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1. INTRODUCTION

Program dependence analysis explores the dependence relationships between pro-

gram statements. This statement-level dependence analysis is the cornerstone of

many activities that rely upon program analysis, such as program comprehension

[De Lucia et al. 1996; Korel and Rilling 1997; 1998; Harman et al. 2003; Binkley

et al. 2000; Ning et al. 1994], procedure extraction [Komondoor and Horwitz 2000;

Harman et al. 2004], clone detection [Gallagher and Layman 2003], visualization

[Gallagher and O’Brien 2001], impact analysis and reduction [Black 2001; Gallagher

et al. 2003; Tonella 2003], reuse [Cimitile et al. 1995; 1996], software measurement

[Bieman and Ott 1994; Hall et al. 2005; Lakhotia 1993; Yau and Collofello 1985],

software maintenance [Gallagher and Lyle 1991], testing and debugging [Bates and

Horwitz 1993; Binkley 1997; Gallagher and Binkley 2003; Gupta et al. 1992; Har-

man et al. 2004], virus detection [Lakhotia and Singh 2003], validation [Krinke and

Snelting 1998], integration [Binkley et al. 1995; Horwitz et al. 1989], and restructur-

ing, reverse engineering and reuse [Beck and Eichmann 1993; Canfora et al. 1998;

Canfora et al. 1994; Jackson and Rollins 1994; Lakhotia and Deprez 1998].

Since program dependence is essentially a relation on program statements it

is typically represented as a graph. This ‘graph nature’ of dependence raises a

natural question as to whether large connected components are found in real-world

programs. In this paper such clusters of interdependent statements are termed

dependence clusters, because they denote clusters of program components that all

mutually depend upon one another.

At higher levels of abstraction, such as modules and functions, clustering has

been considered important for the evolution of good software architecture and so

these higher-level dependence clusters have been widely studied [Harman et al.

2005; Mahdavi et al. 2003; Gallagher and Binkley 2003; Mitchell and Mancoridis

2002; 2006]. However, despite the relative importance of statement-level depen-

dence, there have been no previous studies of them. This paper presents an empir-
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main()

{

}

while (i<10)

if (A[i]>0)

i = i+2;

Fig. 1. A cluster caused by data (black) dependences and control (grey) dependences.

ical analysis of statement-level dependence clusters, providing evidence that such

dependence clusters are surprisingly widespread.

A dependence cluster (hereinafter, the term dependence cluster refers to a

statement-level dependence cluster) is formally defined in the next section as the

solution to a reachability problem. This definition is instantiated using reachability

over a program’s System Dependence Graph (SDG) [Horwitz et al. 1990].

As a simple illustrative example of a dependence cluster, consider the example

in Figure 1. In this example, the predicate i < 10 data depends on the assignment

to i, this assignment control depends on the predicate of the if statement, and the

if control depends on the predicate i < 10. As a result, all three statements are

mutually inter-dependence; they form a dependence cluster. Any change to any

one of the three will have a potential effect on the others.

The paper examines the prevalence of dependence clusters, revealing them to be

surprisingly large and widespread in the code studied. The paper considers both

forward and backward dependence and examines some of the causes and implica-

tions of the prevalence of large dependence clusters.

The paper uses an approach that approximates whether two or more statements

(or, more precisely, dependence graph nodes) are in a dependence cluster by check-

ing to see if the sizes of their slices [Binkley and Gallagher 1996] are identical. This

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2009.
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‘same size slice’ approach is a conservative (and therefore safe) approximation to

the true dependence cluster relation; it may produce false positives, but never false

negatives. Results are visualized with the aid of the Monotone Slice-size Graph

(MSG) whose construction is made possible using massive slicing optimizations to

the basic SDG-based slicing algorithm [Binkley et al. 2007]. A group of slices of

similar size appears as a “plateau” in the monotonically increasing profile of slice

sizes in the MSG.

The paper presents results from two empirical studies1. These are designed to

evaluate the concept of a dependence cluster. One of these studies provides ver-

ification, while the other is concerned with validation. The verification question

addressed is

“How precise is the approximation which underpins the MSG?”

