

2. Kernels and Regularization

GI01/M055: Supervised Learning

Mark Herbster

University College London
Department of Computer Science

13 October 2014

Today's Plan

Feature Maps

- ▶ Ridge Regression
- ▶ Basis Functions (Explicit Feature Maps)
- ▶ Kernel Functions (Implicit Feature Maps)
- ▶ A Kernel for semi-supervised learning (maybe)

bibliography

Chapters 2 and 3 of *Kernel Methods for Pattern Analysis*,
Shawe-Taylor.J, and Cristianini N., Cambridge University Press
(2004)

Part I

Feature Maps

Overview

- ▶ We show how a linear method such as least squares may be **lifted** to a (potentially) higher dimensional space to provide a nonlinear regression.
- ▶ We consider both **explicit** and **implicit** feature maps
- ▶ A feature map is simply a function that maps the “inputs” into a new space.
- ▶ Thus the original method is now nonlinear in original “inputs” but linear in the “mapped inputs”
- ▶ Explicit feature maps are often known as the *Method of Basis Functions*
- ▶ Implicit feature maps are often known as the (*reproducing*) “Kernel Trick”

Linear interpolation

Problem

We wish to find a function $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}$ which best interpolates a data set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \subseteq \mathbb{R}^n \times \mathbb{R}$

- ▶ If the data have been generated in the form $(\mathbf{x}, f(\mathbf{x}))$, the vectors \mathbf{x}_i are linearly independent and $m = n$ then there is a unique interpolant whose parameter \mathbf{w} solves

$$\mathcal{X}\mathbf{w} = \mathbf{y}$$

where, recall, $\mathbf{y} = (y_1, \dots, y_m)^\top$ and $\mathcal{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m]^\top$

- ▶ Otherwise, this problem is *ill-posed*

Ill-posed problems

A problem is well-posed (in the sense of Hadamard) if

- (1) a solution exists
- (2) the solution is unique
- (3) the solution depends continuously on the data

A problem is ill-posed if it is not well-posed

Learning problems are in general ill-posed (usually because of (2))

Regularization theory provides a general framework to solve ill-posed problems

Ridge Regression

Motivation:

1. Give a set of k hypothesis classes $\{\mathcal{H}_r\}_{r \in \mathbb{N}_k}$ we can choose an appropriate hypothesis class with *cross-validation*
2. An alternative compatible with linear regression is to choose a single “complex” hypothesis class and then modify the error function by adding a “complexity” (norm) penalty term.
3. This is known as **regularization**
4. Often both “1” and “2” are used in practice

Ridge Regression

We minimize the regularized (penalized) empirical error

$$\mathcal{E}_{\text{emp}, \lambda}(\mathbf{w}) := \sum_{i=1}^m (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \lambda \sum_{\ell=1}^n w_\ell^2 \equiv (\mathbf{y} - \mathbf{X}\mathbf{w})^\top (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^\top \mathbf{w}$$

The positive parameter λ defines a trade-off between the error on the data and the norm of the vector \mathbf{w} (degree of regularization)

Setting $\nabla \mathcal{E}_{\text{emp}, \lambda}(\mathbf{w}) = 0$, we obtain the modified normal equations

$$-2\mathbf{X}^\top(\mathbf{y} - \mathbf{X}\mathbf{w}) + 2\lambda\mathbf{w} = 0 \quad (1)$$

whose solution (called *regularized solution*) is

$$\mathbf{w} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_n)^{-1} \mathbf{X}^\top \mathbf{y} \quad (2)$$

Dual representation

It can be shown that the regularized solution can be written as

$$\mathbf{w} = \sum_{i=1}^m \alpha_i \mathbf{x}_i \Rightarrow f(\mathbf{x}) = \sum_{i=1}^m \alpha_i \mathbf{x}_i^\top \mathbf{x} \quad (*)$$

where the vector of parameters $\alpha = (\alpha_1, \dots, \alpha_m)^\top$ is given by

$$\alpha = (X X^\top + \lambda I_m)^{-1} \mathbf{y} \quad (3)$$

- **Function representations:** we call the functional form (or representation) $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}$ the *primal form* and (*) the *dual form* (or representation)

