
Supervised Learning
1. Introduction to supervised learning

Mark Herbster

University College London
Department of Computer Science

September 29, 2014

Acknowledgments and References

Thanks
Thanks to Massi Pontil for the course notes with additions by
John-Shawe Taylor. These in turn were inherited notes from
Fernando Perez-Cruz, Iain Murray and Ed Snelson of the
Gatsby Unit at UCL.

Useful References
I Pattern Recognition and Machine Learning, Bishop,

Christopher M., Springer (2006)
I An Introduction to Support Vector Machines, Shawe-Taylor

J. and Cristianini N., Cambridge University Press (2000)
I Kernel Methods for Pattern Analysis, Shawe-Taylor.J, and

Cristianini N., Cambridge University Press (2004)

Course information

1. When: Mondays, 14:00–17:00
2. Course webpage:

http://www.cs.ucl.ac.uk/staff/M.Herbster/GI01/

3. Office: 8.03, CS Building, Malet Place
4. Questions : sl-support@cs.ucl.ac.uk

Assessment

1. Homework (25%) and Exam (75%)
2. 2 homework assignments

(deliver them on-time, penalty otherwise)
3. To pass the course, you must obtain an average of at least

50% when the homework and exam components are
weighted together.

Material

I Lecture notes
I http://www.cs.ucl.ac.uk/staff/M.Herbster/GI01

I Reference book
I Hastie, Tibshirani, & Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer,
2001

I Additional material (see webpage for more info)
I General: Duda, Hart & Stork; Mitchell; Bishop; ...
I Bayesian methods in ML: Mackay; ...
I Kernel methods: Shawe-Taylor & Cristianini; Schölkopft &

Smola; ...
I Learning theory: Devroye, Lugosi, & Gÿorfi; Vapnik; ...

Prerequisites

I Calculus (real-valued functions, limits, derivatives, Taylor
series, integrals,...)

I Elements of probability theory (random variables,
expectation, variance, conditional probabilities, Bayes
rule,...)

I Fundamentals of linear algebra (vectors, angles, matrices,
eigenvectors/eigenvalues,...),

I A bit of optimization theory (convex functions, Lagrange
multipliers)

Provisional course outline

I (Week 1) Key concepts (probabilistic formulation of learning
from examples, error functionals; loss function, Bayes rule,
learning algorithm, overfitting and underfitting, model selection,
cross validation); Some basic learning algorithms (linear
regression, k−NN);

I (Week 2) Statistical Learning Theory
I (Week 3) Regularisation, Kernels
I (Week 4) Lab on Regression and Kernels
I (Week 5) Support Vector Machines

Provisional course outline

I (Week 6) Sparsity Methods
I (Week 7) Proximal Methods
I (Week 8) Multi-task Learning
I (Week 9) Semi-supervised learning
I (Week 10) Online learning

Today’s plan

I Supervised learning problem
I Why and when learning?
I Regression and classification
I Two learning algorithms: least squares and k -NN
I Probabilistic model, error functional, optimal solutions
I Hypothesis space, overfitting and underfitting
I Choice of the learning algorithm (Model selection)

Supervised Learning Problem

Given a set of input/output pairs (training set) we wish to
compute the functional relationship between the input and the
output

x −→ f −→ y

I Example 1: (people detection) given an image we wish to say if
it depicts a person or not. The output is one of 2 possible
categories

I Example 2: (pose estimation) we wish to predict the pose of a
face image The output is a continuous number (here a real
number describing the face rotation angle)

In both problems the input is a high dimensional vector x
representing pixel intensity/color

Why and when learning?

I The aim of learning is to develop software systems able to
perform particular tasks such as people detection.

I Standard software engineering approach would be to
specify the problem, develop an algorithm to compute the
solution, and then implement efficiently.

I Problem with this approach is developing the algorithm:
I No known criterion for distinguishing the images;
I In many cases humans have no difficulty;
I Typically problem is to specify the problem in logical terms.

Learning approach

I Learning attempts to infer the algorithm for a set of
(labelled) examples in much the same way that children
learn by being shown a set of examples (eg sports/non
sports car).

I Attempts to isolate underlying structure from a set of
examples. Approach should be

I stable: finds something that is not chance part of set of
examples

I efficient: infers solution in time polynomial in the size of the
data

I robust: should not be too sensitive to mislabelled/noisy
examples

People Detection Example

People detection example (cont.)

Supervised Learning Model
I Goal: Given training data (pattern,target) pairs

S = {(x1, y1), . . . , (xm, ym)}

infer a function fS such that

fS(xi) ≈ yi

for the future data

S′ = {(xm+1, ym+1), (xm+2, ym+2), . . .}.