Verification is concerned with whether the approach works. Since the approach is

a conservative approximation, capable of yielding false positives, it is important to

gauge how often these false positives occur in practice. If they are too frequent

then the approach is not viable. For very small slices, it is expected that two slices

could have the same size and yet be different. However, it is just too much of a

coincidence to find two large slices of the same or very similar size but entirely

different content. The verification study bears out this informal observation. It

shows that, when the slices in dependence clusters are considered, for 99.5% of

clusters, the slices in these clusters are all 99+% identical.

The validation question is

“How common are large dependence clusters?”

Validation is concerned with whether large dependence clusters exist in real pro-

grams (making dependence cluster analysis a valid course of study). Of course,

1An earlier version of these studies was presented by Binkley and Harman [2005b]. The present
paper extends the empirical study to consider more than twice as many programs, presenting

results in greater detail and with extended discussion of the findings and their implications.
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what constitutes a large dependence cluster depends upon the definition of ‘large’.

The validation study shows that there are considerable numbers of large clusters for

all reasonable definitions of large. For example, defining a large dependence cluster

to contain 10% or more of the program’s statements reveals that large dependence

clusters are surprisingly common: 40 out of 45 programs studied (totaling over 1.2

million lines of source code) contained one or more dependence clusters of at least

10% of the program.

In both the verification and validation studies, program points whose slices con-

tain fewer than 1% of the nodes of the program’s System Dependence Graph are

ignored as they are not likely to be of interest in any application of program slicing.

This prevents these slices from biasing the results as all programs include such triv-

ial slices. The most common source is the declaration of global variables, including

those found in standard library header files, whose slices include no other part of

the program other than the declaration itself.

The removal of these slices cannot increase the number of large dependence clus-

ters that are identified by the study. That is, the width of a plateau on the MSG

cannot be affected (by definition) so a large cluster will still be large. The number

of dependence clusters can therefore be reduced (though it cannot be increased).

However, all the additional slices would be extremely small (less than 1% of the

program by definition) and therefore not interesting.

Overall, the findings of this paper suggest that dependence clusters are worthy

of further study. The paper shows that they are easy to define, to locate, and to

investigate, as they occur frequently in real programs. The study also provides

evidence to suggest that the MSG visualisation is helpful in analyzing dependence

clusters. The paper makes the following primary contributions:

(1) It presents the results of an empirical study into the applicability of the MSG

as a technique for identifying dependence clusters (Section 4). The slices of
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45 programs were analyzed showing that the MSG approximation is extremely

accurate.

(2) It investigates the prevalence of large dependence clusters, presenting results

that indicate that such clusters are very common (Section 5).

(3) It investigates one possible cause of dependence clusters, showing that individ-

ual predicate nodes can sometimes lead to large clusters, and uses this analysis

to show how it is sometimes possible to remove a cluster (Section 6).

(4) It presents results for forward dependence cluster analysis and draws a connec-

tion between this analysis and work on static impact analysis (Sections 7 and

8).

These findings verify the approximation approach and validate the study of de-

pendence clusters. The presence of large dependence clusters has widespread im-

plications. The paper discusses the impact of this finding on related source-code

analysis work such as that on program comprehension, testing, maintenance, reuse,

and automatic parallelization.

The remainder of the paper is organized as follows: Sections 2 and 3 provide

formal definitions and describe the experimental setup used for the verification and

validation studies. Sections 4 and 5 present the results of the two empirical stud-

ies concerned with verification and validation. The verification study shows that

Monotone Slice-size Graphs (MSGs) provide a very good approximation, while the

validation study shows that large dependence clusters are quite common in real-

world source code. Section 6 reports results that investigate on possible cause of

dependence clusters. Up to this point in the paper, the dependence clusters consid-

ered have been those present for backward dependence analysis. Section 7 presents

results that indicate that large forward dependence clusters are also prevalent in the

programs under investigation, while Section 8 shows how the presence of forward

dependence clusters can dramatically increase the impact of a software change.
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Section 9 considers threats to the validity of the results and Section 10 discusses

related work. Finally, Section 11 summarizes the paper.

2. DEFINITIONS

This section sets out the definitions of dependence cluster and the Monotone Slice-

size Graph (MSG) used in the remainder of the paper. Although the empirical

study is based on an instantiation of these definitions using slices of the System

Dependence Graph (SDG) [Horwitz et al. 1990], the notion of dependence cluster is

not necessarily slice-based; thus, the results of the theory presented in this section

can be applied beyond slicing.

