10. Online learning
GI01/MO055: Supervised Learning

Mark Herbster

University College London
Department of Computer Science

8 December 2014

Acknowledgments and References

Thanks
Thanks to Yoav Freund and Claudio Gentile for many of the slides.

A general reference for online learning

» Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, learning,
and games.

See final slide for more references.

Batch versus Online learning

Batch

Model: There exists training data set (sampled 11D)

Aim: To build a classifier from the training data that predicts well
on new data (from same distribution)

Evaluation metric: Generalization error

Online

Model: There exists an online sequence of data (usually no
distributional assumptions)

Aim: To sequentially predict and update a classifier to predict well
on the sequence (i.e. there is no training and test set distinction)
Evaluation metric: Cumulative error

Note

There are a variety of models for online learning. Here we focus on the so-called worst-case model. Alternately
distributional assumption may be made on the data sequence. Also sometimes the phrase “online learning” is used
to refer to “online optimisation” that is to use online learning type algorithms as a training method for a batch
classifier.

Why online learning?

Pragmatically

» “Often” fast algorithms

» “Often” small memory footprint

» “Often” no “statistical” assumptions required e.g. IID-ness
» As a training method for “BIG DATA” batch classifiers

Theoretically (learning performance guarantees)

» Non-asymptotic
» No statistical assumptions

» There exist techniques to convert cumulative error guarantees
to generalisation error guarantees

Today

Our focus today is on three foundational online “hypotheses”
classes.
» Learning with experts

1. Halving algorithm
2. Weighted Majority algorithm
3. Other loss functions

» Learning with linear combinations of experts

1. Perceptron

2. Winnow

3. Case study: Using perceptron and winnow to learn
Disjunctions and DNF

» Learning with sequences of experts

Experts

Part |
Learning with Expert Advice

On-Line Learning with expert advice (1)

[V90,LW94, HKW98]

Model: There exists an online sequence of data

S=(x1,y1),---,(Xm,¥m) € {0,1}" x {0, 1}.

Interpretation: The vector x; is the set of predictions of n experts
about an outcome y;. Where expert i predicts x;; € {0,1} at time
t. Each expert at time t is aiming to predict y;. What is an
“expert”? These may be for example human experts or the
predictions of some algorithm.

experts
Ei E, Es3 E, | prediction true label loss
day1l 1 1 0 0 0 1 1
day2 1 0 1 0 1 0 1
day3 0 1 1 1 1 1 0
day t X1 Xe2 Xe3 Xt Vi Yt Ve — V¢l

Goal: A “Master” algorithm to combine the predictions x; of the
n experts (based on past perf.) to predict y; an estimate of y;.

On-Line Learning with experts (2)

Protocol of the Master Algorithm

Fort =1 To m Do

Get instance x: € {0,1}"
Predict yr €10,1}
Get label vt €{0,1}
Incur loss (mistakes) e — Vil

Evaluation metric: The loss (mistakes) of Master Algorithm A on
sequence S is just

La(S) =) lye — 9l
t=1

Our Goal: Design master algorithms with “small loss”.

A Solution : Halving Algorithm

predict
1

\/ consistent

experts

. /

experts

inconsistent
experts

» Predicts with majority

> If mistake is made then number of consistent experts is (at
least) halved

A run of the Halving Algorithm

majo true

Ei. E, Es E4 Es Es E; Eg | rity label loss

1 1 0 O 1 1 0 O 1 0 1
x x 0 1 X X 1 1 1 1 0
X X X 1 x x 0 0 0 1 1
X x X T x x x X

consistent

Observation: For any sequence with a consistent expert Halving
Algorithm makes < log, n mistakes.
Exercise: Prove this!

What if no expert is consistent?
Notation

> Recall La(S) := > 7L |yt — 7| is the loss of algorithm A on S
> Let

m
Li(S) == Z |yt — Xt.il
t=1
be the loss of i-th expert E;
Aim
Bounds of the form:

VS: La(S) < a minLi(S)+ b log(n)

where a, b are “small” constants

Comment: These are known as “Relative” or “Worst-case” loss bounds,
i.e., the bounds on the loss of algorithm are “relative to” loss of best
expert and they hold even in the “worst-case.”

