
Improving Web Application Testing Using Testability Measures

Nadia Alshahwan1,Mark Harman1,Alessandro Marchetto2 and Paolo Tonella2

1Kings College London–CREST Centre,Strand, London, UK
2Fondazione Bruno Kessler–IRST, Trento, Italy

{Nadia.Alshahwan,Mark.Harman}@kcl.ac.uk,{Marchetto,Tonella}@fbk.eu

Abstract

One of the challenges of testing web applications de-
rives from their dynamic content and structure. As we test
a website, we may discover more about its structure and
behaviour. This paper proposes a framework for collection
of testability measures during the automated testing pro-
cess (termed ‘in-testing’ measure collection). The measures
gathered in this way can take account of dynamic and con-
tent driven aspects of web applications, such as form struc-
ture, client-side scripting and server-side code. Their goal
is to capture measurements related to on-going testing ac-
tivity, indicating where additional testing can best lead to
higher overall coverage. They denote a form of ‘web testa-
bility’ measures. The paper reports on the implementation
of a prototype Web Application Testing Tool, WATT, illus-
trating the in-testing measure collection approach on 34
forms taken from 14 real world web applications.

Keywords: Web Testing, Page Coverage, Testability
Measures, Automated Testing, Crawlers.

1. Introduction
As web systems evolve there is a need to test the revi-

sions made to the web site. The available test cases need
to evolve as the website evolves in order to provide robust
mechanisms for quality assurance and trust. However, un-
like more traditional systems, in the evolution of web sys-
tems and their test cases, the task of generating test cases
to cover the existing and new functionality and the explo-
ration of the web system’s structure are closely interwoven
activities.

That is, the process of understanding the structure of
a website (through, for instance, spidering the system) is
closely related to the task of seeking to cover the system for
achieving test coverage. Furthermore, the task of achieving
coverage while testing web based systems presents many
important challenges not found in the testing of conven-
tional systems [2, 18]. Web systems are highly dynamic;
testing must take account of coverage of form structure,
client-side scripting and server-side code, all of which have

a bearing on the behaviour of the web system under test.
Previous work on testing web based systems, has fo-

cused on the task of generating test cases to achieve cov-
erage [8, 15]. While this is important, the special features
of web based systems tend to suggest that the coverage to
be expected from automated testing will not be complete; it
can be expected to be no better than (and perhaps somewhat
worse than) those levels of coverage obtainable for more
conventional systems. Indeed, there is recent evidence that,
even state–of–the–art test data generation systems for con-
ventional 3rd generation code are only capable of achieving
relatively modest levels of coverage at the interprocedural
level [12].

Therefore, this paper takes as a starting point, the as-
sumption that automated test data generation for web sys-
tems, though it will be a useful tool in the overall toolbox,
will not provide a complete solution to the testing of web
based systems. As a result, there will be a need for on–
going testing activity after an initial automated phase of test
data generation has ‘done the best it can’. This underlying
assumption motivates our ‘in–testing’ approach, in which
we seek to measure the system as we perform test data gen-
eration. We call this approach an ‘in testing’ measure col-
lection approach.

The ‘in testing’ approach collects a set of facts concern-
ing the properties of the web based system as it attempts to
cover it using automated test data generation. These facts
are stored to a database, forming the building blocks for the
computation of measurements concerning the system under
test. We term the approach ‘in testing’ because the measure-
ments are computed during the progress of testing, rather
than before the testing starts (as with predictive measure-
ments of conventional systems) or as a measurement of the
effectiveness of the completed testing process.

We set out a framework for collection of facts, on which
metrics can be built (strictly speaking the values we com-
pute in this paper are measurements, not metrics, since they
are not normalized). The collection of these facts can be
used to support the computation of a wide range of met-
rics, not merely those associated with testing. However, in

this paper we focus on testability and test–related measure-
ments.

We report on a tool WATT, which provides an initial im-
plementation of the proposed ‘in testing’ approach. WATT
spiders a website, collecting facts as it goes, storing them
to a database. The spidering process uses random test data
generation to fill in the forms it encounters. The database
also provides default values that can be used as entries to
web forms to assist the spidering process in maximizing
coverage.

However, like any automated coverage based web testing
tool, WATT cannot be expected to cover the entire structure
of the website. Where WATT differs from previous web
testing approaches [4, 15, 16] is in the collection of facts
which can be used to compute metrics to guide additional
testing towards those parts of the website that may have re-
mained uncovered. In this paper we define five simple mea-
surements that can be computed from these facts to illustrate
the way in which WATT supports in-testing measurement of
testability.

