
Program Analysis and Test Hypotheses

Complement

R. M. Hierons and M. Harman

December 3, 2010

Abstract

This paper considers ways in which pro-
gram analysis and test hypotheses com-
plement, focusing on one particular ex-
ample: the uniformity hypothesis. Con-
ditioned slicing can be used to either
provide confidence in the uniformity hy-
pothesis, identify faults, or suggesting re-
finements to the hypothesis. The exis-
tence of a uniformity hypothesis assists
in the production of small conditioned
slices which might then be analysed fur-
ther. keywords: Program verification,
test hypotheses, the uniformity hypoth-
esis, program analysis, conditioned pro-
gram slicing.

1 Introduction

Most approaches to program verifica-
tion can be categorised as one of dy-
namic testing and program analysis. Dy-
namic testing involves exploring the be-
haviour of the implementation under test
(IUT) when given particular input val-
ues. Within the verification context,
program analysis involves studying the
source code of the IUT in order to derive
information that might either increase
the confidence in the correctness of the
IUT or detect faults in the IUT.

In general, it is not possible to produce
a finite test set that is guaranteed to de-
termine correctness. There are, however,
techniques that generate tests that are
guaranteed to determine correctness as
long as the IUT satisfies certain condi-
tions. These conditions have been called
test hypotheses ([11]) and design for test
conditions ([19]). Section 2 discusses test

hypotheses. Testing might then be seen
as a process of choosing an appropriate
set of test hypotheses and then generat-
ing a corresponding test set.

If the hypotheses do not hold, the cor-
responding test set may be ineffective
and inefficient. Thus, it is important to
use test hypotheses that hold.

Previous work has largely focussed on
introducing new hypotheses and gener-
ating tests in the presence of hypothe-
ses ([12, 8, 31, 32, 9, 27, 5, 11, 17]).
This paper instead concentrates upon
semi-automated techniques for establish-
ing that such hypotheses do hold. Specif-
ically the relationship between the uni-
formity hypothesis and program analy-
sis, through the use of conditioned slic-
ing, is described. Slicing shall be briefly
reviewed in Section 3.

Sections 4 and 5 will discuss the fol-
lowing ways in which this relationship
may be used.

1. An instance of the uniformity hy-
pothesis, which represents expert
knowledge about the IUT, might be
used to simplify program analysis.

2. Program analysis might be used to
either provide confidence in, refute
or refine proposed test hypotheses.

It will thus be demonstrated that there
exists a symbiotic relationship between
program analysis and test hypotheses.

2 Test hypotheses

Suppose I is to be tested against a spec-
ification M with input domain D. It
is normal to assume that I accepts the



same class of inputs as M , though an er-
ror may result for some of these input
values. Without any further knowledge
about I there is, in general, no finite test
set that determines correctness.

Fortunately this does not represent the
normal scenario in testing. The tester
has some expert knowledge about I and
I is not, in general, merely a black box:
it is often possible to examine the code
used to produce I. There is thus fur-
ther information about I that may be
utilised in test generation. This infor-
mation might be expressed as properties
of I called test hypotheses.

Suppose that F denotes the set of pos-
sible behaviours of the IUT. F is often
called a Fault Model ([22]). Suppose, fur-
ther, that the current set of hypotheses is
H and FH denotes the set of behaviours,
from F , that are consistent with H. Let
I ′ ≤ M denote that I ′ conforms to M
and I ′ ≤T M denote that the I ′ con-
forms to M on T ⊆ D. Naturally, the no-
tion of conformance used depends upon
the specification language. The following
defines what it means for a test set T to
be guaranteed to determine correctness
under H.

Definition 1 Test set T is complete
with respect to H if and only if ∀I ′ ∈
FH .I ′ ≤M ⇐⇒ I ′ ≤T M .

Two related notions, of a test being
unbiased and valid, have been described
([11]). A test is valid if it rejects all
faulty implementations that satisfy the
test hypotheses. A test is unbiased if
it cannot reject a conforming implemen-
tation that satisfies the test hypotheses.
Then a test is complete if and only if it
is unbiased and valid.

Clearly, the exhaustive test set D is
complete with respect to every hypoth-
esis H. Exhaustive testing is, how-
ever, rarely practical. Given M and
I, there are the following, inter-related,
challenges.

1. To devise some set H of test hy-
potheses, that I is likely to satisfy,
such that there is a corresponding
feasible complete test set.

