

GI01 – Supervised Learning

Sparsity Methods

Massimiliano Pontil

Today's Plan

- Sparsity in linear regression
- Formulation as a convex program – Lasso
- Group Lasso
- Matrix estimation problems (Collaborative Filtering, Multi-task Learning, Inverse Covariance, Sparse Coding, etc.)
- Nonlinear extension

L1-regularization

Least absolute shrinkage and selection operator (LASSO):

$$\min_{\|w\|_1 \leq \alpha} \frac{1}{2} \|y - Xw\|_2^2$$

where $\|w\|_1 = \sum_{j=1}^d |w_j|$

- equivalent problem $\min_{w \in \mathbb{R}^d} \frac{1}{2} \|y - Xw\|_2^2 + \lambda \|w\|_1$
- can be rewritten as a QP:

$$\min_{w^+, w^- \geq 0} \frac{1}{2} \|y - X(w^+ - w^-)\|_2^2 + \lambda e^\top (w^+ + w^-)$$

ℓ_1 -norm regularization encourages sparsity

Consider the case $X = I$:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w - y\|_2^2 + \lambda \|w\|_1$$

Lemma: Let $H_\lambda(t) = (|t| - \lambda)_+ \text{sgn}(t)$, $t \in \mathbb{R}$. The solution \hat{w} is given by

$$\hat{w}_i = H_\lambda(y_i), \quad i = 1, \dots, d$$

Proof: First note that the problem decouples: $\hat{w}_i = \operatorname{argmin} \left\{ \frac{1}{2}(w_i - y_i)^2 + \lambda|w_i| \right\}$. By symmetry $\hat{w}_i y_i \geq 0$, thus w.l.o.g. we can assume $y_i \geq 0$. Now, if $\hat{w}_i > 0$ the objective function is differentiable and setting the derivative to zero gives $\hat{w}_i = y_i - \lambda$. Since the minimum is unique we conclude that $\hat{w}_i = (y_i - \lambda)_+$.

Optimality conditions

Directional derivative of f at w in the direction d

$$D^+f(w; d) := \lim_{\epsilon \rightarrow 0^+} \frac{f(w + \epsilon d) - f(w)}{\epsilon}$$

Theorem 1: $\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w)$ iff $D^+f(\hat{w}; d) \geq 0 \ \forall d \in \mathbb{R}^d$

- the directional derivative of a convex function is always well defined and finite
- if f is differentiable then at w then $D^+f(w; d) = d^\top \nabla f(w)$ and Theorems says that \hat{w} is a solution iff $\nabla f(\hat{w}) = 0$

Optimality conditions (cont.)

If f is convex its subdifferential at w is defined as

$$\partial f(w) = \{u : f(v) \geq f(w) + u^\top(v - w), \forall v \in \mathbb{R}^d\}$$

- ∂f is a set-valued function
- the elements of $\partial f(w)$ are called the subgradients of f at w
- intuition: $u \in \partial f(w)$ if the affine function $f(w) + u^\top(v - w)$ is a global underestimator of f

Theorem 2: $\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w)$, iff $0 \in \partial f(\hat{w})$

Optimality conditions (cont.)

Theorem 2: $\hat{w} \in \arg \min_{w \in \mathbb{R}^d} f(w)$, iff $0 \in \partial f(\hat{w})$

- if f is differentiable then $\partial f(w) = \{\nabla f(w)\}$ and Theorem 2 says that \hat{w} is a solution iff $\nabla f(\hat{w}) = 0$

Some properties of gradients are still true for subgradients, e.g:

- $\partial(af)(w) = a\partial f(w)$, for all $a \geq 0$
- If f and g are convex then $\partial(f + g)(w) = \partial f(w) + \partial g(w)$

Optimality conditions for Lasso

$$\min \|y - Xw\|_2^2 + \lambda \|w\|_1$$

- by Theorem 2 and the properties of subgradients, w is a optimal solution iff

$$X^\top(y - Xw) \in \lambda \partial\|w\|_1$$

- to compute $\partial\|w\|_1$ use the sum rule and the subgradient of the absolute value: $\partial|t| = \{\text{sgn}(t)\}$ if $t \neq 0$ and $\partial|t| = \{u : |u| \leq 1\}$ if $t = 0$