We configured WATT to compute these 5 measures and
applied it to 34 forms drawn both from currently popu-
lar websites, such as Facebook, Google, YouTube and also
from commercial downloadable web applications such as
osCommerce, softslate and Open Project Manager. As a
preliminary study of these measurements, a human tester
(one of the four authors, who was least closely involved
with the measures’ definition) categorized the web sys-
tems’ forms according to whether they were easy or hard
to test. The human categorization was based purely on ex-
pert judgement and was not informed in any way by the
measures. We used the combination of automatically com-
puted in-testing measurements and this human judgement to
pinpoint some interesting observations concerning the po-
tential application of the WATT tool and the in-testing ap-
proach.

The primary contributions of the paper are as follows:
1. We introduce the in-testing approach to integrating and

interweaving the process of test data generation and
the computation of testability measurements for web
application testing.

2. We introduce a preliminary prototype tool, WATT that
implements this approach. Currently WATT is imple-
mented only for client side testing. We are in the pro-
cess of extending it to handle server side testing and
testability assessment.

3. We introduce five simple client side testability mea-
surements and report on our experience in applying
WATT to compute these measurements on several
widely used websites and web applications. Though
the results are preliminary at this stage, they provide
some evidence to suggest that the in-testing approach
can collect useful information during automated web

testing that can be used to define measurements that
can inform the on-going testing process.

The rest of the paper is organized as follows: Sections
2 and 3 present the proposed testing framework and the as-
pects we want to measure. Section 4 defines the testability
measures, whilst Section 5 presents our experimentations
with the measures together with a discussion of the results.
Section 6 presents related work and Section 7 concludes.

2. Proposed Testing Framework
In dynamic web applications, the content is generated

and formed based on user choices and input values mainly
provided by means of HTML forms. To explore larger parts
of the application and to achieve more coverage during test-
ing, each form is provided with a set of input values that aim
to generate pages from which user interaction can proceed.
As a consequence, meaningful input values are important to
produce during testing.

Testing tools that aim at page coverage are typically
based on web crawling. Given a base URL, they automat-
ically navigate links starting from that URL and use auto-
mated input generation techniques (e.g. predefined database
of inputs) to process forms. The primary three problems
with these tools are that: (i) not all forms can be automat-
ically filled by such tools; and (ii) after running them we
do not precisely know how much application coverage has
been achieved; (iii) it is not clear which application inputs
should be changed in order to increase such a coverage.
Moreover, during testing the test tool in certain areas of the
application makes decisions that could affect page cover-
age. Directing the user to these areas could be useful for
improving the quality of testing and achieving higher cov-
erage while saving time and resources.

We propose a framework that provides the tester with
this kind of information. The framework points the tester
to certain areas (pages and forms) of the application that
could possibly lead to new unexplored pages. Furthermore,
it guides the user by better focusing and limiting the man-
ual effort spent during the testing activity. This informa-
tion consists of a set of proposed testability indicators that
measure specific aspects of each application form that could
impact application coverage and testing effort.

Figure 1 summarizes the most relevant activities of the
proposed framework. The URL for the starting page of
the web application under test is provided by the user and
crawling starts from that point. The crawler will download
the web page and identify any forms it contains. Input val-
ues are automatically generated (by mixing random values
and input taken from a predefined database, when available)
for these forms and test cases are created. The crawler then
resumes crawling using those created test cases and the pro-
cess is repeated for each encountered page.

The identified forms are analyzed and testability indica-
tors are calculated for each form. A ranking of forms is

Figure 1. The proposed framework showing the sequence of testing steps taken by the tester

Figure 2. A simple demonstration of how
measures can help achieve more coverage

then generated and displayed to the user. Some indicators
might prove to be more accurate than others in a given ap-
plication. This could depend for example on the languages
used to implement the application (JavaScript/AJAX rather
than JSP/Java Servlet). However, this ranking approach is
assumed to give an initial idea of which forms are more
suitable candidates for further/manual investigation.

The user is supported in choosing which forms to con-
centrate on that can lead to higher page and application
coverage. Testability measures could indicate that more ac-
curate analysis may be required. The measures also pro-
vide some insight into which aspects of these forms need
more care. For example, a testability indicator related to
a high number of client side validation functions may lead
the user to provide more input values for fields that trigger
these functions.

The input values provided by the user are then used to
generate additional test cases that could lead to new target
pages being covered. These pages are processed in the same
way returning control to the user when more manual inter-

vention is needed. The process can continue until the user
is satisfied or no new pages are encountered.