A Solution: Weighted Majority Algorithm [LWO4]

Can't wipe out experts!
One weight per expert

/ predict
all 0 predict

1

experts
vote with
their weight

» Predicts with larger side

» Weights of wrong experts are multiplied by 5 € [0,1)

Number of mistakes of the WM algorithm

M:; = # mistakes of expert E; at the start of trial t
M; = Mpy1,i — # of total mistakes of expert E;
W = pMei weight of E; at beginning of trial t
n
W = Z w;; total weight at trial ¢
i=1
Minority: < %Wt Majority > %Wt

If no mistake then minority multiplied by 3:
Wi < 1T W,
Else If mistake then majority multiplied by £:

Wi <001 %Wt + B %Wt
minority majority

Number of mistakes of the WM algorithm — Continued-1

Hence
M
1

Wnii < (Lﬁ) Wi

totalfinal 2

weight

Wm+1 = ZWm—H,j = ZBMJ > BMi
j=1 j=1

We get:

Number of mistakes of the WM algorithm — Continued-2

Solving for M:
In L 1
M < —g M; + >— Inn
|n m |n m
M < 2.63 min M; + 2.63Inn
<~ i <~
5 = l/e a b

For all sequences, loss of master algorithm is comparable to loss of
best expert. Thus the terminology Relative loss bound.

Other Loss Functions

Example loss functions L : [0, 1] x [0, 1] — [0, +oq]
absolute loss: L(y,y) = |y — ¥
square loss: L(y,9) = (y — 9)?

entropic loss: L(y,y) = yln % +(L—y)In }3

One weight per expert:
We,i = 3 Loi = @70 L

where L. ; is total loss of E; before trial t
and 7 is a positive learning rate
Master predicts with the weighted average (dot product)

Vii = —r——— normalized weights

)
D im1 Wi
Yo = E Vii Xe,i = Vi * X¢

where x; ; is the prediction of E; in trial t

Other Loss Functions — continued (1)

Theorem
For all sequences of examples

S=(x1,y1),---,(Xm,¥m) € [0,1]" x [0, 1]

the loss of the weighted average WA algorithm is

Lwa(S) < min \1/_/L,-(S) —|—\1\//71|n(n)
. b

with square and entropic loss.

Constant b as dependent on loss function

Loss | b=1/n
entropic 1
square 2

Note: See [HKW98] for proof.

Other Loss Functions — continued (2)

Comments

> There exist algorithms [V90] with improved (smaller)
constants for b with a more complex prediction strategy than
weighted average.

» As with the weighted majority algorithm (“mistakes”) for the
absolute loss it is necessary that a > 1.

» There is an extensive theory generalizing these results to a
wide range of loss functions beyond our examples of square,
entropic, absolute (discrete) loss

Usefulness

» Easy to combine many pretty good experts (algorithms) so
that Master is guaranteed to be almost as good as the best

» Bounds logarithmic in number of experts

» Observe updating is multiplicative

Next: Generalizing to linear combinations of experts

Perceptron and Winnow

Part |l

Learning with thresholded linear combinations

A more general setting (1)

Prediction Loss
Instance of alg A Label of alg A

X1 1 %1 L(y1, 1)
Xt)A/t Vi L()’ta}A’t)
XT yT yr Lyt 97)

Total Loss La(S)
Sequence of examples S = (x1,y1), ..., (X7, ¥T)
Comparison class U = {u} (AKA hypothesis space, concept class)
Relative loss

La(S) — {Li'ré{{} Loss, (S)

Goal: Bound relative loss for arbitrary sequence S

A more general setting (2)

Now

» \We consider the case where u is a linear threshold function.

» For simplicity we will focus on the case where there exists a u
s.t. Loss, (S) = 0. This is known as realizable case. Compare
to the previously considered halving algorithm versus weighted
majority algorithm.

» We will next see how a linear threshold function may be used
to represent a disjunction or conjunction.

Boolean functions

Claim

A focus of classical Al is on the representation, learning and
manipulation of symbolic knowledge. Perhaps the simplest
symbolic knowledge representation scheme is boolean logic.

» A boolean function f may be represented as a map
f:{true,false}” — {true,false}.

» In what follows will we will always associate true with the
number 1 however we use either —1 or 0 to represent false
as numerically convenient.