2.1 Dependence Clusters

A (statement level) dependence cluster is a set of program statements, S, that mu-

tually depend upon one another and for which there is no other mutually dependent

set that contains S. This definition is parameterized by an underlying depends-on

relation. Herein statements are considered to be source-code representing nodes of

the SDG. This excludes from analysis pseudo nodes introduced, for example, to

represent global variables that are modeled as additional pseudo parameters by

CodeSurfer [Grammatech Inc. 2002], the tool used to build the SDGs. Ignoring

such nodes is merely a convenience as it helps tie the result back to the program

source code.

Definition 1. Mutually-Dependent Set

A Mutually-Dependent Set (MDS) is a set of statements, {s1, . . . , sm} (m > 1),

such that for all i, j, 1 ≤ i, j ≤ m si depends on sj .

A dependence cluster is simply a maximal set of mutually dependent points.

Definition 2. Dependence Cluster

A dependence cluster is an MDS not properly contained within any other MDS.

In the SDG, if the slice constructed for slicing criterion n1 contains n2 and the

slice constructed for criterion n2 contains n1, then by construction there is a path of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2009.
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dependence edges from each node in {n1, n2} to the other. That is, the two nodes

are transitively mutually dependent. This observation can be used to formulate

a slice-based notion of dependence cluster. In the definition, Slice(n) is used to

denote the set of SDG nodes in the static backward slice taken with respect to node

n of the SDG [Horwitz et al. 1990].

Definition 3. Slice-Based Mutually-Dependent Set

A Slice-Based MDS is a set of SDG nodes, {n1, . . . , nm} (m > 1), such that for all

i, j, 1 ≤ i, j ≤ m ni ∈ Slice(nj).

By the definition of (static backward) slicing, this means that all nodes in a

slice-based MDS depend upon all others in the MDS (including themselves), so

{n1, . . . , nm} satisfies Definition 1.

Definition 4. Slice-Based Dependence Cluster

A Slice-Based Dependence Cluster is a slice-based MDS contained within no other

slice-based MDS.

This paper focuses entirely upon slice-based dependence clusters. That is, the

clusters considered in this paper arise from the data and control dependence that

exists between SDG nodes. This form of dependence has been widely studied and

(as shown in Section 10) the dependence clusters that can be identified using slice-

based dependence have far-reaching implications for many source code analyses.

The majority of the paper considers backward dependence using static backward

slicing. However, Section 7 considers, more briefly, forward dependence, showing

that forward dependence clusters are also highly prevalent in the programs studied

and drawing out relationships to work on static impact analysis.

2.2 Monotone Slice-size Graphs

The Monotone Slice Size Graph (MSG) visualisation plots a landscape of monoton-

ically increasing slice size, in which dependence clusters correspond to sheer-drop

cliff faces followed by a plateau. The goal of the visualisation is to assist with
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Fig. 2. The MSG of the Program copia

the inherently subjective task of deciding whether a cluster is large (how long is

the plateau at the top of the cliff face relative to the surrounding landscape?) and

whether it denotes a discontinuity in the dependence profile (how steep is the cliff

face relative to the surrounding landscape?).

Definition 5. Monotone Slice-size Graph

A Monotone Slice-size Graph is a graph of slice sizes, plotted for monotonically

increasing size. That is, slices are ordered according to their size, and the slice sizes

plotted in ascending order.

For example, consider the program copia in Figure 2, which will be used as a

running example throughout this paper. The program implements a collection of

analyses on an input table. As can be seen from Figure 2, the MSG contains a large

plateau of slices which appear to have the same size; certainly a large dependence

cluster. However, zooming in on the plateau in the MSG reveals that this single

plateau actually consists of 15 smaller plateaus. The first 5 of these summarize over

99% of the slices that make up the ‘single’ plateau and differ by no more than 4

vertices (about 0.27% of the program). This observation provides evidence for the

robustness of the MSG visualisation; although the slices are not of identical size,

they are all closely related. The interpretation of the visualisation is correct; there

is a large dependence cluster.