The dual form is computationally convenient when $n > m$

Dual representation (continued – 1)

Proof of eqs.(*) and (3):

We rewrite eq.(1) as

$$\mathbf{w} = \frac{X^\top (\mathbf{y} - X \mathbf{w})}{\lambda}$$

Thus we have

$$\mathbf{w} = \sum_{i=1}^m \alpha_i \mathbf{x}_i \quad (4)$$

with

$$\alpha_i = \frac{y_i - \mathbf{w}^\top \mathbf{x}_i}{\lambda} \quad (5)$$

Consequently, we have that

$$\mathbf{w}^\top \mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i^\top \mathbf{x}$$

proving eq.(*) .

Dual representation (continued – 2)

Proof of eqs.(*) and (3):

Plugging eq.(4) in eq.(5) we obtain

$$\alpha_i = \frac{y_i - (\sum_{j=1}^m \alpha_j \mathbf{x}_j)^\top \mathbf{x}_i}{\lambda}$$

Thus (with defining $\delta_{ij} = 1$ if $i = j$ and as 0 otherwise)

$$\begin{aligned} y_i &= (\sum_{j=1}^m \alpha_j \mathbf{x}_j)^\top \mathbf{x}_i + \lambda \alpha_i \\ y_i &= \sum_{j=1}^m (\alpha_j \mathbf{x}_j^\top \mathbf{x}_i + \alpha_j \lambda \delta_{ij}) \\ y_i &= \sum_{j=1}^m (\mathbf{x}_j^\top \mathbf{x}_i + \lambda \delta_{ij}) \alpha_j \end{aligned}$$

Hence $(\mathbf{X}\mathbf{X}^\top + \lambda \mathbf{I}_m)\alpha = \mathbf{y}$ from which eq.(3) follows.

Computational Considerations

Training time:

- ▶ Solving for \mathbf{w} in the primal form requires $O(mn^2 + n^3)$ operations while solving for α in the dual form requires $O(nm^2 + m^3)$ (see (*)) operations

If $m \ll n$ it is more efficient to use the dual representation

Running (testing) time:

- ▶ Computing $f(\mathbf{x})$ on a test vector \mathbf{x} in the primal form requires $O(n)$ operations while the dual form (see (*)) requires $O(mn)$ operations

Sparse representation

We can benefit even further in the dual representation if the inputs are sparse!

Example

Suppose each input $\mathbf{x} \in \mathbb{R}^n$ has most of its components equal to zero (e.g., consider images where most pixels are ‘black’ or text documents represented as ‘bag of words’)

- ▶ If k denotes the number of nonzero components of the input then computing $\mathbf{x}^\top \mathbf{t}$ requires at most $O(k)$ operations.
How do we do this?
- ▶ If $km \ll n$ (which implies $m, k \ll n$) the dual representation requires $O(km^2 + m^3)$ computations for training and $O(mk)$ for testing

Basis Functions – **Explicit Feature Map**

The above ideas can naturally be generalized to nonlinear function regression

By a *feature map* we mean a function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^N$

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^n$$

- ▶ The ϕ_1, \dots, ϕ_N are called called *basis* functions
- ▶ Vector $\phi(\mathbf{x})$ is called the *feature vector* and the space

$$\{\phi(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}$$

the *feature space*

The non-linear regression function has the primal representation

$$f(\mathbf{x}) = \sum_{j=1}^N w_j \phi_j(\mathbf{x})$$

Computational Considerations Revisited

Again, if $m \ll N$ it is more efficient to work with the dual representation

Key observation: in the dual representation we don't need to know ϕ explicitly; we just need to know the inner product between any pair of feature vectors!

Example: $N = n^2$, $\phi(\mathbf{x}) = (x_i x_j)_{i,j=1}^n$. In this case we have $\langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle = (\mathbf{x}^\top \mathbf{t})^2$ which requires only $O(n)$ computations whereas $\phi(\mathbf{x})$ requires $O(n^2)$ computations

Kernel Functions – Implicit Feature Map

Given a feature map ϕ we define its associated kernel function $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ as

$$K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle, \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

- ▶ **Key Point:** Maybe for some feature map ϕ computing $K(\mathbf{x}, \mathbf{t})$ is independent of N (only dependent on n). Where *necessarily* $\phi(\mathbf{x})$ depends on N .