Base boolean functions
(here true = 1 and false = 0)

1. x3 A Xxo := x1x% (“and”)
2. x1VXxp .= sign(X1 + X2) (“or”)
3. X1 :=1—x1 (“not”)

Comparison classes of boolean functions (1)

Terminology:

1. A single (negated) variable is known as a literal (e.g.,
X1, X3, X7, X5)

2. A term or conjunction of literals is an iterated “and” applied
to the literals (e.g., x1x3, Xax5x7)

3. A clause or disjunction of literals is an iterated “or” applied to
literals (e.g., x1 V x3,%3 V x5 V x7)

4. Monotone disjunction or conjunction implies no negated
literals

Questions : Given n variables denote the comparison class of all
possible terms as U, and clauses as U,. What are their
cardinalities i.e.? [Ux| and |Uy|? What is the cardinality of the set
of all n variable boolean functions?

Comparison classes of boolean functions (2)

Recall that a linear threshold fy p : R” — {—1, 1} function may be
written as,
fu p(x) :=sign(u - x + b),

i.e. those functions determined by a separating hyperplane. The
comparison class of all linear threshold functions is

U = {fup:uc€R", be R}

Question: How can we use comparison class of linear-thresholded
functions after the feature map to represent monotone
disjunctions? and monotone conjunctions?

Feature map: We can use the feature map

o(x) = (x1,1 —x1, ..., %0, 1 — xp)

in order to represent non-monotone disjunctions and conjunctions.

(Why?)

Example : Representing a monotone disjunction as a linear
threshold function

variables/experts

Ei E, Es E |lsbel ELVEs E3VEs
1 1 0 0 0 1 0
1 0 1 0 1 1 1
0 1 1 1 0 1 1
0 1 0 0 1 0 0
Xt,1 Xt2 Xt3 Xt4 T T
3 2

mistakes
E1V E3 becomes u=(1,0,1,0) and b= —-1/2

E; V E3 is one on x; € {0,1}" iff

u-x;>1

A suboptimal solution

Problem
Goal: An algorithm to predict as well as best k out of n literal
(monotone) disjunction.

Solution
Use weighted majority where each disjunction is an expert
maintain one weight per disjunction: thus (Z) weights.

Mistakes of WM < 2.63 M + 2.63 k|In %

Where M is number of mistakes of best disjunction.

Note

> We used the inequality (}) < (%)k
» Time (and space) exponential in k

» Our goal: efficient algs: one weight per literal

Preview : Solutions!

» We will now develop two efficient algorithms for learning
disjunctions, more generally linearly threshold functions

» The algorithms will be efficient with only one weight per
literal maintained.

» Each update will will be O(1) time per literal.

» Qur solutions will be the PERCEPTRON and the WINNOW
algorithm

» The WINNOW algorithm will have the advantage of a better
performance guarantee at least on disjunctions

» The PERCEPTRON algorithm will have the advantage of
compatibility with the “kernel trick”

The Perceptron set-up

Assumption: Data is linearly separable by some margin ~. Hence
exists a hyperplane with normal vector v such that

1 v =1
2. All examples (x¢, yt)

> Vyt Yt € {_1,+1}
> VX, [[x¢| < R.

3. V(xt, ye), ye(xe - v) >

The PERCEPTRON learning algorithm

PERCEPTRON ALGORITHM
Input: (x1,¥1),---5 (Xm,¥m) € R" x {-1,1}

1.

Sy o =D

Initialise wq = 0; M; = 0.
For t =1 to mdo
Receive pattern: x; € R”
Predict: y: = sign(w; - x;)
Receive label: y;

If mistake (J:y: < 0)
» Then Update w;11 = wy + yixe; Mg = My + 1 else

7. Else Wil = Wy, Mt_|_1 = Mt.
8. End For

Example: trace for the PERCEPTRON algorithm

Bound on number of mistakes

» The number of mistakes that the perceptron algorithm can

0 R 2
make is at most (;) .

» Proof by combining upper and lower bounds on ||w/||.

Pythagorean Lemma

On trials where “mistakes” occur we have the following inequality,

Lemma: If (w; - x;)y; < 0 then Hwt+1H2 < |well? + ||x¢]|?