Figure 2 is a simple demonstration of the result of the
approach. Nodes represent pages in the application and
edges represent dependencies (due to links and forms) be-
tween these pages. A testability measure Mi is calculated
for pages with forms such as nodes 4 and 5 in the figure.
When this measure indicates low testability (node 4), the
tester’s attention is directed to this part of the application
leading to new pages as indicated by the dashed lines.
3. Aspects Affecting Testability in Web Appli-

cations
3.1. Forms

Form inputs affect the generation of dynamic content and
sometimes the target pages that can be navigated, thus af-
fecting page coverage. Though a form could have several
types of input fields, we can divide those types into two cat-
egories: enumerable and unbounded.

Enumerable fields are those fields that in the form def-
inition itself have a list of all possible input values from
which the user can choose. Examples of such fields are drop
down lists, radio buttons and check boxes. Other types that
are slightly different but can be included in this category
are buttons and hidden fields since the choices of inputs are
limited as well.

A form with enumerable fields has a number of possible
input combinations. Different combinations can lead to dif-
ferent target pages and thus if all possible combinations are
explored more page coverage could be reached. However,
even a simple form with a few enumerable fields could have
a large number of possible combinations of inputs. Figure
3 shows a simple form taken from Facebook. Although it
has only two inputs, the number of possible choices for the
country field are 251 and for estimated budget are 4, making
the number of possible combinations 1, 004.

Figure 3. Facebook Form: there are 1,004
possible input combinations for this simple
form

It is hard to determine which input combinations lead to
new pages that have not been covered. Covering all combi-
nations in forms that have millions of possible combinations
could be time consuming. Therefore, a form with a higher
number of input combinations could be considered to have
lower testability.

Unbounded fields are text based fields that the user has
to enter. The possible values are unbounded and therefore
are more challenging to automatically generate. Examples
of these types are text and password fields and search boxes.

A form with a larger number of unbounded fields could
be considered to have lower testability, because generating
meaningful values for these fields may be quite hard.

Moreover, these fields could be dependent upon each
other. In this case values need to be generated that are both
meaningful and properly related. Examples of such hard–
to–fill forms are login and credit card details forms.

Clearly, unbounded fields could be sometimes easy to
fill such as description or comment fields. Therefore, ad-
ditional measures about server side validations, database
queries and client side validations performed on fields
should be defined. These measures could help to better
characterize the difficulty of finding meaningful values for
unbounded fields. However, the raw number of unbounded
fields is itself a testability indicator that we will consider.
3.2. Client Side Validation

Forms or form fields can have a client side script such
as JavaScript functions attached to them. These scripts are
triggered by certain events such as changing the value of the
field or moving the cursor over it.

These scripts could display text to help the user fill out
the field or highlight a field to show an invalid input. Other
scripts could automatically fill a dependent field when a cer-
tain field is filled or can change the possible choices for an
enumerable field. Figure 4 shows an example of such a form
taken from the ASOS website where changing the selected
colour triggers a JavaScript function that changes available
sizes for that colour. Dynamic modification of DOM is a
more advanced type of client side scripts which may affect
also the forms in the page. This happens for instance in
AJAX applications, where form elements can be added or
removed or new forms can be created based on user actions.

Figure 4. ASOS Form: changing the colour
triggers a JavaScript function that changes
available sizes

Forms with a higher number of each of these script types
can be considered harder to test. We will consider each of
these JavaScript function types separately when measuring
a form’s testability. However, in this work we do not ana-
lyze plug-ins and extensions such as applets, flash and Ac-
tiveX controls, which are indeed quite hard to test.
3.3. Server Side Manipulation

Inputs Affecting Execution Paths: Server side code
generates dynamic pages based on choices made by the
user. Input fields can be directly or transitively used in page
generation statements. This can be along a high number of
different paths in the server code which indicates that pages
can be generated in a number of different ways. Each of
these paths may need separate test inputs to satisfy.

Inputs Used in Queries: Inputs that are used to query
the database need meaningful values imbued with domain
knowledge, so that valid results can be returned. Hence, the
presence of dependencies between form inputs and database
queries is also an indicator of hard to test forms.

Non–User Inputs: Some inputs used on the server side
are not directly entered by the user, such as date or location.
These parameters can be used to display different pages at
different times or customize pages based on the user’s loca-
tion, hence affecting the web application’s testability.

In this paper we do not define server side measures more
formally, as we do with client side measures. Further in-
vestigation of server side testability measurements remains
a topic for future work.

4. Defining Testability Measures
In order to define the proposed testability measures un-

ambiguously, we first introduce a web application model,
structured into components and relationships between them.

Figure 5. Model of typical web application
structure

Measures will refer to these entities. We also introduce aux-
iliary functions defined upon the model entities, which sim-
plify successive measures definition.

