
10. Online learning
GI01/M055: Supervised Learning

Mark Herbster

University College London
Department of Computer Science

8 December 2014

Acknowledgments and References

Thanks
Thanks to Yoav Freund and Claudio Gentile for many of the slides.

A general reference for online learning

I Nicolò Cesa-Bianchi and Gábor Lugosi, Prediction, learning,
and games.

See final slide for more references.

Batch versus Online learning

Batch
Model: There exists training data set (sampled IID)
Aim: To build a classifier from the training data that predicts well
on new data (from same distribution)
Evaluation metric: Generalization error

Online
Model: There exists an online sequence of data (usually no
distributional assumptions)
Aim: To sequentially predict and update a classifier to predict well
on the sequence (i.e. there is no training and test set distinction)
Evaluation metric: Cumulative error

Note
There are a variety of models for online learning. Here we focus on the so-called worst-case model. Alternately
distributional assumption may be made on the data sequence. Also sometimes the phrase “online learning” is used
to refer to “online optimisation” that is to use online learning type algorithms as a training method for a batch
classifier.

Why online learning?

Pragmatically

I “Often” fast algorithms

I “Often” small memory footprint

I “Often” no “statistical” assumptions required e.g. IID-ness

I As a training method for “BIG DATA” batch classifiers

Theoretically (learning performance guarantees)

I Non-asymptotic

I No statistical assumptions

I There exist techniques to convert cumulative error guarantees
to generalisation error guarantees

Today

Our focus today is on three foundational online “hypotheses”
classes.

I Learning with experts

1. Halving algorithm
2. Weighted Majority algorithm
3. Other loss functions

I Learning with linear combinations of experts

1. Perceptron
2. Winnow
3. Case study: Using perceptron and winnow to learn

Disjunctions and DNF

I Learning with sequences of experts

Experts

Part I
Learning with Expert Advice

On-Line Learning with expert advice (1) [V90,LW94,HKW98]

Model: There exists an online sequence of data

S = (x1, y1), . . . , (xm, ym) ∈ {0, 1}n × {0, 1}.

Interpretation: The vector x t is the set of predictions of n experts
about an outcome yt . Where expert i predicts xt,i ∈ {0, 1} at time
t. Each expert at time t is aiming to predict yt . What is an
“expert”? These may be for example human experts or the
predictions of some algorithm.

experts
E1 E2 E3 En prediction true label loss

day 1 1 1 0 0 0 1 1
day 2 1 0 1 0 1 0 1
day 3 0 1 1 1 1 1 0
day t xt,1 xt,2 xt,3 xt,n ŷt yt |yt − ŷt |

Goal: A “Master” algorithm to combine the predictions x t of the
n experts (based on past perf.) to predict ŷt an estimate of yt .

On-Line Learning with experts (2)

Protocol of the Master Algorithm

For t = 1 To m Do
Get instance xt ∈ {0, 1}n

Predict ŷt ∈ {0, 1}
Get label yt ∈ {0, 1}
Incur loss (mistakes) |yt − ŷt |

Evaluation metric: The loss (mistakes) of Master Algorithm A on
sequence S is just

LA(S) :=
m∑

t=1

|yt − ŷt |

Our Goal: Design master algorithms with “small loss”.

A Solution : Halving Algorithm

predictpredict
0 1

experts
inconsistent

consistent
experts

experts
all

I Predicts with majority

I If mistake is made then number of consistent experts is (at
least) halved

A run of the Halving Algorithm

E1 E2 E3 E4 E5 E6 E7 E8

majo

rity
true
label loss

1 1 0 0 1 1 0 0 1 0 1
x x 0 1 x x 1 1 1 1 0
x x x 1 x x 0 0 0 1 1
x x x ↑ x x x x

consistent

Observation: For any sequence with a consistent expert Halving
Algorithm makes ≤ log2 n mistakes.
Exercise: Prove this!

What if no expert is consistent?