Example (cont.) If $\phi(\mathbf{x}) = (x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} : \sum_{j=1}^n i_j = r)$ then we have that

$$K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^\top \mathbf{t})^r$$

In this case $K(\mathbf{x}, \mathbf{t})$ is computed with $O(n)$ operations, which is essentially independent of r or $N = n^r$. On the other hand, computing $\phi(\mathbf{x})$ requires $O(N)$ operations – **Exponential in r !**

Redundancy of the feature map

Warning

The feature map is not unique! If ϕ generates K so does $\hat{\phi} = \mathbf{U}\phi$ where \mathbf{U} is an (any!) $N \times N$ orthogonal matrix. Even the dimension of ϕ is not unique!

Example

If $n = 2$, $K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^\top \mathbf{t})^2$ is generated by both $\phi(\mathbf{x}) = (x_1^2, x_2^2, x_1 x_2, x_2 x_1)$ and $\hat{\phi}(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2)$.

Regularization-based learning algorithms

Let us open a short parenthesis and show that the dual form of ridge regression holds true for other loss functions as well

$$\mathcal{E}_{\text{emp}}_{\lambda}(\mathbf{w}) = \sum_{i=1}^m V(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle) + \lambda \langle \mathbf{w}, \mathbf{w} \rangle, \quad \lambda > 0 \quad (6)$$

where $V : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a loss function

Theorem

If V is differentiable wrt. its second argument and \mathbf{w} is a minimizer of E_{λ} then it has the form

$$\mathbf{w} = \sum_{i=1}^m \alpha_i \phi(\mathbf{x}_i) \Rightarrow f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \sum_{i=1}^m \alpha_i K(\mathbf{x}_i, \mathbf{x})$$

This result is usually called the *Representer Theorem*

Representer theorem

Setting the derivative of E_λ wrt. \mathbf{w} to zero we have

$$-\sum_{i=1}^m V'(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle) \phi(\mathbf{x}_i) + 2\lambda \mathbf{w} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^m \alpha_i \phi(\mathbf{x}_i) \quad (7)$$

where V' is the partial derivative of V wrt. its second argument and we defined

$$\alpha_i = \frac{1}{2\lambda} V'(y_i, \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle) \quad (8)$$

Thus we conclude that

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \sum_{i=1}^m \alpha_i \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}) \rangle = \sum_{i=1}^m \alpha_i K(\mathbf{x}, \mathbf{x}_i),$$

Some remarks

- ▶ Plugging eq.(7) in the rhs. of eq.(8) we obtain a set of equations for the coefficients α_i :

$$\alpha_i = \frac{1}{2\lambda} V' \left(y_i, \sum_{j=1}^m K(\mathbf{x}_i, \mathbf{x}_j) \alpha_j \right), \quad i = 1, \dots, m$$

When V is the square loss and $\phi(\mathbf{x}) = \mathbf{x}$ we retrieve the linear eq.(3)

- ▶ Substituting eq.(7) in eq.(6) we obtain an objective function for the α 's:

$$\sum_{i=1}^m V(y_i, (\mathbf{K}\alpha)_i) + \lambda \alpha^\top \mathbf{K} \alpha, \quad \text{where : } \mathbf{K} = (K(\mathbf{x}_i, \mathbf{x}_j))_{i,j=1}^m$$

Remark: the Representer Theorem holds true under more general conditions on V (for example V can be any continuous function)

What functions are “kernels”?

Question

Given a function $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$, which properties of K guarantee that there exists a Hilbert space \mathcal{W} and a feature map $\phi : \mathbb{R}^n \rightarrow \mathcal{W}$ such that $K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle$?

