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Today’s Plan

Feature Maps

» Ridge Regression

» Basis Functions (Explicit Feature Maps)

» Kernel Functions (Implicit Feature Maps)

» A Kernel for semi-supervised learning (maybe)
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Part |

Feature Maps

Overview

» We show how a linear method such as least squares may
be lifted to a (potentially) higher dimensional space to
provide a nonlinear regression.

» We consider both explicit and implicit feature maps

» A feature map is simply a function that maps the “inputs”
into a new space.

» Thus the original method is now nonlinear in original
“inputs” but linear in the “mapped inputs”

» Explicit feature maps are often known as the Method of
Basis Functions

» Implicit feature maps are often known as the (reproducing)
“Kernel Trick”



Linear interpolation

Problem
We wish to find a function f(x) = w™x which best interpolates a
dataset S = {(X1,¥1),...,(Xm, ¥m)} CR" xR

» |If the data have been generated in the form (x, f(x)), the
vectors X; are linearly independent and m = n then there is
a unique interpolant whose parameter w solves

XW =y

where, recall, y = (y1,...,¥ym)" and X = [Xy,..., X"
» Otherwise, this problem is ill-posed

lll-posed problems

A problem is well-posed (in the sense of Hadamard) if
(1) a solution exists
(2) the solution is unique
(3) the solution depends continuously on the data

A problem is ill-posed if it is not well-posed

Learning problems are in general ill-posed (usually because of

(2)

Regularization theory provides a general framework to solve
ill-posed problems



Ridge Regression

Motivation:

1. Give a set of k hypothesis classes {#,}ren, We can
choose an appropriate hypothesis class with
cross-validation

2. An alternative compatible with linear regression is to
choose a single “complex” hypothesis class and then
modify the error function by adding a “complexity” (norm)
penalty term.

3. This is known as regularization
4. Often both “1” and “2” are used in practice

Ridge Regression

We minimize the regularized (penalized) empirical error

m n
Eomp, (W) == D _(¥i—W X))2+A D wf = (y—XW) ™ (y—Xw)+iw'w
i=1 =1

The positive parameter \ defines a trade-off between the error
on the data and the norm of the vector w (degree of
regularization)

Setting VE&emp, (W) = 0, we obtain the modified normal
equations
—2X"(y— Xw)+2\w =0 (1)

whose solution (called regularized solution) is

w=(X"X+X,) X"y (2)



Dual representation

It can be shown that the regularized solution can be written as

m m
W = Z aiX; = f(X) = z Oz,'X,-TX (*)
=1 =

where the vector of parameters a = (a4, ...,am)" is given by
a=(XXT +Xpn)ly (3)

e Function representations: we call the functional form (or
representation) f(x) = w' x the primal form and (*) the dual
form (or representation)

The dual form is computationally convenient when n > m

Dual representation (continued — 1)

Proof of egs.(*) and (3):
We rewrite eq.(1) as

T(vy —
W — X' (y— Xw)
A
Thus we have .
W — Z o X (4)
i=1
with -
L Yi—W X
aj =T (5)

Consequently, we have that
m
wix=> ax/x
i=1

proving eq.(*).



Dual representation (continued — 2)
Proof of egs.(*) and (3):
Plugging eq.(4) in eq.(5) we obtain

yi — (2721 %)) ' i
A

aj =

Thus (with defining 6; = 1 if / = j and as 0 otherwise)

m
yi=0_ ax) X+ A
j=1
m

yi = Z(anjTX,' + aj)\5ij)
j=1
m

Yi = Z(XjTX,' + )\5,‘1')04]'
j=1

Hence (XX + Mlpy)a =y from which eq.(3) follows.

Computational Considerations

Training time:

» Solving for w in the primal form requires O(mn? + n3)
operations while solving for a in the dual form requires
O(nm? + m®) (see (x)) operations

If m < nitis more efficient to use the dual representation
Running (testing) time:

» Computing f(x) on a test vector x in the primal form
requires O(n) operations while the dual form (see (x))
requires O(mn) operations



Sparse representation

We can benefit even further in the dual representation if the
inputs are sparse!

Example

Suppose each input x € R” has most of its components equal
to zero (e.g., consider images where most pixels are ‘black’ or
text documents represented as ‘bag of words’)

» If k denotes the number of nonzero components of the
input then computing x "t requires at most O(k) operations.