2. To determine whether I satisfies H.

3. To generate a complete test set for
I with respect to H.

The development of an appropriate set
of hypotheses can proceed via refinement
([11]). Some minimal hypothesis is pro-
duced and this is refined through a num-
ber of steps. The minimal hypothesis
might, for example, be that I is equiva-
lent to some unknown element from fault
model F or simply that the input and
output domains for I are the same as
those for M . Each refinement strength-
ens the test hypotheses and thus, poten-
tially, allows a smaller complete test set.

Many test generation techniques are
based around partitioning the input
domain D into a finite set DM =
{D1, . . . , Dk} of subdomains such that,
according to M , all elements in a sub-
domain should be processed in the same
way ([12, 31, 32, 9, 27, 11, 17]). The uni-
formity hypothesis says that if the input
of one value in some Di ∈ DM leads to a
failure then all values in Di lead to fail-
ures.

It is to be expected that there is some
(unknown) partition DI , of the input
domain, such that the behaviour of I
is uniform on each subdomain of DI .
The uniformity hypothesis is thus based
upon the assumption that DM and DI

are similar. If the uniformity hypothesis
holds it is sufficient to choose one value
from each Di ∈ DM . However, the test
for some Di ∈ DM is normally comple-
mented by tests around the boundaries
of Di ([32, 9]) which are expected to find
any small errors in the boundaries.

It has been noted ([29]) that if the
partitions DM and DI were known, the
behaviours of I and M could be com-
pared on each subdomain from DIM =
{Di ∩Dj | Di ∈ DM , Dj ∈ DI}. While
we do not consider the generation of DI ,
this idea from ([29]) provided the inspi-
ration for much of the work contained in
this paper.



3 Program slicing and
symbolic evaluation

Program slicing is the process of taking
a program I and some slicing criterion
(V, n) (variable set V and node n) and
removing all parts of I that do not af-
fect the value, at node n, of any variable
in V . Much work has focussed on the
technical problems associated with slic-
ing programs in the presence of proce-
dures [20, 28], pointers [2, 24, 25] and
jumps [3, 7, 14, 1]. This paper uses only
end slicing, in which the end of the pro-
gram is the point of interest ([23]). Thus,
throughout this paper the slicing crite-
rion is simply a set of variables.

Program slicing was initially intro-
duced as a way of assisting debugging
([30, 26]). For this application it is im-
portant that the only simplification tool
available to slicing algorithms is state-
ment deletion. For a number of other
applications, such as mutation testing
([18]) and program comprehension ([13,
15]), this restriction to statement dele-
tion is unhelpful. In such cases Amor-
phous Slicing, which allows the applica-
tion of any transformations that preserve
the semantics of interest, leads to im-
proved simplification ([13, 16, 4]).

In slicing it is possible to place a con-
dition C on the input values. Then any
statement that cannot affect the values
of the variables in V at n, given that the
input satisfies C, may be removed. This
is called conditioned slicing ([6, 10]). In
the amorphous version of conditioned
slicing any transformation that preserves
the effect of the original program upon
the slicing criterion is valid.

Given a program I and condition C,
SC(I) shall denote the (possibly amor-
phous) conditioned end slice of I (in
which all variables are of interest) for
condition C. Similarly, given subdomain
D′ ⊆ D, SD′(I) shall denote the condi-
tioned slice in which the input is con-
strained to D′. Thus SD′(I) denotes
SC(I) where C(x) is the condition x ∈
D′.

Symbolic evaluation is the process of
describing the final values of the vari-

ables in a program in terms of the ini-
tial values of the variables. Since pro-
grams normally have control-flow con-
structs, the result of applying symbolic
evaluation to a program will usually lead
to a number of symbolic values, each
with a precondition.

4 Uniformity can help
program analysis

This section describes a way in which
the existence of a uniformity hypothe-
ses may assist program analysis. This is
achieved through using the information
represented by the uniformity hypothe-
sis. It thus introduces the possibility of
using standard testing approaches, that
generate a uniformity hypothesis, to as-
sist program analysis.

Suppose subdomain D′ of D has been
chosen and all of the values in D′ are pro-
cessed in the same way by I. Then the
conditioned slice of I on the subdomain
D′ should be relatively simple. Thus, if
DI were known, this would suggest an
approach to program analysis: slice on
the subdomains of DI and analyse these
slices.

While DI is not known, it is possible
to slice using the partition DM , forming
the set S(I,DM ) = {SDi(I) | Di ∈ DM}
of conditioned slices. If the uniformity
hypothesis holds the slices in S(I,DM )
should be relatively small. This might
help solve one of the challenges of con-
ditioned slicing: finding conditions that
lead to small but useful slices.