Case $X = I$: \hat{w} is a solution iff, for every $i = 1, \dots, d$, $y_i - \hat{w}_i = \lambda \text{sgn}(\hat{w}_i)$ if $\hat{w}_i \neq 0$ and $|y_i - \hat{w}_i| \leq \lambda$ otherwise (verify that these formulae yield the soft thresholding solution on page 4)

General learning method

In generally we will consider optimization problems of the form

$$\min_{w \in \mathbb{R}^d} F(w), \quad \text{where } F(w) = f(w) + g(w)$$

Often f will be a data term: $f(w) = \sum_{i=1}^m E(w^\top x_i, y_i)$, and g a convex penalty function (non necessarily smooth, e.g. the ℓ_1 norm)

We will later discuss a method to solve the above problem under the assumptions that f has some smoothness property and g is “simple”, in the sense that the following problem is easy to solve

$$\min_w \frac{1}{2} \|w - y\|^2 + g(w)$$

Group Lasso

Enforce sparsity across a-priori known groups of variables:

$$\min_{W \in \mathbb{R}^d} f(w) + \lambda \sum_{\ell=1}^N \|w_{|J_\ell}\|_2$$

where J_1, \dots, J_N are prescribed subsets of $\{1, \dots, d\}$

- In the original formulation (Yuan and Lin, 2006) the groups form a partition of the index set $\{1, \dots, n\}$
- Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010): hierarchical structures such as DAGS

Example: $J_1 = \{1, 2, \dots, d\}, J_2 = \{2, 3, \dots, d\}, \dots, J_d = \{d\}$

Multi-task learning

- Learning multiple linear regression or binary classification tasks simultaneously
- Formulate as a matrix estimation problem ($W = [w_1, \dots, w_T]$)

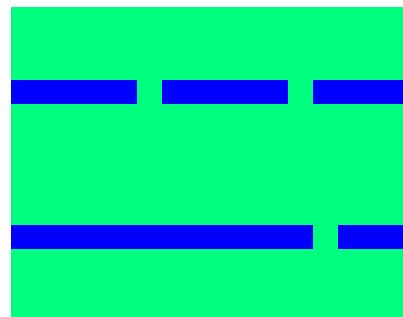
$$\min_{W \in \mathbb{R}^{d \times T}} \sum_{t=1}^T \sum_{i=1}^m E(w_t^\top x_{ti}, y_{ti}) + \lambda g(W)$$

- Relationships between tasks modeled via sparsity constraints on W
- Few common important variables (special case of Group Lasso):

$$g(W) = \sum_{j=1}^d \|w^j\|_2$$

Structured Sparsity

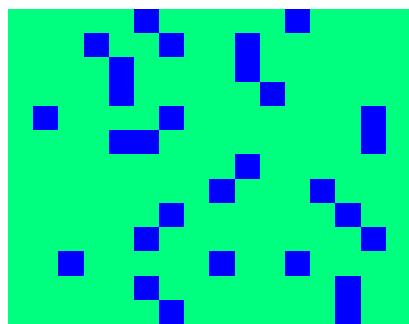
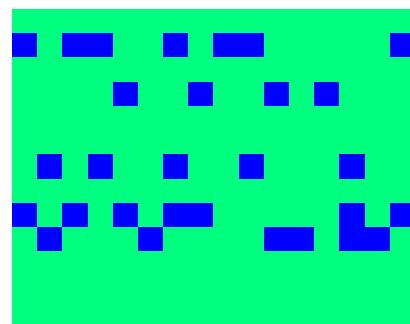
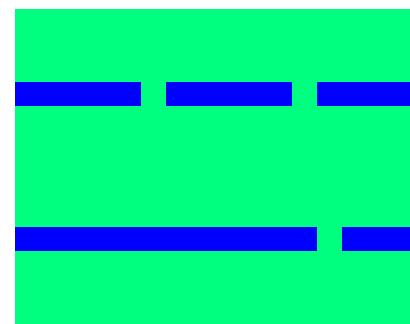
- The above regularizer favors matrices with many zero rows (few features shared by the tasks)



$$g(W) = \sum_{j=1}^d \sqrt{\sum_{t=1}^T w_{tj}^2}$$

2. Structured Sparsity (cont.)

Compare matrices W favored by different norms (green = 0, blue = 1):



$$\#\text{rows} = 13$$

$$5$$

$$3$$

$$g(W) = 19$$

$$12$$

$$8$$

$$\sum_{tj} |w_{tj}| = 29$$

$$29$$

$$29$$

Estimation of a low rank matrix

$$\min_{W \in \mathbb{R}^{d \times T}} \left\{ \sum_{i=1}^m (y_i - \langle W, X_i \rangle)^2 : \text{rank}(W) \leq k \right\}$$