Figure 5 shows a generic web application model. In this
model, a web application (W) can be looked at from 2 dif-
ferent perspectives: client side and server side. Client side
pages (P) are those that the browser displays to the user
navigating the application. Server side components (Sc)
are the software components that the web server invokes
to generate the client pages. They are also responsible for
retrieving persistent data from the database. A server com-
ponent is made of statements (St), these statements in our
context can have different types: HTML generating state-
ments, database access statements, control statements and
other statements. Client side pages consist of forms (F) and
client side scripts such as JavaScript functions (Fc). Forms
consist of input fields (Fd). Each field of enumerated type
has a finite number of possible input choices drawn from a
set C. Both forms and fields can invoke JavaScript func-
tions, which may in turn change existing fields and forms
or create new fields or forms, due to the possibility of DOM
manipulation available to JavaScript functions.

To improve readability, we use uppercase letters to rep-
resent sets and lowercase to represent instances. We first
define a web application as a set of client side pages and
server components:

W :< P,Sc >

We define a function forms, that retrieves all forms in a
client side page:

forms : P → 2F

We define a function fields, which maps forms to the set
of fields that occur in the form:

fields : F → 2Fd

We define a function choices that returns the set of pos-
sible input values defined in the HTML code for a field or⊥
if the field is unbounded. The function is defined as follows:

choices : Fd → 2C ∪ {⊥}

choices(fd) =

{
{c1, . . . , cn}, if fd is enumerable
⊥, if fd is unbounded

Where {c1, . . . , cn} is the set of possible choices for fd.
We define a function unbounded to return those fields

which have an unbounded number of possible input values
(i.e. free text inputs such as password, text fields and search
boxes):

unbounded : F → 2Fd

unbounded(f) = {fd ∈ fields(f) | choices(fd) = ⊥}

We define a function enumerable to return those fields
Fd which are enumerable (i.e. not unbounded):

enumerable : F → 2Fd

enumerable(f) = |fields(f)| − |unbounded(f)|

We define functions to be a function that returns the set
of JavaScript event handler functions, associated with a re-
stricted set of relevant events, which are attached to form
elements (e.g. input fields, buttons, etc.), excluding special
cases, such as handlers performing unchecked form submis-
sion in response to mouse click:

functions : F → 2Fc

4.1. Testability Measures
We now introduce the proposed testability measures, to

be calculated for each form in the application. We shall
define each measure by giving it a name, an acronym, a
short description, a formula and a usage example. Table 1
is a simple form example that we will use to illustrate our
measures. The code represents a simple form that allows
the user to enter his/her name and allows him/her to provide
information about their sex and marital status. Selecting
Male as sex will reset (by a JavaScript function) the maiden
name text box to none.

4.1.1 Field values
Unbounded fields can be more challenging for automated
input generation. We define a function NUF (Number of
Unbounded Fields) that returns the number of unbounded
fields in a form as follows:

NUF : F → N

NUF (f) = |unbounded(f)|

1 <SCRIPT TYPE="text/javascript">

2 <!--

3 function checksex()

4 {if(document.form.sex[0].checked)
5 {form.maidenname.value = none;}}
6 --></SCRIPT>

....

7 <form name="form" method="GET" action="Srv">

8 <input type="text" name="name">

9 <input type="text" name="maidenname">

10 <input type="radio" name="sex" value="M"

checked onclick="checksex()"> Male

11 <input type="radio" name="sex" value="F" >

Female

12 <input type="checkbox" name="Married"

value="Married"> Married

13 <input type="submit" value="Submit">

14 </form>

....

Table 1. Simple form used to demonstrate
testability measures

For our example the number of unbounded fields is 2, so
the value for NUF would be calculated as follows:

NUF (form) = |unbounded(form)| = 2

A form with a larger number of possible combinations of
inputs is harder to test exhaustively or in a way that would
ensure high coverage of t-way combinations. We define a
function EFC (Enumerable Field Combinations) that cal-
culates the number of combinations of choices for enumer-
able fields. We define the function as follows:

EFC : F → N
EFC(f) =

∏
fd∈enumerable(f)

|choices(fd)|

In our example there are two enumerable fields, Sex and
Married. The number of possible choices for Sex is 2 (M
and F) and for Married is also 2 (checked and unchecked).
EFC for this form will be calculated as follows:

EFC(form) =
∏

fd∈enumerable(form)

|choices(fd)|

= 2× 2 = 4

4.1.2 Client Side Validation
Forms and form fields that invoke JavaScript functions that
change the interface need more attention in input genera-
tion, to fully test these functions. We differentiate between
the following types of JavaScript functions:
• Type 1 JavaScript functions that modify only elements

related to text and display.

