
An Empirical Investigation of the
Influence of a Type of Side Effects on

Program Comprehension

J.J. Dolado, Member, IEEE,
M. Harman, Member, IEEE,

M.C. Otero, and L. Hu

Abstract—This paper reports the results of a study on the impact of a type of side

effect (SE) upon program comprehension. We applied a crossover design on

different tests involving fragments of C code that include increment and decrement

operators. Each test had an SE version and a side-effect-free (SEF) counterpart.

The variables measured in the treatments were the number of correct answers

and the time spent in answering. The results show that the side-effect operators

considered significantly reduce performance in comprehension-related tasks,

providing empirical justification for the belief that side effects are harmful.

Index Terms—Side-effect-free programs, crossover designs, program

comprehension.

æ

1 INTRODUCTION

A side effect is any change in program state that occurs as a by-
product of the evaluation of an expression. Side effects are often
thought to impede program comprehension, although hitherto,
this appears to be a belief that has not been examined empirically.
This paper is concerned with a type of side effect in C programs
and their effect upon program comprehension.

The C programming language standard defines side effects in a
very broad manner ([9, Section 5.1.2.3]): “Accessing a volatile
object, modifying an object, modifying a file, or calling a function
that does any of those operations are all side effects, which are
changes in the state of the execution environment. Evaluation of an
expression may produce side effects.” In this paper, we adopt a
more restricted view, considering only auto-increment and auto-
decrement operators. A side effect will be taken to be: “Any change
in the value of a variable which occurs when an expression is
evaluated, other than an assignment expression-statement.”

A side-effect-free program is one which contains no side effects.
This defines side effects to occur in expressions like “x++,” “- -v,”
“(x+1,y=x+3),” and “x==2 && y=2*x.” Assignment statements
in C are assignment expression-statements. To be side-effect free,
assignment expressions are allowed to change only the value of the
variable on the lefthand side of the assignment; the righthand side
must not change the value of any variables.

Our basic research enquiry is centered around the question:
“Are side-effect-free programs more understandable than pro-
grams with side-effects?” This paper uses a side effect removal
algorithm, LinSERT [6], to produce side-effect-free versions of C
program fragments which contain side effects. The tool is used to
avoid the potential source of bias inherent in human selection of
side-effect-free programs. LinSERT’s algorithm was designed to
remove side effects, not to produce readable code. Indeed, there

are cases when, subjectively, one could argue that the results

obtained by LinSERT are not ideally readable. However, this

observation only serves to strengthen the results obtained.

1.1 Related Work

Side effects are widely believed to inhibit program understanding,

with a consequent detrimental impact upon software maintenance

and evolution. For example, Kernighan and Pike [10] suggest that

side effects should only be used in very special situations, where

well-understood side effect idioms are employed to improve a

program’s performance. Other authors, for example, [1], advise

caution, suggesting that the programmer should carefully consider

“the tradeoff between increased speed and decreased maintain-

ability that results when embedded assignments are used in

artificial places.”
The study of side effects is related to studies concerning the

effects on program comprehension of the syntactic presentation of

the program code, which in turn affects readability. Miara et al.

[15] showed that indentation has a significant effect on compre-

hension for both experienced and novice programmers. Oman and

Cook [19] studied the effect on program comprehension of source

code formatting and commenting. Related to the issue of studying

a language construct, we may be in a similar situation to other

assertions about potential dangers of some practices. The first of

the “considered harmful” saga began with the seminal work of

Dijkstra [4], which spun a new and fresh approach to program-

ming, as well as a decade of fruitful discussions. The type of side

effects that we are dealing with here can be also labeled as one in

the list of activities suggested “harmful.” In some cases, the

practices have the form of a “taboo” [14]. The activity of reading

code plays a basic role in the development and maintenance

activities; therefore, any improvement in the procedures, methods,

languages, and tools for increasing the comprehensibility of the

code will have direct effects on the progress of the software

building activities [7].
In the rest of the paper, we present the details of the experiment

and its analysis. In Section 2, we describe the experiment, the

design, hypotheses, and other elements. Section 3 presents the

analysis of the data. Finally, Section 4 states the conclusions.

