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Feature Maps

I Ridge Regression
I Basis Functions (Explicit Feature Maps)
I Kernel Functions (Implicit Feature Maps)
I A Kernel for semi-supervised learning (maybe)
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Part I

Feature Maps

Overview

I We show how a linear method such as least squares may
be lifted to a (potentially) higher dimensional space to
provide a nonlinear regression.

I We consider both explicit and implicit feature maps
I A feature map is simply a function that maps the “inputs”

into a new space.
I Thus the original method is now nonlinear in original

“inputs” but linear in the “mapped inputs”
I Explicit feature maps are often known as the Method of

Basis Functions
I Implicit feature maps are often known as the (reproducing)

“Kernel Trick”



Linear interpolation

Problem
We wish to find a function f (x) = w>x which best interpolates a
data set S = {(x1, y1), . . . , (xm, ym)} ⊆ IRn × IR

I If the data have been generated in the form (x, f (x)), the
vectors xi are linearly independent and m = n then there is
a unique interpolant whose parameter w solves

Xw = y

where, recall, y = (y1, . . . , ym)> and X = [x1, . . . ,xm]>

I Otherwise, this problem is ill-posed

Ill-posed problems

A problem is well-posed (in the sense of Hadamard) if

(1) a solution exists
(2) the solution is unique
(3) the solution depends continuously on the data

A problem is ill-posed if it is not well-posed

Learning problems are in general ill-posed (usually because of
(2))

Regularization theory provides a general framework to solve
ill-posed problems



Ridge Regression

Motivation:
1. Give a set of k hypothesis classes {Hr}r∈INk we can

choose an appropriate hypothesis class with
cross-validation

2. An alternative compatible with linear regression is to
choose a single “complex” hypothesis class and then
modify the error function by adding a “complexity” (norm)
penalty term.

3. This is known as regularization
4. Often both “1” and “2” are used in practice

Ridge Regression

We minimize the regularized (penalized) empirical error

Eempλ(w) :=
m∑

i=1

(yi−w>xi)
2+λ

n∑
`=1

w2
` ≡ (y−Xw)>(y−Xw)+λw>w

The positive parameter λ defines a trade-off between the error
on the data and the norm of the vector w (degree of
regularization)

Setting ∇Eempλ(w) = 0, we obtain the modified normal
equations

− 2X>(y− Xw) + 2λw = 0 (1)

whose solution (called regularized solution) is

w = (X>X + λIn)−1X>y (2)



Dual representation

It can be shown that the regularized solution can be written as

w =
m∑

i=1

αixi ⇒ f (x) =
m∑

i=1

αix>i x (∗)

where the vector of parameters αα = (α1, . . . , αm)> is given by

αα = (XX> + λIm)−1y (3)

• Function representations: we call the functional form (or
representation) f (x) = w>x the primal form and (*) the dual
form (or representation)

The dual form is computationally convenient when n > m

Dual representation (continued – 1)
Proof of eqs.(*) and (3):

We rewrite eq.(1) as

w =
X>(y− Xw)

λ

Thus we have

w =
m∑

i=1

αixi (4)

with

αi =
yi −w>xi

λ
(5)

Consequently, we have that

w>x =
m∑

i=1

αix>i x

proving eq.(*).



Dual representation (continued – 2)
Proof of eqs.(*) and (3):

Plugging eq.(4) in eq.(5) we obtain

αi =
yi − (

∑m
j=1 αjxj)

>xi

λ

Thus (with defining δij = 1 if i = j and as 0 otherwise)

yi = (
m∑

j=1

αjxj)
>xi + λαi

yi =
m∑

j=1

(αjxj
>xi + αjλδij)

yi =
m∑

j=1

(xj
>xi + λδij)αj

Hence (XX> + λIm)αα = y from which eq.(3) follows.

Computational Considerations

Training time:
I Solving for w in the primal form requires O(mn2 + n3)

operations while solving for αα in the dual form requires
O(nm2 + m3) (see (∗)) operations

If m� n it is more efficient to use the dual representation
Running (testing) time:

I Computing f (x) on a test vector x in the primal form
requires O(n) operations while the dual form (see (∗))
requires O(mn) operations



Sparse representation

We can benefit even further in the dual representation if the
inputs are sparse!