• Type 2 JavaScript that modifies existing fields in ex-
isting forms and possibly elements related to text and
display.

• Type 3 JavaScript that modifies the structure of forms
by adding or changing fields or forms and possibly el-
ements related to text and display and existing fields.

JavaScript functions that do not manipulate the interface
such as logging a request are not considered.

We define a function CSS (Client Side Scripts) that mea-
sures the testability in terms of JavaScript functions. We
define the function as follows:

CSS : F → N

More specifically, we define this measure for each type
of JavaScript code mentioned above as follows:

CSS1(f) = |{fn ∈ functions(f) | fn of type1}|

CSS2(f) = |{fn ∈ functions(f) | fn of type2}|
CSS3(f) = |{fn ∈ functions(f) | fn of type3}|

In our example we only have one JavaScript function of
Type 2 where function checksex() changes the value of an
existing field maidenName. Therefore the value of the three
measures will be as follows:

CSS1(form)= |{fn∈ functions(form)|fnoftype1}| = 0

CSS2(form)= |{fn∈ functions(form)|fnoftype2}| = 1

CSS3(form)= |{fn∈ functions(form)|fnoftype3}| = 0

5. Experimentation with the Approach
With the aim of conducting a preliminary framework

evaluation and refinement, we performed the following
steps:

1. Selected applications and forms to be evaluated.

2. Applied WATT to those forms to collect the presented
measures: number of unbounded fields (NUF), num-
ber of possible combinations (EFC), and the number
of each of the three types of JavaScript functions at-
tached to form elements (CSS1, CSS2 and CSS3).

3. An expert tester (a different author not involved in the
framework definition) tested and evaluated each form
as ‘hard’ or ‘easy’ to test (see below).

4. Observed and compared the obtained measures to the
expert evaluation.

5.1. WATT Tool
We developed a prototype of the Web Application Testa-

bility Tool (WATT). The tool supports our framework by
crawling an application automatically, collecting data about
the application’s client-side structure, and calculating testa-
bility measures.

The tool has the ability to automatically fill and submit
forms using a mixture of random input values and user pro-
vided values. The tool also parses JavaScript and extracts
links. It also manages cookies and user sessions. While
crawling the site, the tool generates a parse tree of the down-
loaded HTML files and extracts different components and
their structure such as forms and JavaScript and stores them
to the database. The structure of the application and how its
pages are connected is also stored and can be used for fur-
ther analysis later. The tool can also determine which en-
countered links/forms failed by capturing the response code
generated by the server. While crawling, JavaScript func-
tions attached to form elements are parsed for keywords to
determine their type. The result is then manually reviewed
to insure accuracy. A filter can be provided to limit the
crawler to a certain path and sub directory.

The tool was developed and tested based on the com-
pleteness criteria and the categorization of Hypertext links
proposed by Girardi et al. [7].

In this experiment we limit the WATT tool to the appli-
cation pages that contain the selected forms.

5.2. Form Selection and Classification
To apply the tool, we selected 34 forms taken from 14

real world web applications. The forms were taken from a
number of well known sites such as Facebook, Yahoo and
YouTube and commercial downloadable applications such
as Softslate, osCommerce and Zen Cart. These forms have
been selected to cover different types of forms such as lo-
gin, registration, search and order forms. They were also
selected to have different structural sizes and complexity.

An expert tester has been asked to classify these forms
as ‘easy’ or ‘hard’ to test. The tester analyzed and tested
each form then annotated the main activities applied during
this task as follows:
• Analysis of the possible combinations of the form

fields; each form has been exercised by using ad-hoc
coverage criteria for field combinations with the pur-
pose of discovering new application parts/behaviours.

• Inspection and evaluation of field-attached actions,
in both client and server-side code (e.g. JavaScript
checks related to fields, links to server components).
Application components that impact the form/page
have been manually inspected. This was done to un-
derstand whether their behaviour on the form impacts
the application exploration.
• Evaluation of the random exploration of the form and

the required manual intervention. In this case, each
form has been exercised by using only random inputs
with the aim of evaluating how much the form can be
automatically explored.
• Analysis of documentation, help, and information con-

tained in the page about how to fill and activate the
form.

• Evaluation of the overall time required to study the
form fields with the aim of selecting an adequate set
of inputs required to exercise the form during testing.