Notation

I Recall LA(S) :=
∑m

t=1 |yt − ŷt | is the loss of algorithm A on S

I Let

Li (S) :=
m∑

t=1

|yt − xt,i |

be the loss of i-th expert Ei

Aim
Bounds of the form:

∀S : LA(S) ≤ a min
i

Li (S) + b log(n)

where a, b are “small” constants

Comment: These are known as “Relative” or “Worst-case” loss bounds,

i.e., the bounds on the loss of algorithm are “relative to” loss of best

expert and they hold even in the “worst-case.”

A Solution: Weighted Majority Algorithm [LW94]

Can’t wipe out experts!
One weight per expert

their weight

all
experts

predict
 0 predict

 1
vote with

I Predicts with larger side

I Weights of wrong experts are multiplied by β ∈ [0, 1)

Number of mistakes of the WM algorithm
Mt,i = # mistakes of expert Ei at the start of trial t

Mi = Mm+1,i – # of total mistakes of expert Ei

wt,i = βMt,i weight of Ei at beginning of trial t

Wt =
n∑

i=1

wt,i total weight at trial t

Minority: ≤ 1
2Wt Majority ≥ 1

2Wt

If no mistake then minority multiplied by β:
Wt+1 ≤ 1 Wt

Else If mistake then majority multiplied by β:

Wt+1 ≤ 1 1
2Wt

minority
+ β 1

2Wt

majority

=
1 + β

2
Wt

Number of mistakes of the WM algorithm – Continued-1

Hence

Wm+1
totalfinal

weight

≤
(

1 + β

2

)M

W1

Wm+1 =
n∑

j=1

wm+1,j =
n∑

j=1

βMj ≥ βMi

We get: (
1 + β

2

)M

W1︸︷︷︸
n

≥ βMi

Number of mistakes of the WM algorithm – Continued-2

Solving for M:

M ≤
ln 1

β

ln 2
1+β

Mi +
1

ln 2
1+β

ln n

M ≤
β = 1/e

2.63︸︷︷︸
a

min
i

Mi + 2.63︸︷︷︸
b

ln n

For all sequences, loss of master algorithm is comparable to loss of
best expert. Thus the terminology Relative loss bound.

Other Loss Functions

Example loss functions L : [0, 1]× [0, 1]→ [0,+∞]
absolute loss: L(y , ŷ) = |y − ŷ |
square loss: L(y , ŷ) = (y − ŷ)2

entropic loss: L(y , ŷ) = y ln y
ŷ + (1− y) ln 1−y

1−ŷ

One weight per expert:

wt,i = β Lt,i = e−η Lt,i

where Lt,i is total loss of Ei before trial t
and η is a positive learning rate

Master predicts with the weighted average (dot product)

vt,i =
wt,i∑n

i=1 wt,i
normalized weights

ŷt =
n∑

i=1

vt,i xt,i = vt · xt

where xt,i is the prediction of Ei in trial t

Other Loss Functions – continued (1)

Theorem
For all sequences of examples

S = (x1, y1), . . . , (xm, ym) ∈ [0, 1]n × [0, 1]

the loss of the weighted average WA algorithm is

LWA(S) ≤ min
i

1︸︷︷︸
a

Li (S) + 1/η︸︷︷︸
b

ln(n)

with square and entropic loss.

Constant b as dependent on loss function
Loss b = 1/η

entropic 1
square 2

Note: See [HKW98] for proof.

Other Loss Functions – continued (2)

Comments

I There exist algorithms [V90] with improved (smaller)
constants for b with a more complex prediction strategy than
weighted average.

I As with the weighted majority algorithm (“mistakes”) for the
absolute loss it is necessary that a > 1.

I There is an extensive theory generalizing these results to a
wide range of loss functions beyond our examples of square,
entropic, absolute (discrete) loss

Usefulness

I Easy to combine many pretty good experts (algorithms) so
that Master is guaranteed to be almost as good as the best

I Bounds logarithmic in number of experts

I Observe updating is multiplicative

Next: Generalizing to linear combinations of experts

Perceptron and Winnow

Part II
Learning with thresholded linear combinations

A more general setting (1)

Instance
Prediction
of alg A Label

Loss
of alg A

x1 ŷ1 y1 L(y1, ŷ1)
...

