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Today’s plan

Model selection problem
Generalisation error bounds
Error bound analysis
VC—-dimension

Bias/variance trade-off



Supervised learning model (l) — review

P(x,y): fixed but unknown probability density (defines the learning en-
vironment)

Expected error:

E(N) =BV FGN = [ Vy, FdP(x,)

where V : R x R — IR is a loss function
e Our goal is to minimize €
e Optimal solution: f* := argmin (E(f)

e We cannot compute f* because P is unknown



Supervised learning model (1)

We have encountered different loss functions:

e square loss: V(y,2) = (y — 2)?

e misclassification loss (0-1 loss): V (y,2) = 1 if y = z and zero other-
wise (here y,z € {c1,...,¢cK})

e logistic regression: V(y,z) = ylog(l14+e %)+ (1 —y) log(1l + €*)



Supervised learning model (l1I)

P(x,vy) is unknown = cannot compute f*

We are only given an i.i.d. sample from P:

S = {(Xlayl)a I (Xm,ym)}

We approximate (replace) the expected error E( f) with the empirical error

Es(f) = 3 Vi f0)
=1



Supervised learning model (1V)

If we minimize € g over a sufficiently large set of functions, we can always
find a function f with zero empirical error!
But E(f) may be far away from zero! (overfitting )

We introduce a restrictive class of functions J{ (hypothesis space ) and
minimize ¢ ¢ within J{. That is, our learning algorithm is:

fs =argmin¢cq:E€5(f)

Linear regression: H = {f(x) = w'x: w € R%}



Regularization

We minimize the penalized (regularized) empirical error
1 m
EsA(f) =3 V(i [()) +AR()),  A>0
i=1

Ridge regression: V (y,z) = (y — 2)?, f(x) = w'x, R(f) = [|w||?

This is similar to empirical error minimization in the hypothesis space H 4 =
{f(x) =w'x:||w] < A} forsome A > 0

(this connection can be made formal: given A > 0 there is A(4) > 0 such that ridge
regression gives the same solution as empirical error minimization in J{ 4 and vice versa,
given X there is A()\) such that...)



Model complexity and overfitting

High Bias
Low Variance

Prediction Error

Training Sainple

Test Sample

Low Bias
High Variahce

Low

High

Model Complexity

e If we pick the best model (learning algorithm) by minimizing the training

error we overfit the data

e \We wish to estimate the expected (test) error



Model selection and assessment

e Model selection: aims at estimating the performance of different mod-
els (learning algorithms) in order to choose the (approximately) best
one, for example:

— best hypothesis space among many possible ones
— best X in ridge regression
— best k£ in k—NN etc.

e Model assessment: having chosen a final model, we wish to estimate
its expected error (aka generalization) on new data



Model selection and assessment (cont.)

If we have a large set of examples, a natural approach is to split the data
In three parts: training, validation and test set

1. Use the training set to fit the models (train different learning algorithms
on it)

2. Use the validation set for model selection. So the best model is the
one which minimizes the validation error

3. Use the test set for assessment of the expected error of the best model
above

Typically, we keep most of the data for training (say 1/2 for training, 1/4 for
validation and testing)
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Generalization error bound

e Often, we have only few examples. Can we choose a model and as-
sess its expected error directly (without splitting the training data)?

e Learning theory studies conditions which ensure the predictivity of
a learning algorithm:
— The expected error is close to the empirical error

— The expected error decreases when the number of samples in-
creases

e We discuss a central approach in the theory which allows us to relate
the training error to the generalization error
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General statistical considerations cont.

e Usually the distribution subsumes the processes of the natural world
that we are studying

e \We assumes that we are given a ‘training sample’ or ‘training set’

S = {(Xl,yl), Cee (XmayM)}

generated identically and independently (i.i.d.) according to the distri-
bution P
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Generalisation of a learner

e Assume that we have a learning algorithm A that chooses a function
A4(S) from a function space J in response to the training set S

e From a statistical point of view the quantity of interest is the random
variable:

(S, A, F) = E(xy) [VA5(S)(x),9)],

where V' is a ‘loss’ function that measures the discrepancy between
Ag(S)(x) and y

13



Generalisation of a learner

e For example, in the case of classification V is 1 if the two disagree
and O otherwise, while for regression it could be the square of the
difference between A4(S)(x) and y

e We refer to the random variable €(S, A, F) as the generalisation of the
learner
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Example of Generalisation |

e \We consider the Breast Cancer dataset from the UCI repository

e Use a simple kind of Parzen window classifier: weight vector is
wt —w™

where w7 is the average of the positive training examples and w— is
average of negative training examples. Threshold is set so hyperplane
bisects the line joining these two points
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Example of Generalisation Il

e Given a size m of the training set, by repeatedly drawing random train-
Ing sets S we estimate the distribution of

e(S, A, F) = E e [V (A5(S) (), )],

by using the test set error as a proxy for the true generalisation

e We plot the histogram and the average of ¢ for various sizes of training
set — initially the whole dataset gives a single value if we use training
and test as the all the examples, but then we plot for training set sizes:

342,273,205,137,68,34,27,20, 14,7
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Example of Generalisation Il

e Since the expected classifier is in all cases the same:
E[A5(S)] = Eg [W;L' — Wg]

Eg [wg] —Es [ws]

Ey=t1 [x] = Ey=—1[x],

we do not expect large differences in the average of the distribution,
though the non-linearity of the loss function means they won't be the
same exactly
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Error distribution: full dataset
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Error distribution: dataset size: 7
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Bayes risk and consistency
e Traditional statistics has concentrated on analysing

Eg[e(S, A, F)]

e For example consistency of a classification algorithm A and function
class & means
lim Eg[e(S,A,TF)] = frayes:

m—00
where

1 ifP(x,1) > P(x,0),
O otherwise

fBayes(X) — {

IS the function with the lowest possible risk, often referred to as the
Bayes risk
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Expected versus confident bounds

e For a finite sample the generalisation €(S, A, ¥) has a distribution de-
pending on the algorithm, function class and sample size m

e Traditional statistics as indicated above has concentrated on the mean
of this distribution — but this quantity can be misleading, eg for low fold
cross-validation
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Expected versus confident bounds cont.

e Statistical learning theory has preferred to analyse the tail of the dis-
tribution, finding a bound which holds with high probability

e This looks like a statistical test — significant at a 1% confidence means
that the chances of the conclusion not being true are less than 1%
over random samples of that size

e This is also the source of the acronym PAC: probably approximately
correct, the ‘confidence’ parameter ¢ is the probability that we have
been misled by the training set
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Probabillity of being misled in classification

e Aim to cover a number of key techniques of SLT. Basic approach is
usually to bound the probability of being misled and set this equal to ¢

e What is the chance of being misled by a single bad function f, i.e.
training error Eg(f) = 0, while true error is bad E(f) > €?

Ps{€s(f) =0} = (L -E&(N™
< (1—-¢e)™
< exp(—em)

so that choosing € > In(1/§) /m ensures probability less than §

In other words, with probability at least 1 — ¢

£() < —109(3)
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Finite function class
If we now consider a function class

F={f1,fo,-. ., fn}

then the probability of being misled by one of the functions while its true
error is more than ¢ is bounded by

N
Ps{3fn: €5(fa) = 0} < 3. Ps{€s(fn) = 0} < N exp(—em)

n=1
This uses the union bound - the probability of the union of a set of events
IS at most the sum of the individual probabilities
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Finite function class (cont.)

If we make the probability of being misled by f, lessthan 1/(NJ), we have
that

e The bound translates into a theorem: given J, with probability at least
1 — § over random m samples the generalisation error of a function
fn € F with zero training error is bounded by

s (nvn(3)
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Countable function classes
If we now consider a function class

and make the probability of being misled by f,, less than g, with

@)
Z dn — 17
n=1

then with probability at least 1 — 6 over random m samples the general-
isation error of a function f,, € F with zero training error is bounded by

£ < (m (q%) i @)
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Some comments on the result

1

n

e We can think of the term In (
of the function f,

) as the complexity / description length

e Note that we must put a prior weight on the functions. If the func-
tions are drawn at random according to a distribution p;,, the expected
generalisation will be minimal if we choose our prior g = p

e This is the starting point of the PAC-Bayes analysis
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Hoeffding inequality

Our next goal is to address the generalization problem with a general loss
function

Let £ be a random variable with mean . = E[£] and taking values in
the interval [a,b]. Let &1,...,&n be an ii.d. sample of £ and define the
empirical mean £(m) = - Y7 ¢

Then for every e > 0 we have that

_ Dme?
Prob (.f(m) — > e) < exp (— = a)2>

and

_ Dme?
Prob (,u —&(m) > e) < exp (— = a)2>

Note: for a proof, see §8.2 Devroye, Gyorfi and Lugosi
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Simplest case: H = {f}

We shall apply Hoeffding’s inequality to the random variable £ = V (y, f(x))
For simplicity, assume that V (y, f(x)) € [0, 1]

Hoeffding’s inequality gives

Prob (E(f) — Es(f) > €) < exp(—2me?)

This implies that with probability (confidence) at least 1 — 9
(think of § as a small positive number)

1
E(F) < E5(F) + 1293

2m

We call D(f) := E(f) — Eg(f) the deviation error of f
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Finite hypothesis space
Now suppose that H = {f(1), ..., f(N)1
For each fixed function in J{, Hoeffding’s inequality holds true

However, now we are not interested in the deviation error of a fixed function
but in the deviation error of the minimizer of € g

fg = ) i=argmind_; 3" V(y;, £ (x)))
1=1

What can we say about the probability of the following event?