Note

We've generalized the definition of *finite-dimensional* feature maps

$$\phi : \mathbb{R}^n \rightarrow \mathbb{R}^N$$

to now allow potentially *infinite-dimensional* feature maps

$$\phi : \mathbb{R}^n \rightarrow \mathcal{W}$$

Positive Semidefinite Kernel

Definition

A function $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ is **positive semidefinite** if it is symmetric and the matrix $(K(\mathbf{x}_i, \mathbf{x}_j) : i, j = 1, \dots, k)$ is positive semidefinite for every $k \in \mathbb{N}$ and every $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$

Theorem

K is positive semidefinite if and only if

$$K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle, \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

for some feature map $\phi : \mathbb{R}^n \rightarrow \mathcal{W}$ and Hilbert space \mathcal{W}

Positive semidefinite kernel (cont.)

Proof of “ \Leftarrow ”

If $K(\mathbf{x}, \mathbf{t}) = \langle \phi(\mathbf{x}), \phi(\mathbf{t}) \rangle$ then we have that

$$\sum_{i,j=1}^m c_i c_j K(\mathbf{x}_i, \mathbf{x}_j) = \left\langle \sum_{i=1}^m c_i \phi(\mathbf{x}_i), \sum_{j=1}^m c_j \phi(\mathbf{x}_j) \right\rangle = \left\| \sum_{i=1}^m c_i \phi(\mathbf{x}_i) \right\|^2 \geq 0$$

for every choice of $m \in \mathbb{N}$, $\mathbf{x}_i \in \mathbb{R}^d$ and $c_i \in \mathbb{R}$, $i = 1, \dots, m$

Note

the proof of ‘ \Rightarrow ’ requires the notion of reproducing kernel Hilbert spaces. Informally, one can show that the linear span of the set of functions $\{K(\mathbf{x}, \cdot) : \mathbf{x} \in \mathbb{R}^n\}$ can be made into a Hilbert space H_K with inner product induced by the definition $\langle K(\mathbf{x}, \cdot), K(\mathbf{t}, \cdot) \rangle := K(\mathbf{x}, \mathbf{t})$. In particular, the map $\phi : \mathbb{R}^n \rightarrow H_K$ defined as $\phi(\mathbf{x}) = K(\mathbf{x}, \cdot)$ is a feature map associated with K . Observe then with $f(\cdot) := \sum_{i=1}^m \alpha_i K(\mathbf{x}_i, \cdot)$ that $\|f\|^2 = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$.

Two Example Kernels

Polynomial Kernel(s)

If $p : \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial with nonnegative coefficients then $K(\mathbf{x}, \mathbf{t}) = p(\mathbf{x}^\top \mathbf{t})$, $\mathbf{x}, \mathbf{t} \in \mathbb{R}^n$ is a positive semidefinite kernel. For example if $a \geq 0$

- ▶ $K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^\top \mathbf{t})^r$
- ▶ $K(\mathbf{x}, \mathbf{t}) = (a + \mathbf{x}^\top \mathbf{t})^r$
- ▶ $K(\mathbf{x}, \mathbf{t}) = \sum_{i=0}^d \frac{a^i}{i!} (\mathbf{x}^\top \mathbf{t})^i$

are each positive semidefinite kernels.

Gaussian Kernel

An important example of a “radial” kernel is the Gaussian kernel

$$K(\mathbf{x}, \mathbf{t}) = \exp(-\beta \|\mathbf{x} - \mathbf{t}\|^2), \quad \beta > 0, \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

note: any corresponding feature map $\phi(\cdot)$ is ∞ -dimensional.

Polynomial and Anova Kernel

Anova Kernel

$$K_a(\mathbf{x}, \mathbf{t}) = \prod_{i=1}^n (1 + x_i t_i)$$

Compare to the polynomial kernel $K_p(\mathbf{x}, \mathbf{t}) = (1 + \mathbf{x}^\top \mathbf{t})^d$

$$\mathbf{x} = \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix} \Rightarrow \phi_p(\mathbf{x}) = \begin{matrix} 1 \\ \sqrt{d}x_1 \\ \sqrt{d}x_2 \\ \vdots \\ \sqrt{d}x_n \end{matrix} \quad \mathbf{x} = \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix} \Rightarrow \phi_a(\mathbf{x}) = \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \vdots \\ x_1 x_2 \dots x_n \end{matrix}$$

where $\sum_{j=0}^n i_j = d$

Kernel construction

Which operations/combinations (eg, products, sums, composition, etc.) of a given set of kernels is still a kernel?
If we address this question we can build more interesting kernels starting from simple ones

