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Today’s Plan

Sparsity in linear regression
Formulation as a convex program — Lasso
Group Lasso

Matrix estimation problems (Collaborative Filtering, Multi-task
Learning, Inverse Covariance, Sparse Coding, etc.)

Nonlinear extension



L1-regularization

Least absolute shrinkage and selection operator (LASSO):

1
min - ||y — Xwl||?
i ly 15

d
where [lwl[y = >_;_; |wj]

e equivalent problem min |y — Xw||3 4+ A|wl
welR?

e can be rewritten as a QP:

1
min_ Sy — X (w’ —w)[3+ e (wh +w7)

wt,w=>0



¢1-norm regularization encourages sparsity

Consider the case X = I

|
min =|lw — yl|3 + Aw|
wEIF{dQ

Lemma: Let H)(t) = (|t| — \)1sgn(t), t € IR. The solution w is given by
UAJi :H)\(yi), 1= 1,...,d

Proof: First note that the problem decouples: w; = argmin {2(w; — v;)” + Aw;| }.
By symmetry w;y; > 0, thus w.l.o.g. we can assume y; > 0. Now, if w; > 0 the
objective function is differentiable and setting the derivative to zero gives W, = y; — .

Since the minimum is unique we conclude that w; = (y; — \) 4.



Optimality conditions

Directional derivative of f at w in the direction d

D* f(w:d) = lim 20D = ()

e—0t €

Theorem 1: @ € arg min f(w) iff D¥ f(id;d) > 0 Vd € R
welR

e the directional derivative of a convex function is always well defined and
finite

e if f is differentiable then at w then DY f(w;d) = d"V f(w) and
Theorems says that w is a solution iff V f(w) =0



Optimality conditions (cont.)
If f is convex its subdifferential at w is defined as
Of(w) = {u: f(v) > f(w) +u'(v—w), Yo e R}
e Of is a set-valued function

e the elements of 0f(w) are called the subgradients of f at w

e intuition: u € Jf(w) if the affine function f(w) + u' (v — w) is a global
underestimator of f

Theorem 2: w € arg mindf(w), iff 0 € Of(w)
welR



Optimality conditions (cont.)

Theorem 2: w € arg mindf(w), iff 0 € Of(w)
welR

e if f is differentiable then Of(w) = {V f(w)} and Theorem 2 says that
w is a solution iff V f(w) =0

Some properties of gradients are still true for subgradients, e.g:
e J(af)(w)=adf(w), forall a >0

e If f and g are convex then O(f + g)(w) = df(w) 4+ dg(w)



Optimality conditions for Lasso

min ||y — Xwl|3 + Afwl);

e by Theorem 2 and the properties of subgradients, w is a optimal

solution iff
X'y — Xw) € N||wl

e to compute O||w||; use the sum rule and the subgradient of the absolute
value: Olt| = {sgn(t)} ift 0 and O|t| ={u: |u| <1} ift=0

Case X = I: w is a solution iff, for every i = 1,...,d, y; — w; = Asgn(w;)
if w; # 0 and |y; — w;| < A otherwise (verify that these formulae yield the
soft thresolding solution on page 4)



General learning method

In generally we will consider optimization problems of the form

wrrelgldF(w), where F(w) = f(w) + g(w)

Often f will be a data term: f(w) =>_", E(w'x;,y;), and g a convex
penalty function (non necessarily smooth, e.g. the ¢; norm)

We will later discuss a method to solve the above problem under the assumptions that f
has some smoothness property and g is “simple”, in the sense that the following problem
Is easy to solve

.1 2
min = flw — ||’ + g(w)



Group Lasso

Enforce sparsity across a-priori known groups of variables:

N
min f(w) + A [y
WeER —

where Jp, ..., Jn are prescribed subsets of {1,...,d}

e In the original formulation (Yuan and Lin, 2006) the groups form a
partition of the index set {1,...,n}

e Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010):
hierarchical structures such as DAGS

Example: J; ={1,2,...,d},Jo =42,3,...,d},...,Jqg={d}
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Multi-task learning

Learning multiple linear regression or binary classification tasks
simultaneously

Formulate as a matrix estimation problem (W = [wy, ..., wr])
T m
min E(w, x4, ye) + Ag(W)
Relationships between tasks modeled via sparsity constraints on W

Few common important variables (special case of Group Lasso):

9(W) = ]
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Structured Sparsity

e The above regularizer favors matrices with many zero rows (few
features shared by the tasks)

g(W) = S:\ S_:w?g
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2. Structured Sparsity (cont.)

Compare matrices W favored by different norms (green = 0, blue = 1):

#rows = 13 5 3
g(W) =19 12 8
> lwei| = 29 29 29

tj
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Estimation of a low rank matrix

min {z:(yZ — (W, X;))? : rank(W) < k}

dxT
e Multi-task learning: choose X; = xie;, hence (W, X;) = w;xz

C

e Collaborative filtering: choose X; = e,.e.., hence (W, X;) = W,

Relax the rank with the trace norm: ||[W|, = Z?;irll(d’T) o, (W)
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Trace norm regularization

m

min (yi — (W, X3))? + AW,

dxT
WeR& T “—

e complete data case: min [|[Y — W3, + A[|W]|.
WEIRdXT

e if Y = Udiag(o)V' ' then the solution is (recall H from page 4):

W = Udiag(Hx(o))V T

Proof uses von Neumann's Theorem: tr(Y ' W) < o(Y) "o (W) and equality holds iff
Y and W have the same ordered system of singular vectors
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Sparse Inverse Covariance Selection

Let z1,..., %, ~ p, where p(x) = (27r)dget@)e_(m_“)TE_l(fE—“)

Maximum likelihood estimate for the covariance

d

d
arg max ]:[1 p(w:) = argmax 1:[1 og p(z;)

_ - - —1
= argrélgéc{ log det(X) — (S, 271}

where S = L(z; — p)(z; — p) "

e The solution is > = S (show it as an exercize)

16



Sparse Inverse Covariance Selection (cont.)