Proof:

(Wit |® = [we + yexe|)?
= |wel|* + 2(we - x¢)yr + ||x¢]|
< flwel® + |1xe||?

Upper bound on ||w||

Lemma: [[w.|? < M;R?
Proof: By induction
> Claim: [[w;|]? < M;R?
» Base: My =0, [[w1]|>=0
> Induction step (assume for t and prove for t 4+ 1) when we
have a mistake on trial t:

Iwesa]® < [lwell® + [Ixe]|* < we]l* + R? < (Mey1)R?

Here we used the Pythagorean lemma. If there is no mistake,
then trivially w1 = wy and M1 = M.

Lower bound on ||wy||

Lemma: My < ||jwy]|

Observe: ||w¢|| > wy - v because ||v|| = 1. (Cauchy-Schwarz)
We prove a lower bound on w; - v using induction over t

» Claim: wy-v > My
» Base: t=1, wi-v=0

» Induction step (assume for t and prove for t 4 1):
If mistake then

Wepl V= (We+ Xtye) v
= WtV + YiXt -V
> My +
= (M:+ 1)y

Combining the upper and lower bounds

Let M := Mp,;+1 denote the total number of updates (“mistakes”)
then
(M7)? < [Wma|? < MR?

Thus simplifying we have the famous ...

Theorem (Perceptron Bound [Novikoff])

For all sequences of examples

S=(x1,%1),---,(Xm,¥m) € R" x {-1,1}
the mistakes of the PERCEPTRON algorithm is bounded by
2
o< (2
Y

with R := max; ||x¢||. If there exists a vector v with ||v|| =1 and
constant « such that (v - x¢)y: > 7.

Comments

Comments

» It is often convenient to express the bound in the following
form. Here define u := % then

M < R¥|ul® (Vu: (u-xe)ye > 1)

» Suppose we have linearly separable data set S. Questions:

1. Observe that w1 does not necessarily linearly separate S.
Why?

2. How can we use the PERCEPTRON to find a vector w that
separates S7

3. How long will this computation take?

» There are variants on the PERCEPTRON that operate on a
single example at a time that converge to the “SVM"
max-margin linear separator.

Perceptron algorithm for disjunctions

We may use the previous bound to prove the following (Exercise):

» Perceptron bound as applied to monotone disjunction learning
M < O(kn)

» Here k is the number of literals out the n possible literals

Note: There exists a generic lower bound for rotation invariant
algs (perceptron and svm are examples):

M = Q(n)

See : The Perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are

relevant (Kivinen and Warmuth, 1995).

WINNOW Algorithm for disjunctions [L88]

WINNOW algorithm
Input: (x1,y1),---, (Xm,y¥m) € {0,1}" x {0, 1}

1.

Initialise wq = 1.

2. For t =1 to mdo
3.
4. Predict:

Receive pattern: x; € {0,1}"

~ 0 w;-xr<n
Yt =
1 Wt-thn

Receive label: y; € {0,1}

If mistake (7 # yt)
» Update: wiip1,; = wy 2(ye=J) xt.i (1<i<n).

End For

Mistake bound of WINNOW

Theorem: Mistake bound of WINNOW (Littlestone)
The mistakes of WINNOW may be bounded by

M < 3k(logn+ 1)+ 2

If there exists a consistent k-literal monotone disjunction.

Observation

There is an exponential improvement in bound (over the
perceptron) with respect to the dimension n in the upper bound
for disjunction learning. Although we will not give the bound for
linear threshold learning with WINNOW in that case the bounds
are incomparable (wrt PERCEPTRON) where WINNOW (like lasso)
prefers sparse hypotheses.

Proof of WINNOW Bound
Bound on “mistakes” on positive examples. (y; = 1)

1.
2.
3.

On a mistake : at least one relevant weight is doubled.
Relevant weights never decrease.

Once a relevant weight w; ; > n it will no longer change

Conclusion: Mistakes on positive examples M, < k(logn+ 1)
Bound on “mistakes” on negative examples. (y; = 0)

Let W; = 27:1 w; ;. Denote My as mistakes on negatives

examples.
1. Wiy =n
2. On a positive mistake (y; = 1) Wip1 < Wi+ n
3. On a negative mistake (y; = 0) W11 < W; — 3
4. Combining W11 < n+ Mpn — M¢3
5. Thus Mf < 2k(logn+ 1) + 2.