Example

We have already seen that $K(\mathbf{x}, \mathbf{t}) = (\mathbf{x}^\top \mathbf{t})^r$ is a kernel. For which class of functions $p : \mathbb{R} \rightarrow \mathbb{R}$ is $p(\mathbf{x}^\top \mathbf{t})$ a kernel? More generally, if K is a kernel when is $p(K(\mathbf{x}, \mathbf{t}))$ a kernel?

General linear kernel

If \mathbf{A} is an $n \times n$ psd matrix the function $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ defined by

$$K(\mathbf{x}, \mathbf{t}) = \mathbf{x}^\top \mathbf{A} \mathbf{t}$$

is a kernel

Proof

Since \mathbf{A} is psd we can write it in the form $\mathbf{A} = \mathbf{R}\mathbf{R}^\top$ for some $n \times n$ matrix \mathbf{R} . Thus K is represented by the feature map

$$\phi(\mathbf{x}) = \mathbf{R}^\top \mathbf{x}$$

Alternatively, note that:

$$\sum_{i,j} c_i c_j \mathbf{x}_i^\top \mathbf{A} \mathbf{x}_j = \sum_{i,j} c_i c_j (\mathbf{R}^\top \mathbf{x}_i)^\top (\mathbf{R}^\top \mathbf{x}_j) = \left\| \sum_i c_i \mathbf{R}^\top \mathbf{x}_i \right\|^2 \geq 0$$

Kernel composition

More generally, if $K : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ is a kernel and $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^N$, then

$$\tilde{K}(\mathbf{x}, \mathbf{t}) = K(\phi(\mathbf{x}), \phi(\mathbf{t}))$$

is a kernel

Proof

By hypothesis, K is a kernel and so, for every $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ the matrix $(K(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j)) : i, j = 1, \dots, m)$ is psd

In particular, the above example corresponds to $K(\mathbf{x}, \mathbf{t}) = \mathbf{x}^\top \mathbf{t}$ and $\phi(\mathbf{x}) = \mathbf{R}^\top \mathbf{x}$

Kernel construction (cont.)

Question

If K_1, \dots, K_q are kernels on \mathbb{R}^n and $F : \mathbb{R}^q \rightarrow \mathbb{R}$, when is the function

$$F(K_1(\mathbf{x}, \mathbf{t}), \dots, K_q(\mathbf{x}, \mathbf{t})), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^n$$

a kernel?

Equivalently: when for every choice of $m \in \mathbb{N}$ and $\mathbf{A}_1, \dots, \mathbf{A}_q$ $m \times m$ psd matrices, is the following matrix psd?

$$(F(\mathbf{A}_{1,ij}, \dots, \mathbf{A}_{q,ij}) : i, j = 1, \dots, m)$$

We discuss some examples of functions F for which the answer to these question is YES

Nonnegative combination of kernels

If $\lambda_j \geq 0, j = 1, \dots, q$ then $\sum_{j=1}^q \lambda_j K_j$ is a kernel

This fact is immediate (a non-negative combination of psd matrices is still psd)

Example: Let $q = n$ and $K_i(\mathbf{x}, \mathbf{t}) = x_i t_i$.

In particular, this implies that

- ▶ aK_1 is a kernel if $a \geq 0$
- ▶ $K_1 + K_2$ is a kernel

Product of kernels

The pointwise product of two kernels K_1 and K_2

$$K(\mathbf{x}, \mathbf{t}) := K_1(\mathbf{x}, \mathbf{t})K_2(\mathbf{x}, \mathbf{t}), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