In this paper the MSG will be used to visualize the dependence structure of

programs and the approximation, ‘same slice size’, will be used to stand in for

‘same slice’. For some of the larger programs studied, the computation of ‘same

slice’ is unrealistically expensive. Fortunately, as will be seen the computation of
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same size is much faster and the approximation it denotes will be shown to be very

close to the computation for ‘same slice’ (using a subset of the programs studied

for which the values of ‘same slice’ are computable in reasonable time).

To further motivate the use of slice-size comparisons as a proxy for slice-content

comparisons, consider the complexity of the two. It is possible to locate dependence

clusters by comparing all the slices of a program to see which slices are identical.

Pseudo code annotated with complexity for this approach is shown in Figure 3. For

an SDG of n nodes and e edges, slicing is a linear operation in the number of edges;

thus, computing the slice for all statements (nodes) of a program can be done in

O(ne) time. Comparing two slices takes O(nlog(n)+n) = O(nlog(n)) steps to first

sort the vertices of the two slices and then compare the sorted lists. Pre-sorting the

nodes of all of the O(n) slices, takes O(n×nlog(n)) steps. Subsequently, the O(n2)

pair-wise comparisons each take O(n) time; thus, the partitioning the slices into

equivalence classes using that algorithm shown in Figure 3 requires O(n3) time.

In principle, it is possible to reduce this to O(n2log(n)). For example, by number-

ing the vertices of the SDG, each slice can be identified by a single binary number

obtained by writing down in sorted order its vertex numbers. Building a trie from

numbers places identical slices at the same leaf. The length of the single binary

number for each vertex is O(nlog(n)); thus, to compare all n slices would take

O(n2log(n)) steps. However, for large programs this cost grows prohibitive. It also

sacrifices the ability to easily identify slices that differ by a small number of vertices.

However, an approximation for same-slice can be used that is considerably more

efficient. The approximation uses slice size in place of the actual nodes of the

slice. Rather than checking to see if two nodes yield identical slices, the approach

simply checks if the two yield slices of the same size. This slice-size approach is

inherently more efficient than comparing slice content: post-slicing to tabulate the

number of slices with each possible size requires only O(n) steps to initialize and

then increment a counter for each size.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2009.
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PartitionSlices(Program P) Complexity
foreach vertex, v O(ne) == O(n3)

sv = slice(P, v) O(e)

S = set of slices sv

foreach slice, s in S O(n × nlog(n))
s = sort(s) O(nlog(n))

foreach i in 1 · · · |S| O(n3)

foreach j in i+1 · · · ...|S| O(n2)
compare si and sj O(n)

Fig. 3. Slice Comparison Algorithm

The conjecture that underpins this approximation is that two slices of the same

(sufficiently large) size are likely to be the same slice. Clearly, this approximation

is conservative because any cluster identified may contain real clusters and no real

clusters will fail to be identified. That is, two slices may differ yet, coincidentally,

may have identical sizes; however, two slices which are identical must clearly have

the same size. The verification study in Section 4 directly addresses the question of

the quality of this approximation, which is not only more efficient, but also justifies

the use of the MSG as a visualisation for identifying clusters.

The MSG is not only efficient to compute, it also helps with the essentially

subjective task of determining whether a cluster is large, relative to the code that

contains it. As an example, consider again the MSG for userv. The sharp increase

in slice size that occurs after about 44% of slices have been considered is followed

by a long plateau in which slice size does not change. The length of the plateau

indicates a large cluster of slices of identical size; in other words, a large dependence

cluster.

As discussed in the next section, many otherwise identical slices often differ

by a small number of statements. For example, consider the slices on the two

computations that compute the sum and average of an array of numbers. The two

are identical except for the statement average = sum / N. An advantage of the lack

of sharpness [Binkley et al. 2006] in the MSG is that such differences are hidden
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(below the resolution of the visualisation). Thus, the dominant features of the

dependence landscape are more readily identified.

3. EXPERIMENTAL CONFIGURATION

The identification of large dependence clusters, as well as the empirical studies con-

tained within this paper, require the computation of massive numbers of program

slices. This section provides background on program slicing and the techniques

used to compute such a large number of slices. It also introduces the programs

studied and the environment in which the data was collected.

In order to compute large numbers of slices a variation of the SDG slicing algo-

rithm [Horwitz et al. 1990] was used. The variation is specifically constructed to

cater for massive slicing, using a series of graph-based optimizations [Binkley et al.