- Multi-task learning: choose $X_i = x_i e_{c_i}^\top$, hence $\langle W, X_i \rangle = w_{c_i}^\top x_i$
- Collaborative filtering: choose $X_i = e_{r_i} e_{c_i}^\top$, hence $\langle W, X_i \rangle = W_{r_i c_i}$

Relax the rank with the trace norm: $\|W\|_* = \sum_{i=1}^{\min(d,T)} \sigma_i(W)$

Trace norm regularization

$$\min_{W \in \mathbb{R}^{d \times T}} \sum_{i=1}^m (y_i - \langle W, X_i \rangle)^2 + \lambda \|W\|_*$$

- complete data case: $\min_{W \in \mathbb{R}^{d \times T}} \|Y - W\|_{\text{Fr}}^2 + \lambda \|W\|_*$
- if $Y = U \text{diag}(\sigma) V^\top$ then the solution is (recall H_λ from page 4):

$$\hat{W} = U \text{diag}(H_\lambda(\sigma)) V^\top$$

Proof uses *von Neumann's Theorem*: $\text{tr}(Y^\top W) \leq \sigma(Y)^\top \sigma(W)$ and equality holds iff Y and W have the same ordered system of singular vectors

Sparse Inverse Covariance Selection

Let $x_1, \dots, x_m \sim p$, where $p(x) = \frac{1}{(2\pi)^d \det(\Sigma)} e^{-(x-\mu)^\top \Sigma^{-1} (x-\mu)}$

Maximum likelihood estimate for the covariance

$$\begin{aligned}\hat{\Sigma} &= \arg \max_{\Sigma \succ 0} \prod_{i=1}^d p(x_i) = \arg \max_{\Sigma \succ 0} \prod_{i=1}^d \log p(x_i) \\ &= \arg \max_{\Sigma \succ 0} \left\{ -\log \det(\Sigma) - \langle S, \Sigma^{-1} \rangle \right\}\end{aligned}$$

where $S = \frac{1}{m} (x_i - \mu)(x_i - \mu)^\top$

- The solution is $\hat{\Sigma} = S$ (show it as an exercise)

Sparse Inverse Covariance Selection (cont.)

Inverse covariance provides information about the relationship between variables: $\Sigma_{ij}^{-1} = 0$ iff x^i and x^j are conditionally independent

$$\hat{W} = \arg \max_{W \succ 0} \{\log \det(W) - \langle S, W \rangle\} = \arg \min_{W \succ 0} \{\langle S, W \rangle - \log \det(W)\}$$

If we expect many pairs of variables to be conditionally independent we could solve the problem

$$\min \{\langle S, W \rangle - \log \det(W) : W \succ 0, \text{ card}\{(i, j) : |W_{ij}| > 0\} \leq k\}$$

which can be relaxed to the convex program

$$\min \{\langle S, W \rangle - \log \det(W) : W \succ 0, \|W\|_1 \leq k\}$$

Dictionary Learning / Sparse Coding

Given $x_1, \dots, x_m \sim p$ find matrix W which minimize the average reconstruction error

$$\sum_{i=1}^m \min_{z \in Z} \|x_i - Wz\|_2^2$$

Can be seen as a constrained matrix factorization problem

$$\min \left\{ \|X - WZ\|_{\text{F}}^2 : W \in \mathcal{W}, Z \in \mathcal{Z} \right\}$$

where $X = [x_1, \dots, x_m]$ and $\mathcal{W} \subseteq \mathbb{R}^{d \times k}$, $\mathcal{Z} \subseteq \mathbb{R}^{k \times m}$

Examples

- PCA: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \mathbb{R}^{k \times m}$
- k -means clustering: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \{Z : z_i \in \{e_1, \dots, e_k\}\}$
- Nonnegative matrix factorization

$$\min_{W, Z \geq 0} \|X - WZ\|_{\text{F}}^2$$

- Sparse coding: $\mathcal{W} = \mathbb{R}^{d \times k}$, $\mathcal{Z} = \{Z : \|z_i\|_0 \leq s\}$
Can be relaxed to $\min \|X - WZ\|_{\text{Fr}}^2 + \lambda \|Z\|_1$