(D)) > €}

Since f("*) can be any function in JH{ we need a uniform bound over H!

39



Union bound

Recall the following fundamental property of probability: for every set A1, Ao, ...

of events, we have that

N
P(AjUAU...UAyN) < ) P(An)

n=1

So, if we let A, = {|8(f(")) — 85(f(”))| > €} we conclude that

A U Az UL U Ay = {max e(F™) - e5(£0)] =
Thus, we have

Prob {ﬁ?{e(ﬂn)) —eg(fM)) > e} < N exp(—2me2)
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Uniform bound

Prob {Tié‘% [e(F™) —es(sM)) > e} < N exp(—2me?)

This is also called a uniform bound over I (it holds for every f € H). The
bound implies that

Prob {€(fs) — Es(fs) > €} < N exp(—2me?)

which is equivalent to say that with confidence atleast 1 — ¢

log N + Iog%

2m

E(fs) < Eg(fs) + J

As N increases more examples are required in order to avoid overfitting!
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Sample complexity bound

Prob {£(fs) — £5(fs) > €} < |H|exp(—2me?)

How many examples are needed to avoid overfitting?

Sample complexity: minimum number m of examples that we need In
order to ensure that the deviation error of fg will be less than e with proba-
bility at least 1 — ¢

The sample complexity depends on 3, e and é. In our case:

log |H] + log 5

m(e, 3,8) = =
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Structural risk minimization

This is a model selection approach to choosing a hypothesis space within
a nested family of spaces: {1 C Ho C --- C Hg
(For simplicity assume each set H, is finite)

Let fg, be the minimizer of g In H,;. For each fixed ¢ we have with
confidence atleast 1 — ¢

log |Hy| + log 3

2m

8(f5,q) < 8S(fS,q) + J

The structural risk minimization ~ chooses the hypothesis space H
which minimizes the r.h.s. of this inequality
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Structural risk minimization (cont.)

For each fixed ¢ we have

log |H,| + log 3

2m

E(fsq) < Es(fsq) + J

The structural risk minimization ~ chooses the hypothesis space
which minimizes the r.h.s. of this inequality

The expected error of function fg .« (model) is bounded as

log |Hy+| + 109 Q + Iog%

2m

8(fS,q*) < 8S(fS,q*) + J
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VC—dimension

If H is an infinite set (for example the set of all linear classifiers) things
become a bit more complicated but bounds similar to the above one can
still be derived which contain a complexity measure of H

For binary classification, the most widely used complexity measure is the
VC—dimension (from Vapnik and Chervonenkis)

e The VC—dimension of a set of binary classifiers H is the largest num-
ber h of inputs x1, ..., x; which can be shattered (classified) in all ol
possible ways using classifiers in H
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VC—dimension
The VC—dimension of lines in the plane is 3 (in R% is d + 1)

The VC—dimension of hyper-rectangles in R is 2d (exercise)

Example in which VC-dim is infinite H = {sian(sinaz) : a € R}




VC-bounds

Theorem: (V. & C.) with confidence at least 1 — 6 we have that

h(log %™ + 1) + log §

m

E(fs) < Es(fs) + QJ 2

Compare to the case that H is finite, where h < log N (N := |H])

log N + log 3
2m

E(fs) < Es(fs) + J

e It may be that h < log N = V(C-bound is better

e When h = log N, VC-bound is slightly worse but essentially the
same: O (% log %) vs. O (%)
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Bias/variance decomposition

Recall that f* = argmin ;&(f)

E(fs) —EfT) = E(fs) — E(fg) + E(fa0) — ECST)

aVa

variance bias

where f3c = argminrc4€(f). Using the VC-bound and the fact that
Es(fs) < Eg(fq¢) we obtain that

E(fs) —E(f0) = &(fs) —Es(fs) + Eg(fs) — E(fq¢)

< &(fs) —E€s(fs) + Es(fr) — E(fg)

" Jh(log % 4 1) + log §
m

VA

48



Sample error and approximation error

E(fs) —E(f7) = E(fs) — E(fa0) + E(fs) — E(ST),

Ve

variance bias

e the variance (or sample error ) increases with the complexity of J{ and
decreases with the sample size m

e the bias is independent of the sample and decreases with the com-
plexity of . It measures the approximation error of H to f*. For
example, for the square loss we have:

E(f) = Bxyl(y — F(x))%] = () + Ex[(f (x) — f*(x))?]
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Bias/variance decomposition

Another way to study the behavior of a learning algorithm is via the average
generalization error (over the sampling of the training set .S)

We define f(x) = Eg[fs(x)]. For the square loss we have that

Eg[E(f)] = &(f7) +Es[!|f: fsllP1+|1F* = FII?

variance bias

where we have used the notation

If = glI? == Ex [(f(x) — 9(x))?]

When f = f5, the bias is the same as the previous notion of bias (approx-
imation error)
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