Example
Suppose each input x ∈ IRn has most of its components equal
to zero (e.g., consider images where most pixels are ‘black’ or
text documents represented as ‘bag of words’)

I If k denotes the number of nonzero components of the
input then computing x>t requires at most O(k) operations.
How do we do this?

I If km� n (which implies m, k � n) the dual representation
requires O(km2 + m3) computations for training and
O(mk) for testing

Basis Functions – Explicit Feature Map
The above ideas can naturally be generalized to nonlinear
function regression

By a feature map we mean a function φφ : IRn → IRN

φφ(x) = (φ1(x), . . . , φN(x)), x ∈ IRn

I The φ1, . . . , φN are called called basis functions
I Vector φφ(x) is called the feature vector and the space

{φφ(x) : x ∈ IRn}

the feature space

The non-linear regression function has the primal
representation

f (x) =
N∑

j=1

wjφj(x)



Computational Considerations Revisited

Again, if m� N it is more efficient to work with the dual
representation

Key observation: in the dual representation we don’t need to
know φφ explicitly; we just need to know the inner product
between any pair of feature vectors!

Example: N = n2, φφ(x) = (xixj)
n
i,j=1. In this case we have

〈φφ(x), φφ(t)〉 = (x>t)2 which requires only O(n) computations
whereas φφ(x) requires O(n2) computations

Kernel Functions – Implicit Feature Map

Given a feature map φφ we define its associated kernel function
K : IRn × IRn → IR as

K (x, t) = 〈φφ(x), φφ(t)〉, x, t ∈ IRn

I Key Point: Maybe for some feature map φφ computing
K (x, t) is independent of N (only dependent on n). Where
necessarily φφ(x) depends on N.

Example (cont.) If φφ(x) = (x i1
1 x i2

2 · · · x
in
n :
∑n

j=1 ij = r) then we
have that

K (x, t) = (x>t)r

In this case K (x, t) is computed with O(n) operations, which is
essentially independent of r or N = nr . On the other hand,
computing φφ(x) requires O(N) operations – Exponential in r !



Redundancy of the feature map

Warning
The feature map is not unique! If φφ generates K so does
φ̂φ = Uφφ where U in an (any!) N × N orthogonal matrix. Even
the dimension of φφ is not unique!

Example
If n = 2, K (x, t) = (x>t)2 is generated by both
φφ(x) = (x2

1 , x
2
2 , x1x2, x2x1) and φ̂φ(x) = (x2

1 , x
2
2 ,
√

2x1x2).

Regularization-based learning algorithms

Let us open a short parenthesis and show that the dual form of
ridge regression holds true for other loss functions as well

Eempλ(w) =
m∑

i=1

V (yi , 〈w, φφ(xi)〉) + λ〈w,w〉, λ > 0 (6)

where V : IR× IR→ IR is a loss function

Theorem
If V is differentiable wrt. its second argument and w is a
minimizer of Eλ then it has the form

w =
m∑

i=1

αiφφ(xi) ⇒ f (x) = 〈w, φφ(x)〉 =
m∑

i=1

αiK (xi ,x)

This result is usually called the Representer Theorem



Representer theorem

Setting the derivative of Eλ wrt. w to zero we have

−
m∑

i=1

V ′(yi , 〈w, φφ(xi)〉)φφ(xi) + 2λw = 0⇒ w =
m∑

i=1

αiφφ(xi) (7)

where V ′ is the partial derivative of V wrt. its second argument
and we defined

αi =
1

2λ
V ′(yi , 〈w, φφ(xi)〉) (8)

Thus we conclude that

f (x) = 〈w, φφ(x)〉 =
m∑

i=1

αi〈φφ(xi), φφ(x)〉 =
m∑

i=1

αiK (x,xi),

Some remarks
I Plugging eq.(7) in the rhs. of eq.(8) we obtain a set of

equations for the coefficients αi :

αi =
1

2λ
V ′

yi ,
m∑

j=1

K (xi ,xj)αj

 , i = 1, . . . ,m

When V is the square loss and φφ(x) = x we retrieve the
linear eq.(3)

I Substituting eq.(7) in eq.(6) we obtain an objective function
for the α’s:

m∑
i=1

V (yi , (Kαα)i) + λαα>Kαα, where : K = (K (xi ,xj))m
i,j=1

Remark: the Representer Theorem holds true under more general
conditions on V (for example V can be any continuous function)



What functions are “kernels”?