2 FORMAL EXPERIMENT

2.1 Crossover Designs for the Experiment

We considered two types of programs, SEF versus SE programs,

and we planned a parallel study between two groups. In order to

have the two groups getting both treatments (SEF and SE), we

performed a crossover design in which the two groups received

both treatments but in different order. Applying just one treatment

for each subject would have the drawback that the variation of the

measurements between subjects could distort the true effect of the

treatment. By taking measures of each individual in both

treatments, we avoid this variability, although we may incur other

problems, such as detecting other effects apart from the treatment.
Crossover designs, in which each subject receives a sequence of

treatments (repeated measures), are a well-known type of

experimental design, used in clinical and medical studies [5], [8],

[12]. The most widely used design of this type is the two treatment,

two-period (two-round) crossover design. This structure repre-

sents, for instance, first, the administration of two drugs to the two

groups and then, after withdrawal, the reverse application of the

treatments. However, these well-known designs present several

problems, both in their use of terminology and in their analysis of

data [3].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003 665

. J.J. Dolado and M.C. Otero are with the Department of Computer
Languages and Systems, University of the Basque Country, 20.009-San
Sebastián, Spain. E-mail: jipdocoj@si.ehu.es, jipotvim@vc.ehu.es.

. M. Harman and L. Hu are with the Department of Information Systems
and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.
E-mail: {mark.harman, Lin.Hu}@brunel.ac.uk.

Manuscript received 28 May 2002; revised 12 Mar. 2003; accepted 17 Mar.
2003.
Recommended for acceptance by G. Canfora.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116634.

0098-5589/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

for Test 2, we test the null hypotheses H0ÿT2ÿSCOÿTREAT

and H0ÿT2ÿTIMÿTREAT.
2. Null hypotheses for the periods and for the groups: We

state that there is no significant difference between the

means of the SCOREs obtained in the tests with respect to

the two different PERIODs of treatment (H0ÿT1ÿSCOÿPERIOD)

and (H0ÿT2ÿSCOÿPERIOD) and with respect to the two

GROUPs (equivalent to testing the CARRYOVER effects,

H0ÿT1ÿSCOÿGROUP, and H0ÿT2ÿSCOÿGROUP). The same null

hypotheses are stated for the TIMEs in both tests

(H0ÿT1ÿTIMÿPERIOD, H0ÿT2ÿTIMÿPERIOD, H0ÿT1ÿTIMÿGROUP,

and H0ÿT2ÿTIMÿGROUP).

Test 3 has the corresponding set of hypotheses.

2.6 Power Analysis and Sample Size

As prescribed in experimental design, the identification of the

sample size, the effect size, and the desired power is a requirement

before conducting the experiment [11], [13], [17]. We performed an

“a priori” power analysis, exploring the relationships among the

sample size (n), the effect size (f), the significance level (�), and the

desired power (1ÿ �) since we could not change, for instance, the

sample size n.
We have to remember that � is the probability of committing a

type I error. That is, to reject, incorrectly, the null hypothesis when

it is true. As the process of transforming SE into SEF is performed

automatically, the cost that we would incur when committing a

type I error can be safely downsized (no human cost is involved in

the transformation process). The type I error means to assume that

SEF and SE programs have different effects when they actually

have not. When automation is unavailable, the cost involved is the

additional effort, if there is any, of side-effect-free coding. On the

other hand, committing a type II error, that is, to accept,

incorrectly, the null hypothesis when it is false, would imply that

we will be wasting human effort as we would be using the

SE versions instead of taking advantage of their SEF counterparts.

The commission of a type II error, represented by �, means to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003 667

Fig. 2. Sample questions in the tests (both versions).

Sevilla, and the anonymous referees for their invaluable com-
ments. The experimental material and the data used in this article
can be found at http://www.sc.ehu.es/jiwdocoj/sef/sef.htm.