2007]. Two main techniques are employed. The first identifies intraprocedural

strongly-connected components (SCCs) and replaces them with a single represen-

tative vertex. The key observation here is that any slice that includes a vertex from

an SCC will include all the vertices from that SCC; thus, there is great potential

for saving effort by avoiding redundant work. The second technique removes re-

dundant transitive edges from the graph. Such edges never lead to the discovery of

new nodes for a slice, but still must be examined during the computation of each

slice.

We also included a space and time saving efficiency step in the implementation.

That is, we compute slice differences incrementally, sharing pointers to subslices

that are common to many. This produces a noticeable speed up and reduces space

costs, allowing us to cover larger programs, without affecting the results in any

way. Using Binary Decision Diagrams (BDDs) would also reduce space costs, but

would increase computational costs, because our current representation of slices as

bitstrings is optimized for computation (not space). For this reason we chose not

to use BDDs for these experiments.
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Dependence Clusters in Source Code · 13

The study considers 45 C programs, mostly open source, with some industrial

programs from the European Space Agency, that range in size from 600 LoC to

almost 180 KLoC. The programs cover a range of application domains such as

utilities, games, and operating system code. Figure 4 provides a brief description

of each program and shows two measures of each program’s size: lines of code (as

counted by the Unix utility wc) and the non-comment non-blank lines of code (as

counted by the utility sloc [Wheeler 2005]). In total, just over 1.2 million lines of

code (895 thousand non-comment, non-blank lines of code) were studied.

4. EMPIRICAL VERIFICATION: HOW PRECISE IS THE DEPENDENCE CLUSTER
DETECTION?

This section presents the results of an experiment into whether similarity in slice

size can be used as a proxy for similarity of slice content. The experiment seeks

to provide evidence to support the claim that MSGs are a suitable and reliable

technique for finding dependence clusters. That is, the research question to be

answered is whether a set of slices that have the same size will tend to have the

same or nearly the same vertices. Of course, the answer will depend upon the

interpretation given to ‘nearly the same’. This will be referred to as similarity; the

degree to which two slices can differ in content while being deemed to be essentially

the same.

Figure 5 investigates the degree to which agreement is improved by admitting

a small amount of difference, or put another way, reducing the level of similarity

required for agreement. It plots the similarity (on the horizontal axis) against the

agreement between slice size and slice content (on the vertical axis) for thirty six of

the programs studied (maintaining all slices in memory for comparison with some

of the larger programs would require tens of gigabytes of memory and thus these

program were omitted from the verification study). Jaccard index, Both axes in

Figure 5 are represented as percentages. Here, a similarity is the Jaccard index of a

slice where a similarity of x% means that the percentage of nodes in common (the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2009.
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Program LoC SLoC Vertices Edges Slices Brief Description