How do we do this?
» If km < n (which implies m, k < n) the dual representation

requires O(km? + m3) computations for training and
O(mk) for testing

Basis Functions — Explicit Feature Map
The above ideas can naturally be generalized to nonlinear
function regression

By a feature map we mean a function ¢ : R” — RN

P(X) = (¢1(X), ..., Pn(X)), X € R”

» The ¢1,..., ¢y are called called basis functions
» Vector ¢(x) is called the feature vector and the space

{¢(x) : x € R}
the feature space

The non-linear regression function has the primal
representation

N
f(x) =) wigj(x)
j=1



Computational Considerations Revisited

Again, if m < N it is more efficient to work with the dual
representation

Key observation: in the dual representation we don’t need to
know ¢ explicitly; we just need to know the inner product
between any pair of feature vectors!

Example: N = n®, ¢(x) = (xix;)/,_;- In this case we have
(p(X), p(t)) = (XTt)? which requires only O(n) computations

whereas ¢(X) requires O(n?) computations

Kernel Functions — Implicit Feature Map

Given a feature map ¢ we define its associated kernel function
K:R"xR" — R as

K(Xat) — <¢(X), ¢(t)>a x,t € R”

» Key Point: Maybe for some feature map ¢ computing
K(x,1) is independent of N (only dependent on n). Where
necessarily ¢(x) depends on N.

Example (cont.) If ¢(X) = (x1"1 xéé oo 50 ¢ 21’7:1 ii = r) then we
have that
K(x,t) = (x"t)"

In this case K(x,t) is computed with O(n) operations, which is
essentially independent of r or N = n". On the other hand,
computing ¢(x) requires O(N) operations — Exponential in r!



Redundancy of the feature map

Warning

The feature map is not unique! If ¢ generates K so does
¢ = U¢ where U in an (any!) N x N orthogonal matrix. Even
the dimension of ¢ is not unique!

Example
If n =2, K(x,t) = (x"t)? is generated by both
d(X) = (X2, X3, x1X2, XoX1) and ¢(x) = (X2, X3, v/2x1 x2).

Regularization-based learning algorithms

Let us open a short parenthesis and show that the dual form of
ridge regression holds true for other loss functions as well

Eemp,, (W ZV(y,, Xj))) + AW, W), A>0 (6)

where V: R x R — R is a loss function

Theorem

If V is differentiable wrt. its second argument and w is a
minimizer of E, then it has the form

W= Z@/(bxl = f() Za/ X,,X)

i=1

This result is usually called the Representer Theorem



Representer theorem

Setting the derivative of E, wrt. w to zero we have

= V(i (W, $(X))p(X;) + 22w =0 = W = Y " a;p(X;) (7)
=

=1

where V' is the partial derivative of V wrt. its second argument
and we defined

1 = 55 V/ (3, (W, $(x)) ®

Thus we conclude that

f(X) = Za/ X, ¢(X) Za,-K(X,X,-),
=1

Some remarks

» Plugging eq.(7) in the rhs. of eq.(8) we obtain a set of
equations for the coefficients «;:

-V’(y,,ZKx,,xj ), i=1,....m

When V is the square loss and ¢(x) = x we retrieve the
linear eq.(3)

» Substituting eq.(7) in eq.(6) we obtain an objective function
for the a’s:

m
Z V(yi, (Ka);) + Aa"Ka, where : K = (K(X;,X;)){_1
i=1

Remark: the Representer Theorem holds true under more general
conditions on V (for example V can be any continuous function)



What functions are “kernels”?

Question

Given a function K : R” x R"” — R, which properties of K
guarantee that there exists a Hilbert space W and a feature
map ¢ : R” — W such that K(x,t) = (¢(x), ¢(1))?

Note
We've generalized the definition of finite-dimensional feature
maps

¢:R"— RY

to now allow potentially infinite-dimensional feature maps

¢:R" =W

Positive Semidefinite Kernel

Definition

A function K : R” x R” — R is positive semidefinite if it is
symmetric and the matrix (K(x;,x;) : i,/ = 1,..., k) is positive
semidefinite for every k € IN and every Xq,..., X, € R"
Theorem

K is positive semidefinite if and only if

K(X,t) — <¢(X)a ¢(t)>7 X, te R"

for some feature map ¢ : R" — WV and Hilbert space W



Positive semidefinite kernel (cont.)