...
...

...
xt ŷt yt L(yt , ŷt)

...
...

...
...

xT ŷT yT L(yT , ŷT)
————

Total Loss LA(S)
Sequence of examples S = (x1, y1), ..., (xT , yT)
Comparison class U = {u} (AKA hypothesis space, concept class)
Relative loss

LA(S)− inf
{u∈U}

Loss u (S)

Goal: Bound relative loss for arbitrary sequence S

A more general setting (2)

Now

I We consider the case where u is a linear threshold function.

I For simplicity we will focus on the case where there exists a u
s.t. Loss u (S) = 0. This is known as realizable case. Compare
to the previously considered halving algorithm versus weighted
majority algorithm.

I We will next see how a linear threshold function may be used
to represent a disjunction or conjunction.

Boolean functions

Claim
A focus of classical AI is on the representation, learning and
manipulation of symbolic knowledge. Perhaps the simplest
symbolic knowledge representation scheme is boolean logic.

I A boolean function f may be represented as a map
f : {true,false}n → {true,false}.

I In what follows will we will always associate true with the
number 1 however we use either −1 or 0 to represent false
as numerically convenient.

Base boolean functions
(here true = 1 and false = 0)

1. x1 ∧ x2 := x1x2 (“and”)

2. x1 ∨ x2 := sign(x1 + x2) (“or”)

3. x̄1 := 1− x1 (“not”)

Comparison classes of boolean functions (1)

Terminology:

1. A single (negated) variable is known as a literal (e.g.,
x1, x3, x7, x̄5)

2. A term or conjunction of literals is an iterated “and” applied
to the literals (e.g., x1x3, x̄4x5x7)

3. A clause or disjunction of literals is an iterated “or” applied to
literals (e.g., x1 ∨ x3, x̄4 ∨ x5 ∨ x7)

4. Monotone disjunction or conjunction implies no negated
literals

Questions : Given n variables denote the comparison class of all
possible terms as U∧ and clauses as U∨. What are their
cardinalities i.e.? |U∧| and |U∨|? What is the cardinality of the set
of all n variable boolean functions?

Comparison classes of boolean functions (2)
Recall that a linear threshold fu ,b : Rn → {−1, 1} function may be
written as,

fu ,b(x) := sign(u · x + b) ,

i.e. those functions determined by a separating hyperplane. The
comparison class of all linear threshold functions is

Ult := {fu ,b : u ∈ Rn, b ∈ R}

Question: How can we use comparison class of linear-thresholded
functions after the feature map to represent monotone
disjunctions? and monotone conjunctions?

Feature map: We can use the feature map

φ(x) := (x1, 1− x1, . . . , xn, 1− xn)

in order to represent non-monotone disjunctions and conjunctions.
(Why?)

Example : Representing a monotone disjunction as a linear
threshold function

variables/experts

E1 E2 E3 E4

true
label E1 ∨ E3 E3 ∨ E4

1 1 0 0 0 1 0
1 0 1 0 1 1 1
0 1 1 1 0 1 1
0 1 0 0 1 0 0
xt,1 xt,2 xt,3 xt,4 ↑ ↑

3 2
mistakes

E1 ∨ E3 becomes u = (1, 0, 1, 0) and b = −1/2
E1 ∨ E3 is one on xt ∈ {0, 1}n iff u · xt ≥ 1

A suboptimal solution

Problem
Goal: An algorithm to predict as well as best k out of n literal
(monotone) disjunction.

Solution
Use weighted majority where each disjunction is an expert
maintain one weight per disjunction: thus

(n
k

)
weights.

Mistakes of WM ≤ 2.63 M + 2.63 k ln
n e

k

Where M is number of mistakes of best disjunction.