Consider the program analysis prob-
lem of producing a proof of correctness.
Then, I conforms to M if and only if
for all Di ∈ DM , I conforms to M on
Di. Thus, in order to prove that I con-
forms to M it is sufficient to prove that
each SDi(I) conforms to M on the cor-
responding Di. It is then sufficient to
consider, for each Di ∈ DM , I and M
restricted to Di.

The uniformity hypothesis is based on
the behaviour of M being relatively sim-
ple on each Di. If the uniformity hy-
pothesis holds, the SDi

(I) should also



be relatively simple. Thus, if the uni-
formity hypothesis holds, the proof of
correctness has been broken down into
a number of relatively simple proofs.
Symbolic evaluation might be applied
to each SDi

(I), producing an expres-
sion that can more easily be handled
by an automated theorem-prover. Nat-
urally, if the partition DI defined by I
were known, slicing would be applied on
DIM = {Di ∩Dj | Di ∈ DM , Dj ∈ DI}.
The approach outlined in ([29]) might
then be used.

Consider now an implementation I∆

that is intended to solve the triangle
problem. It thus takes three integers x,
y and z and should return:

1. ‘equilateral’ if x=y and y=z;

2. ‘isosceles’ if two of x, y, and z are
the same but the third is different;

3. ‘scalene’ if x, y, and z are all differ-
ent.

The tester might analyse this specifi-
cation and produce the following condi-
tions:

C1(x, y, z) ≡ x = y ∧ y = z

C2(x, y, z) ≡
((x = y) ∨ (x = z) ∨ y = z))

∧¬(x = y ∧ y = z)

C3(x, y, z) ≡ x 6= y ∧ y 6= z ∧ x 6= z

Suppose that the computation con-
tained in I∆ is the code shown below.

if (x==y && y==z)

r = "equilateral";

if (x==y) r = "isosceles";

if (x==z) r = "isosceles";

if (y==z) r = "isosceles";

if (x!=y && y!=z && x!=z)

r = "scalene";

printf("The triangle is %s \n",r);

Suppose that I∆ is sliced on conditions
C1, C2 and C3. The initial step in pro-
ducing a conditioned slice, of I∆, for C3

might give:

if (x!=y && y!=z && x!=z)

r = "scalene";

This reduces to:

r = "scalene";

Similarly, the first step in the process
of applying conditioned slicing with C2

might give:

if (x==y) r = "isosceles";

if (x==z) r = "isosceles";

if (y==z) r = "isosceles";

This reduces to:

r = "isosceles";

Suppose conditioned slicing is applied
with C1. Then any effect of the first
three lines is killed by the fourth line.
Conditioned slicing might initially pro-
duce:

if (y==z) r = "isosceles";

Again, this may be further reduced,
giving:

r = "isosceles";

The behaviour on each subdomain is
quite simple. In fact, in each case it
is constant. The information provided
by the uniformity hypothesis has thus
allowed the generation of small condi-
tioned slices. The existence of these
conditioned slices allows the production
of simple proofs of correctness, for the
subdomains where the behaviour is cor-
rect, and the identification of counter-
examples where the behaviour is not cor-
rect. In this case it is clear that the be-
haviour on C2 and C3 is correct but that
the behaviour on C1 is faulty.

It is worth noting that the production
of such simple slices has lent weight to
the uniformity hypothesis. Thus, if pro-
ducing a proof of correctness were not
feasible for some subdomain, test derived
using the hypothesis might be used in-
stead.



5 Program analysis can
help when using uni-
formity hypotheses

This section describes ways in which pro-
gram analysis assists a tester when con-
sidering using the uniformity hypothesis.
These approaches are again based upon
the conditioned end slices of I, contained
in S(I,DM ), produced by slicing I on
the subdomains of the partition DM .

If a slice I ′ = SDi
(I) is unexpectedly

complex, this might indicate that I takes
on more than one behaviour on Di. This
might occur either because this subdo-
main should be split further or because
a boundary is wrong. Then we might
either further analyse this slice or test
more thoroughly in Di.

Let Symb(I,Di) denote the result of
applying symbolic evaluation to SDi

(I),
Di ∈ DM . Then Symb(I,Di) is a
set of pairs, each pair (p, f) consist-
ing of a precondition p and a behaviour
f . Suppose Symb(I,Di) has been pro-
duced and it contains more than one
behaviour with separate preconditions.
These preconditions suggest a refinement
of DM : the subdomain should be parti-
tioned into {{x ∈ Di | p(x)} | ∃f.(p, f) ∈
Symb(I,Di)}. The conditioned slices on
each of these subdomains may now be
produced and these should be relatively
simple.