Proof of “«
If K(x,t) = (4(X), ¢(t)) then we have that

Zc,cj (X, X;) = <Zc,¢(x, ch x/)>:

ihj=1

d(X;)

for every choiceof me N, x; e R%andc;e R, i=1,...,m

Note

the proof of ‘=’ requires the notion of reproducing kernel Hilbert
spaces. Informally, one can show that the linear span of the set of
functions {K(Xx, -) : x € R"} can be made into a Hilbert space Hyk with
inner product induced by the definition (K(x,-), K(t,-)) := K(x,t). In
particular, the map ¢ : R” — Hk defined as ¢(x) = K(x, ) is a feature
map associated with K. Observe then with f(-) := 3", o;K(x;, -) that

1P = o7 SO oy K(Xi, X)).

Two Example Kernels

Polynomial Kernel(s)
If p: R — R is a polynomial with nonnegative coefficients then
K(x,t) = p(x't),x,t € R" is a positive semidefinite kernel. For
exampleifa> 0

» K(x,t) = (x"t)"

» K(x,t) =(a+ th)f

> K(X, t) Z/ =0 (th)
are each positive semidefinite kernels.

Gaussian Kernel
An important example of a “radial” kernel is the Gaussian kernel

K(x,t) = exp(—Blx — t|?), 8> 0,xteR”

note: any corresponding feature map ¢(-) is co-dimensional.



Polynomial and Anova Kernel

Anova Kernel

Ka(x,t) = | | (1 + xit;)

L A

i=1

Compare to the polynomial kernel Ky(x,t) = (1 + x"t)?
1

\/aX1
\/aX2
Xq
* Vdxp
X = = Pp(X) = d(d — 1)x; x -
d j1 f2 ;
v \/(i07i1 ..... ,'n)X1 X5 - . xin

where 327 o iy = d

Kernel construction

1
X1
X2

Xq
X2 Xn

L= ¢a(X) = X{ X2

Xn

X1 Xo ... Xn

Which operations/combinations (eg, products, sums,
composition, etc.) of a given set of kernels is still a kernel?
If we address this question we can build more interesting

kernels starting from simple ones

Example

We have already seen that K(x,t) = (x"t)" is a kernel. For
which class of functions p: R — R is p(x't) a kernel? More
generally, if K is a kernel when is p(K(x,t)) a kernel?



General linear kernel

If A is an n x n psd matrix the function K : R” x R" — R
defined by
K(x,t) = x"At

is a kernel

Proof

Since A is psd we can write it in the form A = RRT for some
n x n matrix R. Thus K is represented by the feature map
d(x) =R"x

Alternatively, note that:

D> cicx] Ax; =} cig(R™x)"(R"x) = || _cR™xil|* >0
i i /

Kernel composition

More generally, if K : RN x RN — R is a kernel and
¢ : R" — RN, then

~

K(x,t) = K(é(x), ¢(1))
is a kernel

Proof

By hypothesis, K is a kernel and so, for every x1,...,Xn € R"
the matrix (K(o(X;), ¢(X;)) : i,j=1,...,m)is psd

In particular, the above example corresponds to K(x,t) = x't
and ¢(x) = R"x



Kernel construction (cont.)

Question
If Ki,...,Kq are kernels on R" and F : R — R, when is the
function
F(Ki(x,t),...,Kg(x,1)), x,teR”
a kernel?
Equivalently: when for every choice of me N and A4, ..., Aq

m x m psd matrices, is the following matrix psd?
(F(A1,j,...,Agjj) 1, j=1,...m)

We discuss some examples of functions F for which the answer
to these question is YES

Nonnegative combination of kernels

If A >0,j=1,...,qthen 37, \iK; is a kernel
This fact is immediate (a non-negative combination of psd
matrices is still psd)
Example: Let g = nand Kj(x,t) = x;t.
In particular, this implies that
» aKjisakernelifa>0

» K; + K> is a kernel



Product of kernels
The pointwise product of two kernels K7 and K>

K(x,t) = Ki(X, ) Ko(X,t), X,teR?

is a kernel

Proof

We need to show that if A and B are psd matrices, so is
C=(AjBj:i,j=1,...,m) (Cis also called the Schur product of A
and B). We write A and B in their singular value form, A =UXU",
B = VAVT where U,V are orthogonal matrices and