Inverse covariance provides information about the relationship between
variables: Ei_jl = 0 iff 2* and 7 are conditionally independent

A

W = arg Imax {logdet(W) — (S, W)} = arg Inin {(S, W) —logdet(W)}

If we expect many pairs of variables to be conditionally independent we
could solve the problem

min {(S, W) —logdet(W) : W > 0, card{(z,7) : |W,;| > 0} < k}
which can be relaxed to the convex program

min {(S, W) —logdet(W) : W = 0, [|[W]1 < k}
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Dictionary Learning / Sparse Coding

Given x1,...,2Z,, ~ p find matrix W which minimize the average
reconstruction error -
: 2
g min ||z; — Wz||5
1 z€L
1=

Can be seen as a constrained matrix factorization problem
min {||X —WZ|z : W eW,Z € Z}

where X = [z1,..., 2] and W C RYF, 2 C RF*™
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Examples

PCA: W = R™F, Z = RF*™
k-means clustering: W = R**, Z ={Z:z € {e1,...,ep}}
Nonnegative matrix factorization

min || X - WZ|3
W,Z>0

Sparse coding: W = R¥* Z ={Z : ||zlo < s}
Can be relaxed to min || X — WZ||2 + \||Z]|1
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Nonlinear extension

The methods we have seen so far can be extended to RKHS setting; for
example the Lasso extends to the problem

N
mmZE (Z fe(wi), ) —|—>\Z /el ,
=1 (=1

e minimum is over functions fi,..., fn, with f, € Hg,, with Ky,..., Ky
some prescribed kernels

e feature space formulation (recall Ky(x,t) = (po(x), Pu(t)))

N
manE (Z wy dp(;), > ‘|‘)\Z [well2
=1 (=1
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Connection to Group Lasso

Two important “parametric” versions of the above formulation:

e Lasso: choose f;(z) = w;z;, K;(z,t) = x,t;

m d

Y Ewmny) vy |wl

i=1 j=1

e Group Lasso: choose fj(z) =) ;. ; wiz;, Kj(z,t) = (2,1,
where {Jy}}_, is a partition of index set {1,...,d}

m N

Z E(w—rx% yl) + Z ||w|JgH2

1=1 (=1
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Representer theorem

Two reformulations as a finite dimension optimization problem

e Using the representer theorem:

minf}E ZZKg Ty T5)0 5, Y —1—)\2\/&2—[(5045

/=1 5=1

e Using the formula ), |t/ = in 0 5 Ze —|— 2z, rewrite the problem as
2>

m

: . A
inf min » E(f(x;),y:) + §HfH2Z:z£K£ + Zzﬁ
¢ ¢

z>0 :
=1

22



Some references

e Lasso:

— P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector.
Annals of Statistics, 37:1705-1732, 2009.

— R. Tibshirani. Regression Shrinkage and Selection via the Lasso, J. Royal Statistical Society B,
58(1):267-288, 1996.

e Group Lasso:

— M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables Journal of
the Royal Statistical Society, Series B, 68(1):49-67, 2006.

— P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite
absolute penalties. Annals of Statistics, 37(6A):3468-3497, 20009.

— R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing
norms. arXiv:0904.3523v2, 2009.

e Multi-task learning:

— A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
73(3):243-272, 2008.

— G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for
multiple classification problems. Statistics and Computing, 20(2):1-22, 2010.

23



e Low rank matrix estimation:
— V. Koltchinskii, A.B. Tsybakov, K. Lounici. Nuclear norm penalization and optimal rates for noisy
low rank matrix completion. arXiv:1011.6256, 2011.
— N. Srebro, J.D.M. Rennie, T.S. Jaakkola. Maximum-Margin Matrix Factorization. Advances in
Neural Information Processing Systems 17, pages 1329-1336, 2005.
— E. J. Candes and B. Recht. Exact matrix completion via convex optimization. Found. of Comput.
Math., 9 717-772.

e Nonlinear Group Lasso / Multiple kernel learning:

— A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously
parameterized basic kernels. COLT 2005

— F. R. Bach, G. R. G. Lanckriet and M. I|. Jordan. Multiple kernel learning, conic duality, and the
SMO algorithm. ICML 2004

— G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. |. Jordan. Learning the kernel
matrix with semidefinite programming. JMLR 2004

— C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR 2005

— A. Rakotomamonjy, F. R. Bach, S. Canu, Y. Grandvalet, SimpleMKL, JMLR, 2008.

e Sparse Coding:

— B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607-609, 1996.

— D. Lee and H. Seung, Algorithms for non-negative matrix factorization. Advances in Neural

Information Processing Systems, 13, pages 556-562, 2001.