a2ps 63,600 40,222 707,623 1,488,328 58,281 ASCII to Postscript

acct-6.3 10,182 6,764 21,365 41,795 7,250 Process monitoring utilities

barcode 5,926 3,975 13,424 35,919 3,909 Barcode generator

bc 16,763 11,173 20,917 65,084 5,133 Calculator

byacc 6,626 5,501 41,075 80,410 10,151 Parser Generator

cadp 12,930 10,620 45,495 122,792 15,672 Protocol toolbox

compress 1,937 1,431 5,561 13,311 1,085 File Compressor

copia 1,170 1,112 43,975 128,116 4,686 ESA signal processing code

cook 49,026 34,870 4,754,735 13,010,556 49,027 file construction tool

csurf-pkgs 66,109 38,507 564,677 1,821,811 43,044 C ADT library

ctags 18,663 14,298 188,856 405,383 20,578 C tagging

cvs 101,306 67,828 8,949,186 28,033,287 103,265 Revision Control

diffutils 19,811 12,705 52,132 104,252 17,092 File differencing

ed 13,579 9,046 69,791 108,470 16,533 Line text editor

empire 58,539 48,800 1,071,321 2,122,627 120,246 Conquest Game

EPWIC-1 9,597 5,719 26,734 56,068 12,492 Wavelet image encoder

espresso 22,050 21,780 157,828 420,576 29,362 Logic simplification for CAD

findutils 18,558 11,843 38,033 174,162 14,445 File finding utilities

flex2-4-7 15,813 10,654 49,580 105,954 11,104 Lexical Analyzer Builder

flex2-5-4 21,543 15,283 55,161 234,024 14,114 Lexical Analyzer Builder

ftpd 19,470 15,361 72,906 138,630 25,018 File Transfer

gcc.cpp 6,399 5,731 26,886 96,316 7,460 GCC’s pre processor

gnubg-0.0 10,316 6,988 36,023 104,711 9,556 Gnu Backgammon

gnuchess 17,775 14,584 56,265 165,933 15,069 Chess player

gnugo 81,652 68,301 396,010 1,087,038 68,298 Go player

go 29,246 25,665 144,299 321,015 35,863 Go player

ijpeg 30,505 18,585 289,758 822,198 24,029 JPEG compressor

indent 6,724 4,834 23,558 107,446 6,748 Text formatter

li 7,597 4,888 1,031,873 3,290,889 13,691 XLisp interpreter

named 89,271 61,533 1,853,231 8,334,948 106,828 DNS lookup

ntpd 47,936 30,773 285,464 1,160,625 40,199 Time Daemon

oracolo2 14,864 8,333 27,494 76,085 11,812 Antennae array set-up

prepro 14,814 8,334 27,415 75,901 11,745 ESA array pre-processor

replace 563 512 1,406 2,177 867 Regular expression

sendmail 46,873 31,491 1,398,832 10,148,436 47,344 mail processor

snns 79,170 52,798 2,140,672 4,673,668 79,178 neural network analyzer

space 9,564 6,200 26,841 74,690 11,277 ESA ADL interpreter

spice 179,623 136,182 1,713,251 6,070,256 212,621 Digital circuit simulator

termutils 7,006 4,908 10,382 23,866 3,113 Unix terminal emulation

tile-forth-2.1 4,510 2,986 90,135 365,467 12,076 Forth Environment

time-1.7 6,965 4,185 4,943 12,315 1,044 CPU resource measure

userv 8,009 6,132 71,856 192,649 12,517 Access control utility

wdiff.0.5 6,256 4,112 8,291 17,095 2,421 Diff front end

which 5,407 3,618 5,247 12,015 1,163 Unix utility

wpst 20,499 13,438 140,084 382,603 20,889 Pointer Analysis hline

sum 1,284,742 912,603 26,760,591 86,329,897 1,338,295

average 28,550 20,280 594,680 1,918,442 29,740

Fig. 4. The 45 subject programs studied.
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Fig. 5. Agreement Levels down to 99% Similarity

intersection) is x% of the total number of nodes (i.e., the nodes in either slice (the

union)); thus, it is possible to speak of slices being ‘similar up to a certain point.’

For a given value of similarity, x%, an agreement of y% means that y% of the total

number of slices are x% similar.

The figure shows the minimum, average, and maximum agreement starting at

the far right with 100% similarity (i.e., equal slices). As can be seen in the figure,

almost total agreement is reached for most programs with a very high similarity: the

horizontal axis only goes down to 99% similarity, so all the data shown in Figure 5

concern slices within 1% of containing identical nodes. Along the y-axis (i.e., 100%

similarity) agreement ranges from 16% to 99%; thus, that same size equals same

slice is not unanimous when zero difference is permitted. However, requiring the

vertices in the slices to agree by ‘only’ 99.98%, this range shrinks to 40% to 100%

and by 99.9% it shrinks to 76% to 100%. Perhaps of more interest in how quickly

the average line crosses the 99% threshold: by 99.55% (within less than one half of

one percent of an exact match). Thus, from Figure 5, it is clear that same size is a

good proxy for same slice.
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In total, 99.5% of the clusters are represented on this graph. That is, 99.5%

of clusters are within 1% of total agreement. If the figure were to be redrawn,

with a horizontal axis extended all the way down to 0%, then the detail would

be completely lost, because almost all programs would immediately reach 100%

agreement on the vertical axis.