is a kernel

Proof

We need to show that if \mathbf{A} and \mathbf{B} are psd matrices, so is $C = (A_{ij}B_{ij} : i, j = 1, \dots, m)$ (C is also called the Schur product of \mathbf{A} and \mathbf{B}). We write \mathbf{A} and \mathbf{B} in their singular value form, $\mathbf{A} = \mathbf{U}\Sigma\mathbf{U}^\top$, $\mathbf{B} = \mathbf{V}\Lambda\mathbf{V}^\top$ where \mathbf{U}, \mathbf{V} are orthogonal matrices and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_m)$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_m)$, $\sigma_i, \lambda_i \geq 0$. We have

$$\begin{aligned} \sum_{i,j=1}^m a_i a_j C_{ij} &= \sum_{ij} a_i a_j \sum_r \sigma_r U_{ir} U_{jr} \sum_s \lambda_s V_{is} V_{js} \\ &= \sum_{rs} \sigma_r \lambda_s \sum_i a_i U_{ir} V_{is} \sum_j a_j U_{jr} V_{js} \\ &= \sum_{rs} \sigma_r \lambda_s \left(\sum_i a_i U_{ir} V_{is} \right)^2 \geq 0 \end{aligned}$$

Summary of constructions

Theorem

If K_1, K_2 are kernels, $a \geq 0$, A is a symmetric positive semi-definite matrix, K a kernel on \mathbb{R}^N and $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^N$ then the following functions are positive semidefinite kernels on \mathbb{R}^n

1. $\mathbf{x}^\top A \mathbf{t}$
2. $K_1(\mathbf{x}, \mathbf{t}) + K_2(\mathbf{x}, \mathbf{t})$
3. $aK_1(\mathbf{x}, \mathbf{t})$
4. $K_1(\mathbf{x}, \mathbf{t})K_2(\mathbf{x}, \mathbf{t})$
5. $K(\phi(\mathbf{x}), \phi(\mathbf{t}))$

Polynomial of kernels

Let $F = p$ where $p : \mathbb{R}^q \rightarrow \mathbb{R}$ is a polynomial in q variables with nonnegative coefficients. By properties 1,2 and 3 above we conclude that p is a valid function

In particular if $q = 1$,

$$\sum_{i=1}^d a_i (K(\mathbf{x}, \mathbf{t}))^i$$

is a kernel if $a_1, \dots, a_d \geq 0$

Polynomial kernels

The above observation implies that if $p : \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial with nonnegative coefficients then $p(\mathbf{x}^\top \mathbf{t})$, $\mathbf{x}, \mathbf{t} \in \mathbb{R}^n$ is a kernel on \mathbb{R}^n . In particular if $a \geq 0$ the following are valid polynomial kernels

- ▶ $(\mathbf{x}^\top \mathbf{t})^r$
- ▶ $(a + \mathbf{x}^\top \mathbf{t})^r$
- ▶ $\sum_{i=0}^d \frac{a^i}{i!} (\mathbf{x}^\top \mathbf{t})^i$

‘Infinite polynomial’ kernel

If in the last equation we set $r = \infty$ the series

$$\sum_{i=0}^r \frac{a^i}{i!} (\mathbf{x}^\top \mathbf{t})^i$$

converges everywhere uniformly to $\exp(a\mathbf{x}^\top \mathbf{t})$ showing that this function is also a kernel

Assume for simplicity that $n = 1$. A feature map corresponding to the kernel $\exp(axt)$ is

$$\phi(x) = \left(1, \sqrt{a}x, \sqrt{\frac{a}{2}}x^2, \sqrt{\frac{a^3}{6}}x^3, \dots \right) = \left(\sqrt{\frac{a^i}{i!}}x^i : i \in \mathbb{N} \right)$$

- ▶ The feature space has an infinite dimensionality!

