the left division operator
in matlab for regression. This is so that we have consistent definition of linear regression across
programming languages. Finally, note computing pseudoinverse is still inefficient as a method to
solve for the minimal norm solution in the underdetermined case, however for this exercise the
efficiency of the implementation is not the focus.

9

http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/2-gi07.pdf
http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/2-gi07.pdf

	Concepts
	Linear regression
	Least Squares Regression (LSR)
	Ridge Regression (RR)
	Regularization
	Tuning the regularization parameter: using a validation set
	Cross-validation

	Boston housing and kernels
	Duality
	Nonlinear regression