I Classification : y ∈ {−1,+1} ; Regression : y ∈ IR

I X : input space (eg, X ⊆ IRd), with elements x ,x ′,xi , . . .

I Y: output space, with elements y , y ′, yi , . . .

Supervised learning problem: compute a function which “best
describes” I/O relationship

Learning algorithm

I Training set: S = {(xi , yi)
m
i=1} ⊆ X × Y

I A learning algorithm is a mapping S 7→ fS
I A new input x is predicted as fS(x)

Example Algorithms

I Linear Regression
I Neural Networks
I Decision Trees
I Support Vector Machines

I In the course we mainly deal with deterministic algorithms
but we’ll also comment on some randomized ones

I Today: we describe two simple learning algorithms:
linear regression and k−nearest neighbours

Some Important Questions

I How is the data collected? (need assumptions!)
I How do we represent the inputs? (may require

preprocessing step)
I How accurate is fS on new data (study of generalization

error) / How do we evaluate performance of the learning
algorithm on unseen data?

I How “complex” is a learning task? (computational
complexity, sample complexity)

I Given two different learning algorithms, fS and gS which
one should we choose? (model selection problem)

Some difficulties/aspects of the learning process

I New inputs differ from the ones in the training set (look up
tables do not work!)

I Inputs are measured with noise
I Output is not deterministically obtained by the input
I Input is high dimensional but some components/variables

may be irrelevant
I Whenever prior knowledge is available it should be used

More Examples / Applications

I Optical digit recognition (useful for identifying the numbers
in a ZIP code from a digitalized image) (Computer Vision)

I Predicting house prices based on sq. feet, number of
rooms, distance from central London,... (Marketing)

I Estimate amount of glucose in the blood of a diabetic
person (Medicine)

I Detect spam emails (Information retrieval)
I Predict protein functions / structures (Bioinformatics)
I Speaker identification / sound recognition (Speech

recognition)

Binary classification: an example
We describe two basic learning algorithms/models for
classification which can be easily adapted to regression as well.
We choose: X = IR2, x = (x1, x2) and Y = {green, red}
Our first learning algorithm computes a linear function (lin-
ear regression), w>x + b and classifies an input x as

f (x) =


red w>x + b > 0

green w>x + b ≤ 0

Linear Regression (Least Squares)

I Emerged in response to problems in Astronomy and
Navigation

I Motivated by the need to combine multiple noisy
measurements

I Method first described by Gauss in 1794

A Simple Problem – 1

Given the data set

S = {((1,1),3), ((2,3),7)}

Then with the new input x3 = (4,2)

how should we predict y3?

Why? What Assumptions?

A Simple Problem – 2

Model as a system of equations

w1 + w2 = 3
2w1 + 3w2 = 7

or more directly as
Xw = y

with

X =

(
1 1
2 3

)
; y =

(
3
7

)

A Simple Problem – 3

Solving in matlab
w = X−1y

>> y = [3 ; 7]
y = 3

7
>> X = [1,1 ; 2, 3]
X = 1 1

2 3
>> XI = Xˆ(-1)
XI = 3 -1

-2 1
>> w= XI * y
w = 2

1
>> w= X \ y %% More efficient than calculating inverse use in practice see help mldivide
w = 2

1

We now have the linear predictor

ŷ = w · x

Thus predict ŷ3 = w ·x3 = w1x3,1 +w2x3,2 = 4×2+1×2 = 10.

A Simple Problem – 4

What if?

I Overdetermined:

S = {((1,1),3), ((2,3),7), ((2,1),3)}

I Underdetermined:

S = {((1,1,2),3), ((2,4,3),7)}

Minimize square error – 1

x

y

y=wx

Find a linear predictor ŷ = w · x to minimize the square error
over the data S = {(x1, y1), . . . , (xm, ym)} thus

Minimize:
m∑

i=1

(yi − ŷi)
2 =

m∑
i=1

(yi −w · xi)
2

Minimize square error – 2

Thus given,
S = {(x1, y1), . . . , (xm, ym)}

with x ∈ IRn we may represent the pattern and target vectors
with the matrices

X =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n

...
...