Question
Given a function K : IRn × IRn → IR, which properties of K
guarantee that there exists a Hilbert spaceW and a feature
map φφ : IRn →W such that K (x, t) = 〈φφ(x), φφ(t)〉?

Note
We’ve generalized the definition of finite-dimensional feature
maps

φφ : IRn → IRN

to now allow potentially infinite-dimensional feature maps

φφ : IRn →W

Positive Semidefinite Kernel

Definition
A function K : IRn × IRn → IR is positive semidefinite if it is
symmetric and the matrix (K (xi ,xj) : i , j = 1, . . . , k) is positive
semidefinite for every k ∈ IN and every x1, . . . ,xk ∈ IRn

Theorem
K is positive semidefinite if and only if

K (x, t) = 〈φφ(x), φφ(t)〉, x, t ∈ IRn

for some feature map φφ : IRn →W and Hilbert spaceW



Positive semidefinite kernel (cont.)

Proof of “⇐”
If K (x, t) = 〈φφ(x), φφ(t)〉 then we have that

m∑
i,j=1

cicjK (xi ,xj) =

〈
m∑

i=1

ciφφ(xi),
m∑

j=1

cjφφ(xj)

〉
=

∥∥∥∥∥
m∑

i=1

ciφφ(xi)

∥∥∥∥∥
2

≥ 0

for every choice of m ∈ IN, xi ∈ IRd and ci ∈ R, i = 1, . . . ,m

Note
the proof of ‘⇒’ requires the notion of reproducing kernel Hilbert
spaces. Informally, one can show that the linear span of the set of
functions {K (x, ·) : x ∈ IRn} can be made into a Hilbert space HK with
inner product induced by the definition 〈K (x, ·),K (t, ·)〉 := K (x, t). In
particular, the map φφ : IRn → HK defined as φφ(x) = K (x, ·) is a feature
map associated with K . Observe then with f (·) :=

∑m
i=1 αiK (xi , ·) that

‖f‖2 =
∑m

i=1
∑m

j=1 αiαjK (xi ,xj ).

Two Example Kernels

Polynomial Kernel(s)
If p : IR→ IR is a polynomial with nonnegative coefficients then
K (x, t) = p(x>t),x, t ∈ IRn is a positive semidefinite kernel. For
example if a ≥ 0

I K (x, t) = (x>t)r

I K (x, t) = (a + x>t)r

I K (x, t) =
∑d

i=0
ai

i! (x>t)i

are each positive semidefinite kernels.

Gaussian Kernel
An important example of a “radial” kernel is the Gaussian kernel

K (x, t) = exp(−β‖x− t‖2), β > 0,x, t ∈ IRn

note: any corresponding feature map φφ(·) is∞-dimensional.



Polynomial and Anova Kernel

Anova Kernel

Ka(x, t) =
n∏

i=1

(1 + xi ti)

Compare to the polynomial kernel Kp(x, t) = (1 + x>t)d

1 1√
dx1 x1√
dx2 x2

x1

.

.

. x1

.

.

.
x2

√
dxn x2 xn

x =

.

.

. ⇒ φφp(x) =
√

d(d − 1)x1 x2 x =

.

.

. ⇒ φφa(x) = x1 x2

.

.

.
.
.
.

.

.

.
.
.
.

xn

√(
d

i0,i1,...,in

)
x

i1
1 x

i2
2 · · · x

in
n xn

.

.

.

.

.