According to this evaluation each form has been classified
as ‘easy to test’ when it requires little testing effort to be
‘reasonably’ tested and ‘hard to test’ if a lot of effort has
been required. This classification is made entirely by human
intuition, based on the above guidelines.
5.3. Results

We ran the tool on our selected forms and collected the
results presented in Table 2. The results show a somewhat
consistent relation between the number of unbounded fields
and human classification of the forms. One exception is
Web Calculator, where the form was classified as hard while
it only contains one unbounded field. This is because the
form has a large number of buttons that operate on this field.
However, this is captured in the number of JavaScript func-
tions attached to this form which is 35 (CSS2). Most of the
forms rated easy to test have a low number of unbounded
fields. Google’s Advanced Search form is an exception. For
a human tester it is easy to classify this form as easy to test
since any random data could be used to submit the form
successfully. However, this observation requires additional
domain knowledge that can not be available to a measure-
ment.

The Venere Hotel Search form has a number of events
that perform client side JavaScript validations on fields.
One example is to check if the selected ‘From Date’ is less
than or equal to the selected ‘To Date’. This was captured
by the CSS2 measure.

The possible number of input combinations seems to
have not affected the human rater’s judgement of ‘subjec-
tive testability’. For instance, Softslate’s Address Settings
form has the largest number of possible combinations in the
set. However, the input fields consist of 92 check boxes
and this is what causes the possible number of combina-
tions to be high. Choosing combinations that represent the
typical application behaviour we can encounter is sufficient
to achieve high coverage in this case. However, this is not
always an easy task especially when testers have no special
knowledge about the application under testing. Therefore,
this measurement could indicate to the tester that due to the
large number of possible combinations, the form needs to
be examined to determine which combinations need to be
tested. This leads us to conclude that this measure needs to
be combined with other measures to be a better indicator of
testability. One way to refine this measure could be analy-
sis of the server side code to determine how many different
combinations lead to different behaviour.

We observe in Table 2 that JavaScript is not as frequently
attached to the form fields as we expected. This could be
caused by the fact that JavaScript is a client side scripting
language. Checks on input values in forms on the client side

Website Form Name # Fields NUF EFC CSS1 CSS2 CSS3

Easy to test for human testers (as judged subjectively)
Google Advanced Search 17 7 1.5× 108 0 0 0
Last Minute Hotel Search 20 0 5.8× 1018 0 4 14
BBC Display Options 39 0 1.7× 104 0 0 0
You Tube Search 1 1 1 0 0 3
Facebook Login 5 3 2 1 0 0
Facebook Registration 10 4 1.4× 105 1 0 3
Venere News letter 1 1 1 0 1 0
Venere Hotel Search 7 1 2.1× 107 0 6 0
Wikipedia Login 5 2 2 0 0 0
Wikipedia Search 3 1 1 0 0 0
Softslate Search 2 1 1 0 0 0
Yahoo Login 4 2 2 0 0 0
Softslate Add to Cart 10 9 1 0 0 0
Softslate Register 4 3 1 0 0 0
Softslate Product Settings 28 0 1.3× 108 0 1 0
Softslate Discount Settings 10 0 32 0 0 0
Softslate Address Settings 92 0 5× 1027 0 0 0
Open Project Add Task 12 0 5.3× 106 0 2 0
Open Project Button Settings 30 0 5.4× 108 0 0 0
Open Project Create Button 10 0 2,400 1 0 0
Open Project Edit States 34 0 5.4× 1011 0 0 0
Zen Cart Manufacturers Form 1 0 8 0 0 0
Zen Cart Filter Search Results 2 0 111 0 0 0
Zen Cart Shopping Cart 4 1 2 0 0 0
osCommerce Checkout Address 3 0 2 0 0 0
osCommerce Checkout Payment 7 2 240 0 0 0

Hard to test for human testers (as judged subjectively)
TedLab Web Calculator 36 1 35 0 35 0
Easy Chair Registration 5 4 1 0 0 0
Softslate Login 3 2 1 0 0 0
Softslate Checkout 30 20 4.2× 109 0 1 0
Softslate Payment 7 3 480 0 0 0
Softslate Checkout Settings 14 8 12 0 0 0
Zen Cart Create Account 24 15 4.3× 105 0 0 1
osCommerce Create Account 19 14 960 0 0 0

Table 2. Measure values for the forms used in the experiment

can be easily bypassed causing a security threat. This could
cause developers to prefer server side input validation while
using JavaScript to enrich the application GUI.

We also notice that the form size and complexity is only
partially tied with the judgement of the human tester. For
instance, we can consider Facebook Registration and Softs-
late Payment. They are similar in terms of number of fields
and JavaScript but differently classified as easy (Facebook
Registration) and hard (Softslate Payment) to test. This is
primarily because of different input validation checks ap-
plied to their fields. In fact, in the Facebook Registration
form there are a few simple checks (e.g. email format) while
in Softslate Payment strong checks related to credit card val-
idation are performed (in both client and server side).