. . .
...

xm,1 xm,2 . . . xm,n

 and y =


y1
y2
...

ym



MSE in Matrix Notation

Thus in matrix notation the empirical mean (square) error of the
linear predictor ŷ = w · x on the data sequence S is

Eemp(S,w) =
1
m

m∑
i=1

(yi − ŷi)
2

=
1
m

m∑
i=1

(yi −w · xi)
2

=
1
m

m∑
i=1

(yi −
n∑

j=1

wjxi,j)
2

=
1
m
(Xw − y)>(Xw − y)

MSE minimization. General Case
To compute the minimum we solve for

∇w Eemp(S,w) = 0.

recalling that

∇w =


∂
∂w1
...
∂
∂wn


Thus we need to solve,

∇w

[
(Xw − y)T (Xw − y)

]
= 0 m∑

i=1

∂

∂w1

 n∑
j=1

Xijwj − yi

2

, . . . ,

m∑
i=1

∂

∂wn

 n∑
j=1

Xijwj − yi

2

>

= 0

Normal equations

Consider the 2-d case (n = 2)

Eemp(S,w) =
1
m

m∑
i=1

(
yi −w>xi

)2

Note that:

∂Eemp(S,w)

∂wk
=

2
m

m∑
i=1

(
w>xi−yi

)∂(w>xi)

∂wk
=

2
m

m∑
i=1

(
w>xi−yi

)
xik

Hence, to find w = (w1,w2)
> we need to solve the linear

system of equations

m∑
i=1

(xikxi1w1 + xikxi2w2) =
m∑

i=1

xikyi , k = 1,2

Normal equations (cont.)

In vector notations:

m∑
i=1

xix>i w =
m∑

i=1

xiyi

In matrix notation:
X>Xw = X>y

where

X> =

x11 · · · xm1
...

. . .
...

x1n · · · xmn

 ≡ [x1, · · · ,xm
]
, y =

y1
...

ym



Least square solution

X>Xw = X>y

For the time being we will assume that the matrix X>X is
invertible, so we conclude that

w = (X>X)−1X>y

Otherwise, the solution may not be unique...

Comment:
In matlab use

w = X\y

Going back to “b” (adding a bias term)

Substituting x> by (x>,1) and w> by (w>,b), the above system
of equations can be expressed in matrix form as (exercise):

(X>X)w + X>1b = X>y
1>Xw + mb = 1>y

that is
[
X>X X>1
1>X m

] [
w
b

]
=

[
X>y
1>y

]
where 1 = (1,1, . . . ,1)>, m × 1 vector of “ones”

MSE minimization. An easy example – 1

Suppose we are given the data

S = {(1, y1), (1, y2), . . . , (1, ym)}

i.e. x1 = x2 . . . xm = 1.

What is the interpretation of the w that minimizes Eemp(S,w)?

MSE minimization. An easy example – 2

Given (w is a scalar as the data are 1-d)

Eemp(S,w) =
1
m

m∑
i=1

(yi − w)2

to compute the minimum we solve for

∂

∂w
Eemp(S,w) = 0.

Solving for w we have

∂

∂w
1
m

m∑
i=1

(yi − w)2 = − 1
m

2
m∑

i=1

(yi − w) = 0,

hence w = 1
m
∑m

i=1 yi is the minimizer.

A different approach: k−nearest neighbours

Let N(x ; k) be the set of k nearest training inputs to x and

Ix = {i : xi ∈ N(x ; k)}

the corresponding index set

f (x) =


red if 1

k
∑

i∈Ix yi >
1
2

green if 1
k
∑

i∈Ix yi ≤ 1
2

I Closeness is measured using a metric (eg, Euclidean dist.)
I Local rule (compute local majority vote)
I Decision boundary is non-linear

Note: for regression we set f (x) = 1
k

∑
i∈Ix yi (a “local mean”)

k−NN: the effect of k

I The smaller k the more irregular the decision boundary

k = 15 k = 1

I How to choose k? later...

Linear regression vs. k−NN (informal)

I Global vs. local
I Linear vs. non-linear
I Bias / variance considerations:

I LR relies heavily on linear assumption (may have large
bias) k -NN does not

I LR is stable (solution does not change much if data are
perturbed) 1-NN isn’t!

I k−NN sensitive to input dimension d : if d is high, the
inputs tends to be far away from each other!

Optimal Supervised Learning

Model: We assume that the data is obtained by sampling i.i.d.
from a fixed but unknown probability density P(x , y)
Expected error:

E(f) := E
[
(y − f (x))2

]
=

∫
(y − f (x))2dP(x , y)

Our goal is to minimize E
Optimal solution: f ∗ := argminfE(f) (called Bayes estimator)

Problem A: in order to compute f ∗ we need to know P!