Note

I We used the inequality
(n

k

)
≤ (n e

k)k

I Time (and space) exponential in k

I Our goal: efficient algs: one weight per literal

Preview : Solutions!

I We will now develop two efficient algorithms for learning
disjunctions, more generally linearly threshold functions

I The algorithms will be efficient with only one weight per
literal maintained.

I Each update will will be O(1) time per literal.

I Our solutions will be the perceptron and the winnow
algorithm

I The Winnow algorithm will have the advantage of a better
performance guarantee at least on disjunctions

I The Perceptron algorithm will have the advantage of
compatibility with the “kernel trick”

The Perceptron set-up

Assumption: Data is linearly separable by some margin γ. Hence
exists a hyperplane with normal vector v such that

+

+

+

+
+

+

+
++

+
+-

-

-
-

- -

-

-

-

-

+

-
-

γ
γ

v1

R
1. ‖v‖ = 1

2. All examples (x t , yt)
I ∀yt yt ∈ {−1,+1}.
I ∀x t , ‖x t‖ ≤ R.

3. ∀(x t , yt), yt(x t · v) ≥ γ

The Perceptron learning algorithm

Perceptron Algorithm
Input: (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1}

1. Initialise w1 = ~0; M1 = 0.

2. For t = 1 to m do

3. Receive pattern: x t ∈ Rn

4. Predict: ŷt = sign(w t · xt)

5. Receive label: yt

6. If mistake (ŷtyt ≤ 0)
I Then Update w t+1 = w t + ytx t ; Mt+1 = Mt + 1 else

7. Else w t+1 = w t ; Mt+1 = Mt .

8. End For

Example: trace for the Perceptron algorithm

Bound on number of mistakes

I The number of mistakes that the perceptron algorithm can

make is at most
(

R
γ

)2
.

I Proof by combining upper and lower bounds on ‖w‖.

Pythagorean Lemma

On trials where “mistakes” occur we have the following inequality,

Lemma: If (w t · x t)yt < 0 then ‖w t+1‖2 ≤ ‖w t‖2 + ‖x t‖2

Proof:

‖w t+1‖2 = ‖w t + ytx t‖2

= ‖w t‖2 + 2(w t · x t)yt + ‖x t‖2

≤ ‖w t‖2 + ‖x t‖2

Upper bound on ‖w t‖

Lemma: ‖w t‖2 ≤ MtR
2

Proof: By induction

I Claim: ‖w t‖2 ≤ MtR
2

I Base: M1 = 0, ‖w1‖2 = 0

I Induction step (assume for t and prove for t + 1) when we
have a mistake on trial t:

‖w t+1‖2 ≤ ‖w t‖2 + ‖x t‖2 ≤ ‖w t‖2 + R2 ≤ (Mt+1)R2

Here we used the Pythagorean lemma. If there is no mistake,
then trivially w t+1 = w t and Mt+1 = Mt .

Lower bound on ‖w t‖

Lemma: Mtγ ≤ ‖w t‖
Observe: ‖w t‖ ≥ w t · v because ‖v‖ = 1. (Cauchy-Schwarz)
We prove a lower bound on w t · v using induction over t

I Claim: w t · v ≥ Mtγ

I Base: t = 1, w1 · v = 0

I Induction step (assume for t and prove for t + 1):
If mistake then

w t+1 · v = (w t + x tyt) · v
= w t · v + ytx t · v
≥ Mtγ + γ

= (Mt + 1)γ

Combining the upper and lower bounds

Let M := Mm+1 denote the total number of updates (“mistakes”)
then

(Mγ)2 ≤ ‖wm+1‖2 ≤ MR2

Thus simplifying we have the famous ...

Theorem (Perceptron Bound [Novikoff])

For all sequences of examples

S = (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1}

the mistakes of the Perceptron algorithm is bounded by

M ≤
(
R

γ

)2

,

with R := maxt ‖x t‖. If there exists a vector v with ‖v‖ = 1 and
constant γ such that (v · x t)yt ≥ γ.