Another example is Softslate Checkout compared to Soft-
slate Payment. In this case, we see that both forms were
classified as hard to test by the human while they are dif-
ferent in terms of number of fields and their combinations.
In particular, Checkout has 30 fields and 4.2 × 109 com-
binations while Payment only has 7 fields and 480 com-
binations. The difference lies in the validation checks ap-
plied to each field of these forms. For Checkout, there are
a few checks (e.g. email format, ZIP code format) while in
Payment there are some more complicated checks related to
credit card validation.

Furthermore, we can compare Softslate Register and
Easy Chair Registration. Although their measures are com-
parable, they were classified as easy and hard to test by the
human rater respectively. The main reason is that in Easy
Chair Registration there is a ‘CAPTCHA’ field that must be
manually transcribed by the tester.

Of course, the obtained results are preliminary in nature
and cannot be generalized. However, they are encouraging
and indicate that with more refinement, measures could be
proved to be helpful in testing. In future work, a larger scale
more developed evaluation of the approach and analysis of
server side related measures will be conducted.

6. Related Work
Several testing web techniques and tools have been pro-

posed as a result of the increased pervasiveness of web
applications. This increased pervasiveness demands high
quality applications with low defectiveness.

Functional testing is the most widely applied testing ap-
proach. Existing tools for web applications (e.g. LogiTest,
Maxq, Badboy), are based on capture/replay facilities: they
record the interactions that a user has with the graphical in-
terface and repeat them during regression testing. An alter-
native is based on tools such as HttpUnit. HttpUnit is a Java
API that provides the building blocks required to emulate
the browser’s behaviour. When combined with a framework
such as JUnit, HttpUnit allows testers to create test cases to
verify Web Application behaviour [10].

Model-based testing of web applications was initially

proposed by Ricca and Tonella [15] and then refined by oth-
ers. This testing approach performs a preliminary analysis
of the application under test with the aim of describing it by
means of a model (often, it describes web pages, links and
forms). Coverage criteria are applied to the model to extract
test case suites. Recently, model-based testing approaches
have been applied to web 2.0 applications [13, 14]. These
approaches extract test cases by studying the client-side be-
haviour of the application.

Elbaum et al. [8] propose a web testing a web testing ap-
proach that uses data captured in user sessions to create test
cases automatically. Alshahwan and Harman [1] proposed a
session data repair approach to be used in regression testing.

A test case for a web application can be viewed as a se-
quence of web pages, enriched by inputs and user actions
performed through the GUI. The goal of a test case is to
emulate an execution in which the expected and real appli-
cation behaviour are compared. One of the most relevant
difficulties in web testing is that a lot of manual interven-
tion is often required to fully test the application. In fact
by applying only automatic testing criteria there is no way
to guarantee that a web application is ‘completely’ covered
(e.g. all links, pages and forms).

Testability metrics have been used and defined for tra-
ditional software such as Object Oriented software for pre-
dicting testing effort. For instance, Bruntink and Deursen
[5, 6] evaluated and defined a set of testability metrics for
Object Oriented programs and analyzed the relation be-
tween classes and their JUnit test cases. Jungmayr [11] sug-
gests that testability metrics can be used to identify parts of
the application causing a lower testability level by analysing
test critical dependencies.

In web applications, metrics have been used especially
for maintainability and evolution. Emad Ghosheh et al. [9]
compare a number of papers that define and use web main-
tainability metrics. These are mostly source code metrics
that predict maintainability of web applications. Warren et
al. [17] created a tool to collect a number of metrics to mea-
sure web application evolution over an interval of time. In
the context of using metrics to aid testing, Bellettini et al. [3]
created a tool TestUML that combines a number of tech-
niques to semi-automatically test a web application. Met-
rics such as number of pages or number of objects were
used to define coverage level and then be used for stopping
the testing process based on user criteria.

The framework we propose combines the existing web
testing approaches with testability measures. This would
help to prioritize parts of the application with low testa-
bility during the testing process. Combining testing with
testability measures would help the tester identify areas of
the application that need more attention thereby decreasing
the testing effort.

The primary novelty of the in-testing approach reported

on in this paper is that measures are used during the testing
process to guide the tester to areas where efforts could be
most effective.

7. Conclusion and Future Work
In this paper we have introduced an approach to testing

web based systems that is integrated and interwoven with
the process of computing measurements of the system under
test. The approach collects facts about the system under
test as it spiders over the site, entering data for forms and
seeking to cover structure. These facts are used to compute
measurements. While the measurements collected during
testing can report on any aspect of the system, it is natural
to focus on testability, especially since web based systems
pose particular challenges for testing.