Translation invariant and radial kernels

We say that a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ is

- ▶ *Translation invariant* if it has the form

$$K(\mathbf{x}, \mathbf{t}) = H(\mathbf{x} - \mathbf{t}), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

where $H : \mathbb{R}^d \rightarrow \mathbb{R}$ is a differentiable function

- ▶ *Radial* if it has the form

$$K(\mathbf{x}, \mathbf{t}) = h(\|\mathbf{x} - \mathbf{t}\|), \quad \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

where $h : [0, \infty) \rightarrow [0, \infty)$ is a differentiable function

The Gaussian kernel

An important example of a radial kernel is the Gaussian kernel

$$K(\mathbf{x}, \mathbf{t}) = \exp(-\beta \|\mathbf{x} - \mathbf{t}\|^2), \quad \beta > 0, \mathbf{x}, \mathbf{t} \in \mathbb{R}^d$$

It is a kernel because it is the product of two kernels

$$K(\mathbf{x}, \mathbf{t}) = (\exp(-\beta(\mathbf{x}^\top \mathbf{x} + \mathbf{t}^\top \mathbf{t}))) \exp(2\beta \mathbf{x}^\top \mathbf{t})$$

(We saw before that $\exp(2\beta \mathbf{x}^\top \mathbf{t})$ is a kernel. Clearly $\exp(-\beta(\mathbf{x}^\top \mathbf{x} + \mathbf{t}^\top \mathbf{t}))$ is a kernel with one-dimensional feature map $\phi(\mathbf{x}) = \exp(-\beta \mathbf{x}^\top \mathbf{x})$)

Exercise:

Can you find a feature map representation for the Gaussian kernel?

The min kernel

We give another example of a kernel.

$$K_{\min}(x, t) := \min(x, t)$$

with $x, t \in [0, \infty)$. We argue informally that this is the kernel associated with the Hilbert space \mathcal{H}_{\min} of all functions with the following four properties.

1. $f : [0, \infty) \rightarrow \mathbb{R}$
2. $f(0) = 0$
3. f is absolutely continuous (hence $f(b) - f(a) = \int_a^b f'(x) dx$)
4. $\|f\| = \sqrt{\int_0^\infty [f'(x)]^2 dx}$

Proof sketch

Proof sketch

Our argument is simplified as follows,

1. We argue only that the induced norms are the same.
2. We only consider $f \in \mathcal{H}_{\min}$ s.t. $f(x) = \sum_{i=1}^m \alpha_i \min(x_i, x)$.

Define $h_c(x) = [x \leq c]$ i.e., $h_c(x) = [\min(c, x)]'$

$$\begin{aligned}
 \|f\|^2 &= \int_0^\infty [f'(x)]^2 dx \\
 &= \int_0^\infty [(\sum_{i=1}^m \alpha_i \min(x_i, x))']^2 dx \\
 &= \int_0^\infty [(\sum_{i=1}^m \alpha_i h_{x_i}(x))']^2 dx \\
 &= \sum_{i,j}^m \alpha_i \alpha_j \int_0^\infty h_{x_i}(x) h_{x_j}(x) dx = \sum_{i,j}^m \alpha_i \alpha_j \min(x_i, x_j)
 \end{aligned}$$

Summary : Computation with Basis Functions

Data: $X, (m \times n)$; $\mathbf{y}, (m \times 1)$

Basis Functions: ϕ_1, \dots, ϕ_N where $\phi_i : \mathbb{R}^n \rightarrow \mathbb{R}$

Feature Map: $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^N$

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^n$$

Mapped Data Matrix:

$$\Phi := \begin{pmatrix} \phi(\mathbf{x}_1) \\ \vdots \\ \phi(\mathbf{x}_m) \end{pmatrix} = \begin{pmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_N(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_N(\mathbf{x}_m) \end{pmatrix}, \quad (m \times N)$$

Regression Coefficients: $\mathbf{w} = (\Phi^\top \Phi + \lambda I_N)^{-1} \Phi^\top \mathbf{y}$

Regression Function: $\hat{y}(\mathbf{x}) = \sum_{i=1}^N w_i \phi_i(\mathbf{x})$

Summary : Computation with Kernels

Data: X , $(m \times n)$; \mathbf{y} , $(m \times 1)$

Kernel Function: $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$

Kernel Matrix:

$$\mathbf{K} := \begin{pmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_m) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{pmatrix}, \quad (m \times m)$$

Regression Coefficients: $\alpha = (\mathbf{K} + \lambda I_m)^{-1} \mathbf{y}$

Regression Function: $\hat{y}(\mathbf{x}) = \sum_{i=1}^m \alpha_i K(\mathbf{x}_i, \mathbf{x})$