Comments

Comments

I It is often convenient to express the bound in the following
form. Here define u := v

γ then

M ≤ R2‖u‖2 (∀u : (u · x t)yt ≥ 1)

I Suppose we have linearly separable data set S . Questions:

1. Observe that wm+1 does not necessarily linearly separate S .
Why?

2. How can we use the Perceptron to find a vector w that
separates S?

3. How long will this computation take?

I There are variants on the perceptron that operate on a
single example at a time that converge to the “SVM”
max-margin linear separator.

Perceptron algorithm for disjunctions

We may use the previous bound to prove the following (Exercise):

I Perceptron bound as applied to monotone disjunction learning

M ≤ O(kn)

I Here k is the number of literals out the n possible literals

Note: There exists a generic lower bound for rotation invariant
algs (perceptron and svm are examples):

M = Ω(n)

See : The Perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are

relevant (Kivinen and Warmuth, 1995).

Winnow Algorithm for disjunctions [L88]

Winnow algorithm

Input: (x1, y1), . . . , (xm, ym) ∈ {0, 1}n × {0, 1}
1. Initialise w1 = ~1.

2. For t = 1 to m do

3. Receive pattern: x t ∈ {0, 1}n

4. Predict:

ŷt =

{
0 w t · xt < n

1 w t · xt ≥ n

5. Receive label: yt ∈ {0, 1}
6. If mistake (ŷt 6= yt)

I Update: wt+1,i = wt,i 2(yt−ŷt) xt,i (1 ≤ i ≤ n).

7. End For

Mistake bound of Winnow

Theorem: Mistake bound of Winnow (Littlestone)

The mistakes of Winnow may be bounded by

M ≤ 3k(log n + 1) + 2

If there exists a consistent k-literal monotone disjunction.

Observation
There is an exponential improvement in bound (over the
perceptron) with respect to the dimension n in the upper bound
for disjunction learning. Although we will not give the bound for
linear threshold learning with Winnow in that case the bounds
are incomparable (wrt Perceptron) where Winnow (like lasso)
prefers sparse hypotheses.

Proof of Winnow Bound
Bound on “mistakes” on positive examples. (yt = 1)

1. On a mistake : at least one relevant weight is doubled.

2. Relevant weights never decrease.

3. Once a relevant weight wt,i ≥ n it will no longer change

Conclusion: Mistakes on positive examples Mp ≤ k(log n + 1)

Bound on “mistakes” on negative examples. (yt = 0)

Let Wt =
∑n

i=1 wt,i . Denote Mf as mistakes on negatives
examples.

1. W1 = n

2. On a positive mistake (yt = 1) Wt+1 ≤Wt + n

3. On a negative mistake (yt = 0) Wt+1 ≤Wt − n
2

4. Combining Wm+1 ≤ n + Mpn −Mf
n
2

5. Thus Mf ≤ 2k(log n + 1) + 2.

Theorem: M ≤ Mp + Mf ≤ 2 + 3k(log n + 1)

Case study : DNF with Perceptron and Winnow

In the following we will ...

1. We note that surprisingly the previous mistake bounds of
Perceptron and Winnow are stated in terms of the
minimally consistent disjunction. However finding such
disjunctions is NP-complete

2. Then we will compare the time complexity and mistake
bounds for learning boolean DNF functions which are a
natural and complete class of boolean functions. (Whether
DNF is PAC Learnable under the uniform distribution has
been an open problem for 25+ years!!)

Feature selection is hard

Observation (finding minimally sparse linear classifiers):

A simple instance instance of feature selection would be to find the
minimal k-literal disjunction consistent with a data set. However
we will see that the decision is problem is NP-complete.

Theorem: set-cover is NP-complete

Given a set of m elements Nm := {1, 2, . . . ,m}, a collection of n
subsets of elements S1, . . . ,Sn ⊆ Nm and a positive integer k the
problem of deciding if there exist k subsets from
Si1 , . . . ,Sik ∈ {S1, . . . ,Sn} that cover,

⋃k
j=1 Sij = Nm, the m

elements is NP-complete.