Suppose a slice SDi
(I) ∈ S(I,DM ) is

simple and Symb(I,Di) contains one be-
haviour only. This provides some ini-
tial confidence in the behaviour of I be-
ing uniform on Di. It might also be
possible to further analyse the relation-
ship between the behaviour of SDi

(I) or
Symb(I,Di) and that of M on Di. This
analysis might, for example, involve a
proof of correctness. Alternatively, it
might involve determining the type of
function applied. Where the form of the
behaviours of M and I on Di is known, it
may be possible to devise a test set that
determines correctness on Di ([21]), thus
overcoming the problem of coincidental
correctness.

Consider a system designed to return
the sale price of a purchase of rice and

lentils. Suppose x denotes the amount
of lentils being purchased and y denotes
the amount of rice being purchased. The
price of rice is 2 and the price of lentils
is 1. There are discounts for bulk pur-
chases: if the amount of lentils being
purchases is greater than or equal to 50
there is a five percent discount and if the
total price (without discount) is greater
than or equal to 1000 there is a ten per-
cent discount. The discounts are cumu-
lative. Suppose program Ip, contain-
ing the following code that performs the
computation, has been produced.

if (x >= 50.0) p1 = 0.95;

else p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

There are two basic conditions, x ≥ 50
and y ≥ 1000, to consider. This leads to
the following four conditions.

x < 50 ∧ (2x + y) < 1000

x < 50 ∧ (2x + y) ≥ 1000

x ≥ 50 ∧ (2x + y) < 1000

x ≥ 50 ∧ (2x + y) ≥ 1000

Consider the second condition,
C(x, y) ≡ x < 50 ∧ (2x + y) ≥ 1000.
Then the corresponding conditioned
slice of Ip is

if (x >= 50.0) p1 = 0.95;

else p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

This can be further reduced to:

p1 = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p1*p2*(2.0*x+y);

and then, using amorphous slicing:

if ((2.0*x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;

c = p2*(2.0*x+y);



This cannot be simplified any further.
Symbolic evaluation may now be ap-
plied, leading to the following precondi-
tion/function pairs:

(((2x + y) > 1000.0), c = 0.9 ∗ (2x + y))

(((2x + y) ≤ 1000.0), c = (2x + y))

The second precondition can be sim-
plified to 2x + y = 1000. This analy-
sis suggests dividing the subdomain, de-
fined by the precondition C(x, y) ≡ x <
50∧(2x+y) ≥ 1000, into C1(x, y) ≡ x <
50∧ (2x+ y) > 1000 and C2(x, y) ≡ x <
50∧(2a+y) = 1000. Any test case taken
from the second of these subdomains will
lead to a failure.

6 Future Work

This paper has considered ways in which
program analysis and test generation
complement one another. In particu-
lar, a relationship between the unifor-
mity hypothesis and conditioned slicing
is explored. There is, however, a gen-
eral principle contained in this work: in-
formation contained in test hypotheses
may assist when analysing a program
and program analysis may assist when
using test hypotheses. This general ap-
proach may extend to other types of test
hypotheses and forms of program analy-
sis.

The potential role of program analy-
sis, when using test hypotheses, suggests
the challenge of devising test hypotheses
that

1. are likely to hold;

2. lead to feasible tests that are easy
to generate;

3. are relatively easy to verify using
program analysis.

Other test hypotheses might represent
information that can assist in program
analysis. This suggests the investigation
of information contained in test hypothe-
ses, information that might assist partic-
ular forms of program analysis, and any
relationships between these types of in-
formation.

7 Conclusions

Many test techniques make assumptions,
often called test hypotheses, about the
implementation under test. These allow
stronger statements to be made about
the effectiveness of testing if the test hy-
potheses hold. However, if the hypothe-
ses do not hold then the tests generated
may have little value.

Program analysis is capable of provid-
ing general information about implemen-
tations. Often, however, program com-
plexity limits the use and effectiveness of
program analysis.

This paper has considered the rela-
tionship between test hypotheses and
program analysis. Within this it has
concentrated on the uniformity hypoth-
esis. Program analysis may provide con-
fidence in or refute the test hypotheses
or may suggest refinements to the hy-
potheses. The information provided by
the existence of the uniformity hypothe-
sis can be used to simplify program anal-
ysis through the production of small con-
ditioned slices.
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