Y =diag(o1,...,0m), N=diag(\,...,Am), oi, A\i > 0. We have

m
Y aaC; = Y aay oUplp > AsVisVis
jj=1 i r s
= ZO'rAsZaiUirViszajUerjs
rs i J

= ZUrAS(Z aiUy Vis)2 >0
rs i

Summary of constructions

Theorem

If Ky, K> are kernels, a > 0, Ais a symmetric positive
semi-definite matrix, K a kernel on RN and ¢ : R” — RN then
the following functions are positive semidefinite kernels on R”

1. xTAt

2. Ki(x,t) + Kx(x,t)
aKi(x,t)

Ki(x, t)Ka(x, t)
K(o(x), é(t))

S



Polynomial of kernels

Let F = pwhere p: R? — R is a polynomial in g variables with
nonnegative coefficients. By properties 1,2 and 3 above we
conclude that p is a valid function

In particular if g = 1,

isakernelifay,...,ag >0

Polynomial kernels

The above observation implies that if p: R — R is a polynomial
with nonnegative coefficients then p(x't),x,t € R" is a kernel
on R". In particular if a > 0 the following are valid polynomial
kernels

> (th)I’
» (a+x't)
> S STy



‘Infinite polynomial’ kernel

If in the last equation we set r = oo the series

> &y
i=0

converges everywhere uniformly to exp(ax™t) showing that this
function is also a kernel
Assume for simplicity that n = 1. A feature map corresponding
to the kernel exp(axt) is

$(x) ( fx\[ \/7 ) (%x’:ieN)

» The feature space has an infinite dimensionality!

Translation invariant and radial kernels

We say that a kernel K : RY x RY — R is
» Translation invariant if it has the form

K(x,t) = Hx—t), x,te R’

where H : R? — R is a differentiable function
» Radial if it has the form

K(x,t) = (X —tl]), x.teR

where h: [0, 00) — [0, ) is a differentiable function



The Gaussian kernel

An important example of a radial kernel is the Gaussian kernel
K(x,t) = exp(—8|x — t||?), B>0,x,tc R
It is a kernel because it is the product of two kernels
K(x,t) = (exp(—B(x"x +t't))) exp(28x't)

(We saw before that exp(25x™t) is a kernel. Clearly
exp(—pB(x"x +t't)) is a kernel with one-dimensional feature

map ¢(x) = exp(—Fx" X))

Exercise:
Can you find a feature map representation for the Gaussian
kernel?

The min kernel

We give another example of a kernel.
Kuin(X, t) := min(x, t)

with x, t € [0, c0). We argue informally that this is the kernel
associated with the Hilbert space H,,, of all functions with the
following four properties.

1. f:[0,00) > R
2. f(0)=0
3. fis absolutely continuous (hence f(b f f'(x

4l =/ J5CIF (12 ax




Proof sketch

Proof sketch
Our argument is simplified as follows,

1. We argue only that the induced norms are the same.
2. We only consider f € Hyin S.1. f(X) = Y14 a min(x;, X).
Define he(x) = [x < ] i.e., he(x) = [min(c, x)]’

1712 = [ "1 Gor? ox
/ Za,mln x;, X)) dx
/ Za, ()2 dx
_Zaaj/ B (X) P dX—Zozajmln Xi, X;)

Summary : Computation with Basis Functions

Data: X, (mxn);y, (mx1)
Basis Functions: ¢1,...,¢5 Where ¢; : R" — R
Feature Map: ¢: R” — RN

P(X) = (¢1(X), ..., Pn(X)), X € R”

Mapped Data Matrix:
P(X4) o1(X1) ... on(X1)
d(Xm) P1(Xm) .- ON(Xm)

Regression Coefficients: w = (¢7d 4+ \ly) ToTy
Regression Function: y(x) = SN, wi¢(x)



Summary : Computation with Kernels

Data: X, (mxn);y, (mx1)
Kernel Function: K: R" xR" - R
Kernel Matrix:

K(x1,X1) ... K(X1,Xmn)
K = S . (mxm)
KXm,X1) ... K(Xm,Xm)

Regression Coefficients: o = (K + M\, 'y
Regression Function: y(x) = > 7. a;K(x;,X)
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