Theorem: consistent k-disjunction is NP-complete

Proof sketch. The problem is of finding k-set cover reduces to
the problem of finding a k-literal disjunction consistent with a set
of examples. Sketching. Let X be an m × n matrix of m,
n − dimensional “positive” examples then the n “columns” are the
“sets” and a consistent disjunction is a set cover.

Illustration: Set Cover and Consistent Disjunction – 1

Set cover illustration from: ‘‘Lecture Comp 260: Advanced

Algorithms, Lenore Cowen Tufts University, Spring 2011’’

Illustration: Set Cover and Consistent Disjunction – 2
As a data matrix (these are ‘positive’ examples thus
y1 = · · · y12 = 1)

P1 P2 P3 P4 P5 P6

x1 1 0 1 0 0 0
x2 1 0 0 1 0 0
x3 1 0 0 0 1 0
x4 1 0 1 1 0 0
x5 1 1 0 1 0 0
x6 1 1 0 0 1 0
x7 0 0 1 1 0 0
x8 0 1 0 1 0 0
x9 0 1 0 0 1 0
x10 0 0 1 0 0 1
x11 0 0 0 1 0 1
x12 0 0 0 0 1 1

Observe: P1 ∨ P2 ∨ P4 ∨ P6 covers while P3 ∨ P4 ∨ P5 is minimal.
Interestingly. The prediction bounds of winnow and the
perceptron are in terms of minimum consistent disjunction but
neither find/learn or a minimal consistent disjunction.

Comparison classes of boolean functions (3)

DNF (Disjunctive Normal Form): is a disjunction of terms. For
example

x1x4x7 ∨ x1x̄2 ∨ x2x5

• DNF is then the set of all disjunctions of terms.
• DNF is a natural form for knowledge representation for example:
the concept ”cat” (from Lisa Hellerstein)

(IsHousePet ∧ Purrs ∧ HasTail)∨
(HasTail ∧ Furry ∧ TaperedEars ∧ RoundEyes)∨

(NamedSylvester ∧ ChasesTweetyBird)

I Note all boolean functions may be represented as a DNF
(Why?)

I Many unsolved problem in machine learning regarding DNF
learning

k-term (monotone) DNF via Feature Expansion
1
x1

x2

x1

...
x2 xn

x =
... ⇒ Φ(x) = x1 x2

...
...

xn

...
x1 x2 ... xn

n inputs 2n features
k-term DNF in input space is k-literal disjunction in feature space

Φ(x)︸ ︷︷ ︸
2n

·Φ(y)︸ ︷︷ ︸
2n

=
n∏

i=1

(1 + xi yi)︸ ︷︷ ︸
O(n) time

= Kanova(x︸︷︷︸
n

, y︸︷︷︸
n

) (Simple ANOVA kernel)

Winnow versus Perceptron for k-term DNF

Perceptron: wt =
∑

q mistake

αqΦ(xi)

Prediction:

wt · Φ(xt) =

 ∑
q mistake

αqΦ(xq)

 · Φ(xt)=
∑

q mistake

αqΦ(xq) · Φ(xt)

=
∑

q mistake

αqK (xq, xt)

︸ ︷︷ ︸
Prediction time: O(n · # mistakes)≤O(nm)

Mistake bound: O(k 2n) (Why?)

Winnow: wt,i = exp
(
−η

∑
q mistake αq Φ(xq)i

)
log of weights is linear combination of past examples
Mistake bound: O(k ln 2n) = O(k n) Prediction time: Ω(2n # mistakes)

No kernel trick with purely mult. updates!, i.e., no obvious fast way to

compute w t · Φ(xt) for Winnow.
Summary: Perceptron: (fast!, poor bound)

Winnow: (slow, good bound!)