Theorem: M < M, + M¢ <2+ 3k(logn+1)

Case study : DNF with PERCEPTRON and WINNOW

In the following we will ...

1.

We note that surprisingly the previous mistake bounds of
PERCEPTRON and WINNOW are stated in terms of the
minimally consistent disjunction. However finding such
disjunctions is NP-complete

. Then we will compare the time complexity and mistake

bounds for learning boolean DNF functions which are a
natural and complete class of boolean functions. (Whether
DNF is PAC Learnable under the uniform distribution has
been an open problem for 25+ years!!)

Feature selection is hard

Observation (finding minimally sparse linear classifiers):

A simple instance instance of feature selection would be to find the
minimal k-literal disjunction consistent with a data set. However
we will see that the decision is problem is NP-complete.
Theorem: set-cover is NP-complete

Given a set of m elements N, := {1,2,..., m}, a collection of n
subsets of elements S1,...,5, C N,, and a positive integer k the
problem of deciding if there exist k subsets from

Sy Sic €{S1,..., Sy} that cover, J_; S = Np, the m
elements is NP-complete.

Theorem: consistent k-disjunction is NP-complete

Proof sketch. The problem is of finding k-set cover reduces to
the problem of finding a k-literal disjunction consistent with a set
of examples. Sketching. Let X be an m X n matrix of m,

n — dimensional “positive” examples then the n “columns” are the
“sets” and a consistent disjunction is a set cover.

lllustration: Set Cover and Consistent Disjunction — 1

X1 X2 X3

x4 X5 X6

X7 X8 X9

x10 X11 X12

p1: M p2: M p3:W p4: pd: p6:A

Set cover illustration from: ¢‘Lecture Comp 260: Advanced

Algorithms, Lenore Cowen Tufts University, Spring 2011°°

lllustration: Set Cover and Consistent Disjunction — 2
As a data matrix (these are ‘positive’ examples thus

y1:-..y12:]_)

P P, Ps Pr Ps Ps
X1 1 0 1 0 O 0
Xo 1 0 O 1 0 0
X3 1 0 O 0 1 0
Xq 1 0 1 1 0 0
Xs 1 1 0 1 0 0
X6 1 1 0 0 1 0
X7 0 0 1 1 0 0
Xg 0 1 0 1 0 0
X9 0 1 0 0 1 0
x10 | O 0 1 0 O 1
X11 0 0 0 1 0 1
X12 0 0 0 0 1 1

Observe: P;V P>V P4\ Pg covers while P3V P4V Ps is minimal.
Interestingly. The prediction bounds of winnow and the
perceptron are in terms of minimum consistent disjunction but
neither find/learn or a minimal consistent disjunction.

Comparison classes of boolean functions (3)

DNF (Disjunctive Normal Form): is a disjunction of terms. For
example
X1X4x7 V X1 X2 V XoXg

e DNF is then the set of all disjunctions of terms.
e DNF is a natural form for knowledge representation for example:
the concept "cat” (from Lisa Hellerstein)

(IsHousePet A Purrs A HasTail)V

(HasTail A Furry A TaperedEars A RoundEyes)V
(NamedSylvester A ChasesTweetyBird)

» Note all boolean functions may be represented as a DNF
(Why?)

» Many unsolved problem in machine learning regarding DNF
learning

k-term (monotone) DNF via Feature Expansion

1
X1
X2
X1
X2 Xn
X = : = CD(X) = X1 X2
Xn
X1 X2 ... Xp
n inputs 2" features

k-term DNF in input space is k-literal disjunction in feature space

n

d(x) - d(y) = 14+ X yi) = Kanoval X , ¥ Simple ANOVA kernel
)- ®(y) ,-1;[1() (X) ()

20 2n ~ n

n

~"

O(n) time

Winnow versus Perceptron for k-term DNF

Perceptron: w; = Z aqg®(x;)

g mistake
Prediction:

we - P(x;) = Z ag®(xq) | - P(xe)= Z ag®P(xg) - P(x¢)

g mistake g mistake

= Z aqgK(Xq, Xt)

g mistake

-

~"

Prediction time: o(n - # mistakes)<0O(nm)
Mistake bound: O(k2") (Why?)
Winnow: w;; = exp(—n >_q mistake @a CD(xq),-)
log of weights is linear combination of past examples
Mistake bound: O(k In2") = O(k n) Prediction time: Q(2" # mistakes)
No kernel trick with purely mult. updates!, i.e., no obvious fast way to

compute w; - ®(x;) for WINNOW.
Summary: PERCEPTRON: (fast!, poor bound)

WINNOW: (slow, good bound!)