Note: for binary classification with Y = {0,1} and f : X → Y, E(f)
counts the average number of mistakes of f (aka expected
misclassification error)

Regression function

Let us compute the optimal solution f ∗ for regression Y = IR.
Using the decomposition P(y ,x) = P(y |x)P(x) we have

E(f) =
∫
X

{∫
Y

(
y − f (x)

)2dP(y |x)
}

dP(x)

So we see that f ∗ (called the regression function) is

f ∗(x) = argminc∈IR

∫
Y
(y − c)2dP(y |x) =

∫
Y

ydP(y |x)

Bayes classifier

The Bayes classifier (estimator) is the minimiser of the
expected loss

I for C-class classification, f ∗ (called the Bayes classifier) is

f ∗(x) := argmax
c∈{1,...,C}

P(Y = c|x)

The Bayes error rate (optimal) is then∫
(1− P(Y = f ∗(x)|x)dP(x)

Revisiting k -NN

k -NN attempts approximate P(Y = c|x) as |{i:yi=c,i∈Ix}|
k

I Expectation is replaced by averaging over sample data
I Conditioning at x is relaxed to conditioning on some region

close to x

As the number of samples goes to infinity (m→∞) 1-NN and
k -NN become “good” estimators.

1-NN is near asymptotically optimal
Theorem
As the number samples goes to infinity the error rate is no more
than twice the Bayes error rate.

Proof Sketch
Observe that as the number samples goes to infinity, m→∞,

P(c|x) ≈ P(c|xnn)

Thus the expected rate of 1-NN is

C∑
c=1

P(c|x)[1− P(c|x)]

We need to show

C∑
c=1

P(c|x)[1− P(c|x)] ≤ 2[1− max
c∈{1,...,C}

P(c|x)]

Proof Sketch – continued

Proof Sketch – continued
Let c∗ = argmaxc∈{1,...,C} P(c|x) and p∗ = P(c∗|x). Observe
that

C∑
c=1

P(c|x)[1− P(c|x)] =
C∑

c 6=c∗
P(c|x)[1− P(c|x)] + p∗(1− p∗)

≤ (C − 1)
1− p∗

C − 1
[1− 1− p∗

C − 1
] + p∗(1− p∗)

= (1− p∗)[1− 1− p∗

C − 1
+ p∗]

Where the second line follows since the sum is maximised
when all “P(c|x)” have the same value. And since p∗ < 1 we
are done.

k -NN is near asymptotically optimal

One can show that E(k − NN)→ E(f ∗) as m→∞ provided
that:

1. k(m)→∞
2. k(m)

m → 0

Weakness: the approximation (rate of convergence) depends
critically on the input dimension...

Reference
Cover & Hart : Nearest Neighbor Pattern Classification, 1967

Solving the “Problem A” (revisiting least squares)

P(x , y) is unknown⇒ cannot compute f ∗ = argminfE(f)
We are only given a sample (training set) from P
A natural approach: we approximate the expected error E(f)
by the empirical error

Eemp(S, f) =
1
m

m∑
i=1

(yi − f (xi))
2

Problem B: If we minimize Eemp over all possible functions, we
can always find a function with zero empirical error!
Why is this a problem?

Solving the “Problem B”

A Proposed solution: we introduce a restricted space of
functions H called the hypothesis space

We minimize Eemp(S, f) within H. That is, our learning
algorithm is:

fS = argminf∈HEemp(S, f)

This approach is usually called empirical error (risk) minimization

For example (Least Squares) :

H = {f (x) = w>x : w ∈ IRn}

Problem C: How do we choose a space H (discuss later)?

Summary

I Data S sampled i.i.d from P (fixed but unknown)
I f ∗ is what we want, fS is what we get
I Different approaches to attempt to estimate/approximate

f ∗:
I Minimize Eemp in some restricted space of functions (eg,

linear)
I Compute local approximation of f ∗ (k -NN)
I Estimate P and then use Bayes rule...

Perspectives

Theoretical / methodological aspects involved in supervised
learning

I Function representation and approximation – to describe H
I Optimization/numerical methods – to compute fS
I Probabilistic methods – to study generalization error of fS

or to infer the likelihood of fS

Additive noise model

Consider the regression problem. Assume that the output is
computed as

y = f (x) + ε

where ε is a zero mean r.v. Hence we can write

P(y ,x) = P(y |x)P(x) = Pε
(
y − f (x)

)
P(x)

where E[ε] = 0
Noise free model: y deterministically computed from x (ε ≡ 0)

Additive noise model (cont.)

y = f (x) + ε

P(y ,x) = P(y |x)P(x) = Pε
(
y − f (x)

)
P(x)

The training data is obtained, for i = 1, . . . ,m as follows

I sample xi from Px

I sample εi from Pε
I set yi = f (xi) + εi

Note: P(x) ≡ Px(x) (just use different notation when needed)

Additive noise model (cont.)