Summary so far

I Learning relative to best expert and best disjunction

I Learning relative to linear combinations of experts

I Linear combinations may represent Boolean functions

I Perceptron versus Winnow – similar algorithms very
different performance when we consider a feature space
expansion as applied to DNF

I We focused on boolean function learning for Perceptron
and Winnow, however, they both learn linear threshold
functions directly and have strictly non-comparable bounds.
Winnow like lasso is better for “sparse” linear threshold
functions

Share Algorithm

Part III
Learning with sequences of experts

Overview

I An online learning algorithm

I Tracks concepts which change over time

I Designed to combine other algorithms
I Online performance guarantees are given

I Nonasymptotic
I No statistical assumptions
I Tight lower bounds

I Time complexity: “linear”

I Practical Applications

On-line Learning (Review)

time t 1 2 3 4 · · · t

expert 1 .5 3 2 1 · · · xt,1

expert 2 .75 -1.5 -1 -2 · · · xt,2

expert 3 -1.5 3 2 -4 · · · xt,3

expert 4 .75 -1.3 1.5 1.5 · · · xt,4

alg. preds 0 1.5 1.5 .75 · · · ŷt

label .75 -1.5 2 1 · · · yt

alg. loss 0.56 9 .25 .06 · · · (ŷt − yt)2

For a sequence of examples S = {(x1, y1), . . . , (x`, y`)}

LossA(S) =
∑̀
t=1

(ŷt − yt)2

Aim: to bound LossA(S) in terms of the loss of the best expert.

Lossi (S) =
∑̀
t=1

(xt,i − yt)2

Formal Model

In each trial t = 1, . . . , ` the algorithm receives an a vector of
predictions

x t = (xt,1, . . . , xt,n) ∈ [0, 1]n

and predicts
ŷt ∈ [0, 1]

then it observes the outcome

yt ∈ [0, 1]

The performance of the algorithm A is measured by its loss

LossA =
∑̀
t=1

L(ŷt , yt)

where L is a loss function such as the square or the Hellenger loss.

The Experts Algorithm (Review)

The algorithms maintain one weight wt,i per expert/component.
The weight vector wt is used for forming the prediction. For
example

ŷt = w t · xt

The weight vector wt is updated after the label yt is received. For
example

Expert update: wt+1,i =
wt,ie

−η(xt,i−yt)2∑n
j=1 wt,je−η(xt,j−yt)2 i = 1, . . . , n

Static Relative Loss Bounds

For all sequences of examples S

LossA(S) ≤ Lossi (S) + c ln n [V 90, LW 94,HKW 98]

I The loss of the algorithm is bounded in terms of the best
single expert.

So far the comparator is “static”

Shifting Expert

t 1 30 45 90
x1 best x2 best x3 best

Stream of Examples

I The loss of the algorithm is compared against the loss of the
best sequence of experts.

I The loss of a sequence of experts is the sum of the loss of the
expert for each segment.

I The algorithms do not know when a new segment begins and
which expert are best in each segment.

Problem for Algorithms

The crucial weights may be too small or too large. It might take
the algorithm too long to recover.

t 1 45 90
x1 best x2 best

start of new segment

I Lower bounds on weights [LW,AW,BB]

I Weights as “probabilities” [HWa,V]

I Keep the weights in a bounded region defined in terms of a
“divergence function”: [HWb]

Shifting Experts – Details

I In the static case the loss bound is given relative to a single
expert.

I In the shifting case the loss bound is given relative to a
sequence of experts.

The loss defined relative to a sequence of experts

Loss{i1,i2,...,i`}(S) =
∑̀
t=1

(xt,it − yt)2

Algorithm Design

Given the number of distinct sequences of experts is

O([n
`

k
]k)

Why?
Using the “experts” algorithm we can design an algorithm with a
loss bound of

LA(S) ≤ L∗ + ck(ln n + ln
`

k
+ “const ′′)

How?
Caveats:

I Algorithm is exponential in k

I Loss bound dependent on `

Fixed and Variable Share Algorithms

I Parameters: 0 ≤ η and 0 ≤ α ≤ 1.

I Initialization: Set the weights to w s
1,1 = . . . = w s

1,n = 1
n .