Summary so far

» Learning relative to best expert and best disjunction
» Learning relative to linear combinations of experts
» Linear combinations may represent Boolean functions

» PERCEPTRON versus WINNOW — similar algorithms very
different performance when we consider a feature space
expansion as applied to DNF

» \We focused on boolean function learning for PERCEPTRON
and WINNOW, however, they both learn linear threshold
functions directly and have strictly non-comparable bounds.
WINNOW like LASSO is better for “sparse” linear threshold
functions

Share Algorithm

Part ||

Learning with sequences of experts

Overview

» An online learning algorithm
» Tracks concepts which change over time

» Designed to combine other algorithms

» Online performance guarantees are given

» Nonasymptotic
» No statistical assumptions
» Tight lower bounds

» Time complexity: “linear”

» Practical Applications

On-line Learning (Review)

time t 1 2 3 4 | ... t

expert 1 5 3 2 1]-- Xt 1

expert 2 a5 | -15| -1 | -2 |.-. Xt 2

expert 3 -1.5 3 2 -4 |- Xt.3

expert 4 75 [-13 15|15 --- Xt 4

alg. preds | 0 15 | 15| .75 | --- Vit

label g5 | -15 | 2 1 |--- Yt

alg. loss | 056 | 9 | .25[.06] - | (§: — ye)?
For a sequence of examples S = {(x1,y1),-..,(x¢, y¢)}

12
Lossa(S) = > (9r — y¢)°
t=1

Aim: to bound Lossa(S) in terms of the loss of the best expert.
¢

Loss;(S) = Z(Xt,i — yt)°

t=1

Formal Model

In each trial t = 1,..., ¢ the algorithm receives an a vector of
predictions
Xt = (Xt,la 500 7X1_-,n) c [O, 1]n

and predicts
yt S [07 1]

then it observes the outcome
Yt S [07 1]

The performance of the algorithm A is measured by its loss

Y4
Lossa = > L(t, yt)

t=1

where L is a loss function such as the square or the Hellenger loss.

The Experts Algorithm (Review)

The algorithms maintain one weight w; ; per expert/component.
The weight vector w; is used for forming the prediction. For
example

Ve = Wy X¢

The weight vector w; is updated after the label y; is received. For
example
w, e (xei—yt)’

Z'? e_"’l(Xt,j—)/t)2

Expert update: w1 = i=1,...,n

Static Relative Loss Bounds

For all sequences of examples S

Lossa(S) < Loss;(S)+ clnn [V90, LW94, HKW98]

» The loss of the algorithm is bounded in terms of the best
single expert.

So far the comparator is “static”

Shifting Expert

Stream of Examples

I Xy best I X5 best I Xq best
t 1 30 45 90

» The loss of the algorithm is compared against the loss of the
best sequence of experts.

» The loss of a sequence of experts is the sum of the loss of the
expert for each segment.

» The algorithms do not know when a new segment begins and
which expert are best in each segment.

Problem for Algorithms

The crucial weights may be too small or too large. It might take
the algorithm too long to recover.

start of new segment

I I I
I Xy best I X5 best
t 1 45 a0

» Lower bounds on weights [LW,AW,BB]
» Weights as “probabilities” [HWa,V]

» Keep the weights in a bounded region defined in terms of a
“divergence function”: [HWb]

Shifting Experts — Details

» In the static case the loss bound is given relative to a single
expert.

» In the shifting case the loss bound is given relative to a
sequence of experts.