. x1 x2 ... xn
where

∑n
j=0 ij = d

Kernel construction

Which operations/combinations (eg, products, sums,
composition, etc.) of a given set of kernels is still a kernel?
If we address this question we can build more interesting
kernels starting from simple ones

Example
We have already seen that K (x, t) = (x>t)r is a kernel. For
which class of functions p : IR→ IR is p(x>t) a kernel? More
generally, if K is a kernel when is p(K (x, t)) a kernel?



General linear kernel

If A is an n × n psd matrix the function K : IRn × IRn → IR
defined by

K (x, t) = x>At

is a kernel

Proof
Since A is psd we can write it in the form A = RR> for some
n × n matrix R. Thus K is represented by the feature map
φφ(x) = R>x
Alternatively, note that:∑

i,j

cicjx>i Axj =
∑
i,j

cicj(R>xi)
>(R>xj) = ‖

∑
i

ciR>xi‖2 ≥ 0

Kernel composition

More generally, if K : IRN × IRN → IR is a kernel and
φφ : IRn → IRN , then

K̃ (x, t) = K (φφ(x), φφ(t))

is a kernel

Proof
By hypothesis, K is a kernel and so, for every x1, . . . ,xm ∈ IRn

the matrix (K (φφ(xi), φφ(xj)) : i , j = 1, . . . ,m) is psd
In particular, the above example corresponds to K (x, t) = x>t
and φφ(x) = R>x



Kernel construction (cont.)

Question
If K1, . . . ,Kq are kernels on IRn and F : IRq → IR, when is the
function

F (K1(x, t), . . . ,Kq(x, t)), x, t ∈ IRn

a kernel?
Equivalently: when for every choice of m ∈ IN and A1, . . . ,Aq
m ×m psd matrices, is the following matrix psd?

(F (A1,ij , . . . ,Aq,ij) : i , j = 1, . . .m)

We discuss some examples of functions F for which the answer
to these question is YES

Nonnegative combination of kernels

If λj ≥ 0, j = 1, . . . ,q then
∑q

j=1 λjKj is a kernel
This fact is immediate (a non-negative combination of psd
matrices is still psd)
Example: Let q = n and Ki (x, t) = xi ti .
In particular, this implies that

I aK1 is a kernel if a ≥ 0
I K1 + K2 is a kernel



Product of kernels
The pointwise product of two kernels K1 and K2

K (x, t) := K1(x, t)K2(x, t), x, t ∈ IRd

is a kernel

Proof
We need to show that if A and B are psd matrices, so is
C = (AijBij : i , j = 1, . . . ,m) (C is also called the Schur product of A
and B). We write A and B in their singular value form, A = UΣU>,
B = VΛV> where U,V are orthogonal matrices and
Σ = diag(σ1, . . . , σm), Λ = diag(λ1, . . . , λm), σi , λi ≥ 0. We have

m∑
i,j=1

aiajCij =
∑

ij

aiaj

∑
r

σr Uir Ujr

∑
s

λsVisVjs

=
∑

rs

σrλs

∑
i

aiUir Vis

∑
j

ajUjr Vjs

=
∑

rs

σrλs(
∑

i

aiUir Vis)2 ≥ 0

Summary of constructions

Theorem
If K1,K2 are kernels, a ≥ 0, A is a symmetric positive
semi-definite matrix, K a kernel on IRN and φφ : IRn → IRN then
the following functions are positive semidefinite kernels on IRn

1. x>At
2. K1(x, t) + K2(x, t)
3. aK1(x, t)
4. K1(x, t)K2(x, t)
5. K (φφ(x), φφ(t))



Polynomial of kernels

Let F = p where p : IRq → IR is a polynomial in q variables with
nonnegative coefficients. By properties 1,2 and 3 above we
conclude that p is a valid function
In particular if q = 1,

d∑
i=1

ai(K (x, t))i

is a kernel if a1, . . . ,ad ≥ 0

Polynomial kernels

The above observation implies that if p : IR→ IR is a polynomial
with nonnegative coefficients then p(x>t),x, t ∈ IRn is a kernel
on IRn. In particular if a ≥ 0 the following are valid polynomial
kernels

I (x>t)r

I (a + x>t)r

I
∑d

i=0
ai

i! (x>t)i



‘Infinite polynomial’ kernel

If in the last equation we set r =∞ the series

r∑
i=0

ai

i!
(x>t)i

converges everywhere uniformly to exp(ax>t) showing that this
function is also a kernel
Assume for simplicity that n = 1. A feature map corresponding
to the kernel exp(axt) is

φφ(x) =

(
1,
√

ax ,
√

a
2

x2,

√
a3

6
x3, . . .