I Prediction: Let vt,i =
w s

t,i

Wt
, where Wt =

∑n
i=1 w

s
t,i . Predict

with ŷt = v t · x t

I Loss Update: After receiving the tth outcome yt ,

∀i : 1, . . . , n : wm
t,i = w s

t,ie
−ηL(yt ,xt,i)

I Fixed Share Update:
I pool =

∑n
i=1 αw

m
t,i

I ∀i : 1, . . . , n : w s
t+1,i = (1− α)wm

t,i + 1
n−1w

s
t,i (pool− αwm

t,i)

I Variable Share Update:
I pool =

∑n
i=1(1− (1− α)L(yt ,xt,i))wm

t,i
I ∀i : 1, . . . , n : w s

t+1,i =

(1− α)L(yt ,xt,i)wm
t,i + 1

n−1w
s
t,i (pool− (1− (1− α)L(yt ,xt,i)))

Fixed Share – Visualization

Expert 1

1-α

Expert 2

1-α

Expert 3

1-α

expert 4

1-α

Expert 5

1-α α/(n-1)

α/(n-1)

α/(n-1)

α/(n-1)α/(n-1)

α/(n-1)

α/(n-1)

α/(n-1) α/(n-1)

α/(n-1)

Shifting Loss Bounds

Shifting Experts:

I Let k := size({i1, i2, . . . , i`})
I L∗ := Loss{i1,i2,...,i`}(S)

I Choose α ∈ [0, 1],

We then have the bound:

LA(S) ≤ L∗ + c[(`− 1)(H(α∗) + D(α∗‖α)) + k ln(n − 1) + ln n] ,

where α∗ = k
`−1 , H(p) = 1

p ln 1
p + 1

1−p ln 1
1−p and

D(p∗‖p) = p∗ ln p∗

p + (1− p∗) ln 1−p∗

1−p

When α = k
`−1 , then the above is upper bounded by

LA(S) ≤ L∗ + c[k ln
`− 1

k
+ k ln(n − 1) + ln n + k] ,

Experiment (simulation)

1. Trials (`) : 800

2. Shifts(k): 3

3. Number of Experts (n) : 64

4. Loss function (L): L(y , ŷ) = (y − ŷ)2 (c = 1/2, η = 2)

5. Share Parameter(α) : 0.024

6. Typical expert expected Loss/Trial : 1/12

7. “Best” expert expected Loss/Trial : 1/120

Share Algorithms – Performance

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

to
ta

l lo
ss

 o
f t

he
 a

lg
or

ith
m

s

trials

Loss of Variable Share Algorithm

Loss of Static Algorithm (Vovk)

Loss of Fix Share Algorithm

Loss of typical expert

Loss of best partition (k=3)

Variable Share Loss Bound

Fix Share Loss Bound

Expert Algorithm’s Weights

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sc
al

ed
 w

ei
gh

ts

trials

Vovk Relative Weights

Variable Share Weights

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trials

sc
al

ed
 w

ei
gh

ts

Some Applications

1. Predicting disk idle times

2. Online load balancing (process migration determination)

3. Predicting TCP packet inter-arrival times

4. Financial prediction by combining portfolios

5. Combining language for domain and topic adaptation

Useful references

1. Nicolò Cesa-Bianchi and Gábor Lugosi, Prediction, learning, and
games., (2006), Note this is a book.

2. N. Littlestone, Learning quickly when irrelevant attributes abound:
a new linear threshold algorithm, (1988).

3. N. Littlestone and M. K. Warmuth. The weighted majority
algorithm, (1994)

4. V. Vovk, Aggregating strategies, (1990).

5. Haussler, D., Kivinen, J. and Warmuth, M.K. Sequential Prediction
of Individual Sequences Under General Loss Functions, (1998)

6. M. Herbster and M. Warmuth, Tracking the Best Expert, (1998)

7. S. Shalev-Schwartz, Online Learning and Online Convex
Optimization, (2011)

http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf
http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf

	Perceptron