The loss defined relative to a sequence of experts

l
LOSS{il,iz,...,ig}(S) = Z(Xt,it - yt)2

t=1

Algorithm Design

Given the number of distinct sequences of experts is
14
1) 1k
([n7 1%)

Why?
Using the “experts” algorithm we can design an algorithm with a
loss bound of

14
LA(S) < L* 4+ ck(|n n—+lIn P L “COnst”)

How?
Caveats:

> Algorithm is exponential in k

» |Loss bound dependent on /

Fixed and Variable Share Algorithms

» Parameters: 0 <nand 0 < a < 1.

> Initialization: Set the weights to wf; =...=w§ K = 1.

> Prediction: Let v;; = v/, where W, = 37, w,. Predict

N
with yt = V- Xt

> Loss Update: After receiving the tth outcome y;,
Viil,o..,n:iw= Wf,ie_nL(yt,Xt,i)

» Fixed Share Update:

n
> pool =} i ; awy;

> Vit Lo nwlg g

» Variable Share Update:
> pool = Y27y (1 (1 —))y
> Vit niwlg =

(1 — o)t w4 —Low? (pool — (1 — (1 — a)tbexe))

=(1- a)Wt”j,- + nil Wts’,-(p00| — ozwt’f’,-)

Fixed Share — Visualization

a/(n-1) 1-a

a/(n-1) a/(n-1)

a/(n-1) a/(n-1)

expert 4

Shifting Loss Bounds

Shifting Experts:
> Let k :=size({i1,in,...,0¢})
> L= LOSS{il,iz,...,ig}(S)
» Choose a € [0, 1],

We then have the bound:

La(S) < L* + c[(£ — 1)(H(a™) + D(a™||)) + kIn(n — 1) + In n],

In —— and

k 1
where a* = =5, H(p) = 3 In—+1 7 — 5

D(p* Hp)—pln” +(1—p")In T2
When a = ;5 1, then the above is upper bounded by

/ —

1
La(S) < L* 4 c[kIn + kIn(n—1)+Inn—+ k],

Experiment (simulation)

Trials (¢) : 800

Shifts(k): 3

Number of Experts (n) : 64

Loss function (L): L(y,9) = (y — §)? (c=1/2,n = 2)
Share Parameter(«) : 0.024

Typical expert expected Loss/Trial : 1/12

“Best” expert expected Loss/Trial : 1/120

NSOl a0 D

Share Algorithms — Performance

70 T T T
— Loss of Variable Share Algorithm
— — Loss of Static Algorithm (Vovk) o
60 f
— - Loss of Fix Share Algorithm a
Loss of typical expert
o Vs
50 Loss of best partition (k=3) L PR
’ e
g + Variable Share Loss Bound L Phd
< ;e
g= % Fix Share Loss Bound ad
o
D40 _ ,
m e
Ve
2 ,
= Ve
S e
[2] - -
gaor /
[7
& ~
2 e
e
+
20 -7 I
r 7 B
;7 7
101 o L P i
L z —_
0 ! : ! ! ! ! ! !
0 100 200 300 400 500 600 700 800

trials

Expert Algorithm’s Weights

Vovk Relative Weights

0.9

0.8

scaled weights
o o o
(4, [e)] ~

o
»~

0.3
0.2
0.1
0 1 1 1
200 300 400 500 600 700 800
trials

Variable Share Weights

0.9 1

0.7]

scaled weights
o o
[6)] [e)]

T T

| |

I
~
T
!

03r

02r-

AN

0 100 200 300 400 500
trials

700 800

Some Applications

Ol = o D=

Useful

Predicting disk idle times

Online load balancing (process migration determination)
Predicting TCP packet inter-arrival times

Financial prediction by combining portfolios

Combining language for domain and topic adaptation

references

. Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, learning, and

games., (2006), Note this is a book.

N. Littlestone, Learning quickly when irrelevant attributes abound:
a new linear threshold algorithm, (1988).

N. Littlestone and M. K. Warmuth. The weighted majority
algorithm, (1994)

V. Vovk, Aggregating strategies, (1990).

. Haussler, D., Kivinen, J. and Warmuth, M.K. Sequential Prediction

of Individual Sequences Under General Loss Functions, (1998)
M. Herbster and M. Warmuth, Tracking the Best Expert, (1998)

S. Shalev-Schwartz, Online Learning and Online Convex
Optimization, (2011)

http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf
http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf

	Perceptron