P(y ,x) = P(y |x)Px(x) = Pε
(
y − f (x)

)
Px(x)

So, since ε has zero mean, we have that

f ∗(x) :=
∫

ydP(y |x) =
∫

ydPε
(
y−f (x)

)
=

∫
(f (x)+ε)dPε(ε) = f (x)

A common choice for the noise distribution Pε is a Gaussian:

Pε(ε) =
1√

2πσ2
exp

(
− ε2

2σ2

)

Maximum likelihood

What is the probability of the data S given the underlying
function is f?

P(S|f) =
m∏

i=1

P(yi ,xi |f) =
m∏

i=1

P(yi |xi , f)P(xi)

=
m∏

i=1

P(xi)
m∏

i=1

P(yi |xi , f) = A
m∏

i=1

P(yi |xi , f)

where

A =
m∏

i=1

P(xi) = P(x1, . . . ,xm)

We define the likelihood of f as

L(f ;S) = P(S|f)

Maximum likelihood (cont.)

Maximum likelihood principle: compute f by maximizing L(f ;S)
If we use linear functions and additive Gaussian noise, we have

L(w ;S) = A
m∏

i=1

(
2πσ2)− 1

2 exp
{
−(yi −w>xi)

2

2σ2

}
In particular the log likelihood is (note: since the log function is
strictly increasing maximining L or log L is the same)

log L(w ;S) = − 1
2σ2

m∑
i=1

(
yi −w>xi

)2
+ const

Hence maximizing the likelihood is equivalent to least squares!

Choosing a Hypothesis Space (returning to prob. “C”)

Given the training data yi = f ∗(xi) + εi , the goal is to compute
an “approximation” of f ∗.

We look for an approximant of f ∗ within a prescribed hypothesis
space H

I Unless prior knowledge is available on f ∗ (eg, f ∗ is linear)
we cannot expect f ∗ ∈ H

I Choosing H “very large” leads to overfitting! (we’ll see an
example of this in a moment)

Polynomial fitting

As an example of hypothesis spaces of increasing “complexity”
consider regression in one dimension

H0 =
{

f (x) = b : b ∈ IR
}

H1 =
{

f (x) = ax + b : a,b ∈ IR
}

H2 =
{

f (x) = a1x + a2x2 + b : a1,a2,b ∈ IR
}

...

Hn =

{
f (x) =

n∑
`=1

a`x` + b : a1, . . . ,an,b ∈ IR

}

Consider minimizing the empirical error in Hr (r = “polynomial
degree”)

Polynomial fitting (simulation)

r = 0,1,2,3,4,5. As r increases the fit to the data improves
(empirical error decreases)

Overfitting vs. Underfitting

I Compare the empirical
error (solid line) with
expected error (dashed
line)

I r small: underfitting
I r large: overfitting

I The larger r the lower the
empirical error of fS! ⇒We
cannot rely on the training
error!

k−NN: the effect of k

I The smaller k the more irregular the decision boundary

k = 15 k = 1

I How to choose k? later...

k−NN: the effect of k

m
k large: overfitting versus m

k small: underfitting

Model Selection

1. How to choose k in k -NN?
2. How to choose the degree r for polynomial regression?
3. The simplest approach is to use part of the training data

(say 2/3) for training and the rest as a validation set for
each Hr

4. Another approach is K−fold cross-validation – see next
slide

5. Then choose the “best” r relative to the error(s) on the
validation set

6. We will return to model selection later in the course

Cross-validation

1. we split the data in K parts (of roughly equal sizes)
2. repeatedly train on K − 1 parts and test on the part “left

out”
3. average the errors of K “validation” sets to give so-called

cross-validation error
4. smaller K is less expensive but poorer estimate as size of

training set is smaller and random fluctuations larger

For a dataset of size m, m -fold cross-validation is referred to as
leave-one-out (LOO) testing

Cross-validation comments

I Cross validation is good in “practice.”
I There are a variety of theoretical-based approaches (not

covered today)
I Examples

1. “Bayesian” model selection via the “evidence”
2. Structural Risk Mininimization

Other learning paradigms

Supervised learning is not the only learning setup!

I Online learning: we observe the data sequentially and we
make a prediction and update are learner after every
datum

I Active learning: we are given many inputs and we can
choose which ones to request a label

I Unsupervised learning: we have only input examples.
Here we may want to find data clusters, estimate the
probability density of the data, find important
features/variable (dimensionality reduction problem),
detect anomalies, etc.

I Semi-supervised learning: the ‘learning environment”
may give us access to many input examples but only few of
them are labeled

	Optimal Supervised Learning
	Hypothesis Space
	Model Selection