Nonlinear extension

The methods we have seen so far can be extended to RKHS setting; for example the Lasso extends to the problem

$$\min \sum_{i=1}^m E \left(\sum_{\ell=1}^N f_\ell(x_i), y_i \right) + \lambda \sum_{\ell=1}^N \|f_\ell\|_{K_\ell}$$

- minimum is over functions f_1, \dots, f_N , with $f_\ell \in H_{K_\ell}$, with K_1, \dots, K_N some prescribed kernels
- feature space formulation (recall $K_\ell(x, t) = \langle \phi_\ell(x), \phi_\ell(t) \rangle$)

$$\min \sum_{i=1}^m E \left(\sum_{\ell=1}^N w_\ell^\top \phi_\ell(x_i), y_i \right) + \lambda \sum_{\ell=1}^N \|w_\ell\|_2$$

Connection to Group Lasso

Two important “parametric” versions of the above formulation:

- **Lasso:** choose $f_j(x) = w_j x_j$, $K_j(x, t) = x_j t_j$

$$\sum_{i=1}^m E(w^\top x_i, y_i) + \gamma \sum_{j=1}^d |w_j|$$

- **Group Lasso:** choose $f_j(x) = \sum_{j \in J_\ell} w_j x_j$, $K_j(x, t) = \langle x_{|J_\ell}, t_{|J_\ell} \rangle$, where $\{J_\ell\}_{\ell=1}^n$ is a partition of index set $\{1, \dots, d\}$

$$\sum_{i=1}^m E(w^\top x_i, y_i) + \gamma \sum_{\ell=1}^N \|w_{|J_\ell}\|_2$$

Representer theorem

Two reformulations as a finite dimension optimization problem

- Using the representer theorem:

$$\min \sum_{i=1}^m E \left(\sum_{\ell=1}^N \sum_{j=1}^m K_{\ell}(x_i, x_j) \alpha_{\ell,j}, y_i \right) + \lambda \sum_{\ell=1}^N \sqrt{\alpha_{\ell}^{\top} K_{\ell} \alpha_{\ell}}$$

- Using the formula $\sum_{\ell} |t_{\ell}| = \inf_{z>0} \frac{1}{2} \sum_{\ell} \frac{t_{\ell}^2}{z_{\ell}} + z_{\ell}$, rewrite the problem as

$$\inf_{z>0} \min \sum_{i=1}^m E(f(x_i), y_i) + \frac{\lambda}{2} \|f\|_{\sum_{\ell} z_{\ell} K_{\ell}}^2 + \sum_{\ell} z_{\ell}$$

Some references

- **Lasso:**

- P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37:1705–1732, 2009.
- R. Tibshirani. Regression Shrinkage and Selection via the Lasso, *J. Royal Statistical Society B*, 58(1):267–288, 1996.

- **Group Lasso:**

- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables *Journal of the Royal Statistical Society, Series B*, 68(1):49–67, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.
- R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. arXiv:0904.3523v2, 2009.

- **Multi-task learning:**

- A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. *Machine Learning*, 73(3):243–272, 2008.
- G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. *Statistics and Computing*, 20(2):1–22, 2010.

- **Low rank matrix estimation:**

- V. Koltchinskii, A.B. Tsybakov, K. Lounici. Nuclear norm penalization and optimal rates for noisy low rank matrix completion. *arXiv:1011.6256*, 2011.
- N. Srebro, J.D.M. Rennie, T.S. Jaakkola. Maximum-Margin Matrix Factorization. *Advances in Neural Information Processing Systems 17*, pages 1329–1336, 2005.
- E. J. Candès and B. Recht. Exact matrix completion via convex optimization. *Found. of Comput. Math.*, 9:717–772.

- **Nonlinear Group Lasso / Multiple kernel learning:**

- A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. *COLT* 2005
- F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. *ICML* 2004
- G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *JMLR* 2004
- C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. *JMLR* 2005
- A. Rakotomamonjy, F. R. Bach, S. Canu, Y. Grandvalet, SimpleMKL, *JMLR*, 2008.

- **Sparse Coding:**

- B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, 381(6583):607–609, 1996.
- D. Lee and H. Seung, Algorithms for non-negative matrix factorization. *Advances in Neural Information Processing Systems*, 13, pages 556–562, 2001.