REFERENCES

[1] L. Cannon, R. Elliott, L. Kirchhoff, J. Miller, J. Milner, R. Mitze, R. Schan, E.
Whittington, N. Spencer, H. Keppel, D. Brader, and M. Brader, “Recom-
mended C Style and Coding Standards,” http://www.cs.umd.edu/users/
cml/cstyle/indhill-cstyle.html, 2000.

[2] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, second ed.
Lawrence Erlbaum Assoc., 1988.

[3] G.E. Dallal, “The Computer-Aided Analysis of Crossover Studies,” http://
www.tufts.edu/~gdallal/crossovr.htm, 2000.

[4] E.W. Dijkstra, “Goto Statement Considered Harmful,” Comm. ACM, vol. 11,
no. 3, pp. 147-148, Mar. 1968.

[5] J.E. Grizzle, “The Two-Period Change-Over Design and Its Use in Clinical
Trials,” Biometrics, vol. 21, pp. 467-480, 1965.

[6] M. Harman, L. Hu, X. Zhang, and M. Munro, “Side-Effect Removal
Transformation,” Proc. IEEE Int’l Workshop Program Comprehension (IWPC
2001), pp. 309-319, May 2001, available at http://www.brunel.ac.uk/
~csstmmh2/linsert/.

[7] D. Hendrix, J.H. Cross II, and S. Maghsoodloo, “The Efectiveness of Control
Structure Diagrams in Source Code Comprehension Activities,” IEEE Trans.
Software Eng., vol. 28, no. 5, pp. 463-477, May 2002.

[8] M. Hills and P. Armitage, “The Two-Period Cross-Over Clinical Trial,”
British J. Clinical Pharmacology, vol. 8, pp. 7-20, 1979.

[9] ISO, International Standards Organisation: Programming Languages—C,
International standard, ISO/IEC 9899: 1990 (E), Dec. 1990.

[10] B.W. Kernighan and R. Pike, The Practice of Programming. Addison-Wesley,
1999.

[11] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K.
El-Emam, and J. Rosenberg, “Preliminary Guidelines for Empirical
Research in Software Engineering,” IEEE Trans. Software Eng., vol. 28,
no. 8, pp. 721-734, Aug. 2002.

[12] R.O. Kuehl, Design of Experiments: Statistical Principles of Research Design and
Analysis, second ed. Duxbury Thomson Learning, 2000.

[13] R.V. Lenth, “Some Practical Guidelines for Effective Sample Size
Determination,” The Am. Statistician, vol. 55, no. 3, pp. 187-193, 2001.

[14] L.F. Marshall and J. Webber, “Gotos Considered Harmful and other
Programmers’ Taboos,” Technical Report 699, Dept. of Computing Science,
Univ. of Newcastle, 2000.

[15] R.J. Miara, J.A. Musselman, J.A. Navarro, and B. Shneiderman, “Program
Indentation and Comprehensibility,” Comm. ACM, vol. 1983, no. 11, pp. 861-
867, Nov. 1983.

[16] S. McConnell, “Keep It Simple,” IEEE Software, vol. 13, no. 6, pp. 127-128,
Nov. 1996.

[17] J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks, “Statistical Power and
Its Subcomponents—Missing and Misunderstood Concepts in Empirical
Software Engineering Research,” Information and Software Technology, vol. 39,
no. 4, pp. 285-295, 1997.

[18] G.A. Milliken and D.E. Johnson, Analysis of Messy Data, volume 1: Designed
Experiments. Cambridge Univ. Press, 1984.

[19] P.W. Oman and C.R. Cook, “Typographic Style Is More than Cosmetic,”
Comm. ACM, vol. 33, no. 5, pp. 506-520, May 1990.

[20] J. Stevens, Applied Multivariate Statistics for the Social Sciences, third ed.
Lawrence Erlbaum Assoc., 1996.

[21] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: An Introduction. Kluwer Academic,
2000.

[22] L.Q. Yue and P. Roach, “A Note on the Sample Size Determination in Two-
Period Repeated Measurements Crossover Design with Application to
Clinical Trials,” J. Biopharmaceutical Statistics, vol. 8, no. 4, pp. 577-584, 1998.

. For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