We report on an implementation, WATT, a system that
implements the ‘in testing’ computation of testability mea-
sures that we advocate. We present results from initial
experiments with five simple measurements, computed us-
ing WATT for 14 web based systems, comprising of well-
known web sites and downloadable web applications. Al-
though the results are preliminary, they highlight some in-
teresting features of the systems under test and the way in
which measures can be used to draw the tester’s attention to
them.

Much remains to be done to develop this research
agenda. Future work will focus on the development of addi-
tional measurements at the server side to complement those
presented for client side testing in this paper. More work
is also required to evaluate testability transformation mea-
surements for web based testing. This work will explore
the correlation between testability measurements and the
behaviour of and effort required by test data generation ap-
proaches. We plan to further develop the WATT testing tool
to achieve these goals for future work and to release it for
wider research use.

References

[1] N. Alshahwan and M. Harman. Automated session data re-
pair for web application regression testing. In ICST ’08:
Proceedings of the 2008 International Conference on Soft-
ware Testing, Verification, and Validation, pages 298–307,
Washington, DC, USA, 2008. IEEE Computer Society.

[2] J. O. Anneliese A. Andrews and R. T. Alexander. Testing
web applications by modeling with fsms. Software and Sys-
tems Modeling, 4:326–345, 2005.

[3] C. Bellettini, A. Marchetto, and A. Trentini. TestUml: user-
metrics driven web applications testing. In SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied comput-
ing, pages 1694–1698, New York, NY, USA, 2005. ACM.

[4] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Au-
tomatically testing dynamic web sites. In Proceedings of
11th International World Wide Web Conference, Honolulu,
Hawaii,USA, 2002.

[5] M. Bruntink and A. van Deursen. Predicting class testability
using object-oriented metrics. In SCAM ’04: Proceedings of
the Source Code Analysis and Manipulation, Fourth IEEE
International Workshop, pages 136–145, Washington, DC,
USA, 2004. IEEE Computer Society.

[6] M. Bruntink and A. van Deursen. An empirical study into
class testability. J. Syst. Softw., 79(9):1219–1232, 2006.

[7] F. R. Christian Girardi and P. Tonella. Web crawlers com-
pared. International Journal of Web Information Systems,
2:85–94, 2006.

[8] S. Elbaum, S. Karre, and G. Rothermel. Improving Web
application testing with user session data. In Proceedings
of the 25th International Conference on Software Engineer-
ing (ICSE), pages 49–59, Portland, USA, May 2003. IEEE
Computer Society.

[9] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black. A com-
parative analysis of maintainability approaches for web ap-
plications. In AICCSA ’06: Proceedings of the IEEE In-
ternational Conference on Computer Systems and Applica-
tions, pages 1155–1158, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] E. Hieatt, R. Mee, and G. Faster. Testing the web appli-
cation engineering internet. IEEE Software, 19(2):60–65,
March/April 2002.

[11] S. Jungmayr. Testability measurement and software depen-
dencies. In Proceedings of the 12th International Workshop
on Software Measurement, pages 179–202, Aachen, 2002.
Magdeburg,Shaker Publ.

[12] K. Lakhotia, P. McMinn, and M. Harman. Automated test
data generation for coverage: Haven’t we solved this prob-
lem yet? In 4th Testing Academia and Industry Confer-
ence — Practice And Research Techniques (TAIC PART’09),
Windsor, UK, 4th–6th September 2009. To appear.

[13] A. Marchetto, P. Tonella, and F. Ricca. State-based testing
of ajax web applications. In International Conference on
Software Testing Verification and Validation (ICST), Lille-
hammer, Norway, April 2008. IEEE Computer Society.

[14] A. Mesbah, , and A. van Deursen. Invariant-based automatic
testing of ajax user interfaces. In 31st International Confer-
ence on Software Engineering (ICSE). IEEE Computer So-
ciety, May 2009.

[15] F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering, pages 25–34, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[16] F. Ricca and P. Tonella. Building a tool for the analysis
and testing of web applications: Problems and solutions.
In TACAS 2001: Proceedings of the 7th International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 373–388, London, UK, 2001.
Springer-Verlag.

[17] P. Warren, C. Boldyreff, and M. Munro. The evolution of
websites. In IWPC ’99: Proceedings of the 7th International
Workshop on Program Comprehension, page 178, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[18] Y. Wu and J. Offutt. Modeling and testing web-based appli-
cations. Technical report, George Mason University, 2002.