)
=

(√
ai

i!
x i : i ∈ IN

)

I The feature space has an infinite dimensionality!

Translation invariant and radial kernels

We say that a kernel K : IRd × IRd → IR is
I Translation invariant if it has the form

K (x, t) = H(x− t), x, t ∈ IRd

where H : IRd → IR is a differentiable function
I Radial if it has the form

K (x, t) = h(‖x− t‖), x, t ∈ IRd

where h : [0,∞)→ [0,∞) is a differentiable function



The Gaussian kernel

An important example of a radial kernel is the Gaussian kernel

K (x, t) = exp(−β‖x− t‖2), β > 0,x, t ∈ IRd

It is a kernel because it is the product of two kernels

K (x, t) = (exp(−β(x>x + t>t))) exp(2βx>t)

(We saw before that exp(2βx>t) is a kernel. Clearly
exp(−β(x>x + t>t)) is a kernel with one-dimensional feature
map φ(x) = exp(−βx>x))

Exercise:
Can you find a feature map representation for the Gaussian
kernel?

The min kernel

We give another example of a kernel.

Kmin(x , t) := min(x , t)

with x , t ∈ [0,∞). We argue informally that this is the kernel
associated with the Hilbert space Hmin of all functions with the
following four properties.

1. f : [0,∞)→ IR

2. f (0) = 0

3. f is absolutely continuous (hence f (b)− f (a) =
∫ b

a f ′(x)dx )

4. ‖f‖ =
√∫∞

0 [f ′(x)]2 dx



Proof sketch
Proof sketch
Our argument is simplified as follows,

1. We argue only that the induced norms are the same.
2. We only consider f ∈ Hmin s.t. f (x) =

∑m
i=1 αi min(xi , x).

Define hc(x) = [x ≤ c] i.e., hc(x) = [min(c, x)]′

‖f‖2 =

∫ ∞
0

[f ′(x)]2 dx

=

∫ ∞
0

[(
m∑

i=1

αi min(xi , x))′]2 dx

=

∫ ∞
0

[(
m∑

i=1

αihxi (x))′]2 dx

=
m∑
i,j

αiαj

∫ ∞
0

hxi (x)hxj (x) dx =
m∑
i,j

αiαj min(xi , xj)

Summary : Computation with Basis Functions

Data: X , (m × n); y, (m × 1)
Basis Functions: φ1, . . . , φN where φi : IRn → IR
Feature Map: φφ : IRn → IRN

φφ(x) = (φ1(x), . . . , φN(x)), x ∈ IRn

Mapped Data Matrix:

Φ :=

 φφ(x1)
...

φφ(xm)

 =

 φ1(x1) . . . φN(x1)
...

. . .
...

φ1(xm) . . . φN(xm)

 , (m × N)

Regression Coefficients: w = (Φ>Φ + λIN)−1Φ>y
Regression Function: ŷ(x) =

∑N
i=1 wiφi(x)



Summary : Computation with Kernels

Data: X , (m × n); y, (m × 1)
Kernel Function: K : IRn × IRn → IR
Kernel Matrix:

K :=

 K (x1,x1) . . . K (x1,xm)
...

. . .
...

K (xm,x1) . . . K (xm,xm)

 , (m ×m)

Regression Coefficients: αα = (K + λIm)−1y
Regression Function: ŷ(x) =

∑m
i=1 αiK (xi ,x)


	Feature Maps
	Ridge Regression
	Basis Functions
	Kernels
	Computational Summary