Of course, there are a few programs where some slices simply happen to be the

same size, but contain completely different sets of nodes. This should be expected

in any suitably large data set. To get a sense for just how common this occurrence

is, consider the data presented in Figure 6. This figure shows all the data for

which a similarity of less than 99% is required for 100% agreement. The horizontal

axis shows each of the thirty six programs studied. The vertical axis shows the

percentage of same-size slices that are less than 99% similar. As the figure shows,

for over a third of the programs, there are simply no slices of the same size that

require less than 99% similarity to agree 100%. Over all thirty six programs studied,

only 0.58% of the clusters required a similarity of less than 99% in order to achieve

100% agreement.

Furthermore, even this low figure of 0.58% is perhaps unduly pessimistic because

it records the number of clusters which require less than 99% similarity. However,

even in such clusters, many of the individual slices in the cluster, may fully agree.

The figure for the number of pairwise slice comparisons which fail to agree within

99% similarity is only 0.00572%. These results provide strong evidence for the claim

that ‘slice size agreement’ is a good approximation for ‘slice content agreement’ and

thus for locating dependence clusters using MSGs.

5. EMPIRICAL VALIDATION: DO LARGE DEPENDENCE CLUSTERS OCCUR IN
PRACTICE?

This section considers the validation question—first visually and then quantita-

tively. Two visualizations are used: first the MSG and second size-distribution

graphs. To begin with, Figures 7, 8, 9, 10, and 11 show the MSGs of the 45 pro-
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Fig. 6. Sparsity of high tolerance

grams studied. The MSGs were visually categorized according to whether or not

they appear to contain no clusters (and thus a line sloping up to the right), large

clusters, or enormous clusters (the latter deemed to be those occupying 70% or

more of the program). Figure 7 shows the ten MSGs for programs that essentially

contain no large clusters. These programs show, at most, small ‘cliff drops’ in the

landscape of their MSG.

In contrast, most of the programs studied were found to contain large depen-

dence clusters. Some were so large that they suggest possibly severe problems for

continued software evolution. Figures 8 and 9 show the MSGs for the middle cate-

gory of programs; they contain visual evidence of large clusters. Finally, Figures 10

and 11 show the MSGs of eighteen programs where these clusters were particularly

pronounced.

Visually, the MSGs help to assist human identification of large dependence clus-

ters: compare the relatively smooth landscapes of the MSGs in Figure 7 to those in

Figures 8 and 9 or for a more dramatic difference, those in Figure 10 and 11 (which

clearly show large, tell-tale, cliff faces).
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Fig. 7. MSGs for programs with an absence of large dependence clusters (no cliff
faces in the MSGs).

The second visualization bands together slice sizes into 10% wide bands to reduce

visual clutter. Figures 12, 13, and 14 show cluster sizes (expressed on the vertical

axis as a percentage of program size (to facilitate comparison). The plane of each

chart summarizes slice sizes (again as a percentage) for each program. Figure 12

shows programs with an absence of dependence clusters (parallel to the MSGs from

Figure 7). For example in Figure 12, the tallest bar for csurf-packages shows that

approximately one third of the clusters involve slices of size 41% to 50% of the

program.
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Fig. 8. Set 1 of MSGs for programs with large dependence clusters (denoted by cliff
faces in the MSGs).

Figure 13 shows the programs with large dependence clusters. As can be seen, the

presence of these clusters is manifested by the presence of large bars for the higher

values of slice size. Compared to Figure 12, the distribution is more polarized into

the extremes of large and small sizes. This trend toward polarization of slice sizes

is even more strikingly evident in Figure 14, which depicts the distribution of slice

sizes for programs with enormous clusters. In this figure, it is very clear that the

programs’ slice sizes are almost entirely bi-modal with comparatively few small and

a majority of large slices.
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Fig. 9. Set 2 of MSGs for programs with large dependence clusters (denoted by cliff
faces in the MSGs).

Having seen the visual evidence for the existence of dependence clusters, the next

step is the examination of the question as to whether there is a high prevalence of

large clusters in real programs. To address this question it is necessary to consider

what precisely constitutes ‘large’. Earlier work [Binkley and Harman 2005b] arbi-

trarily set a threshold of 10%. That is, should 10% of a program be found to lie

inside a single cluster, then this cluster was deemed to be ‘large’. In this paper, a

more elaborate approach is adopted, which allows the reader to make a choice as

to what a reasonable threshold should be, and to examine the impact of this choice

on the outcome of the question
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Fig. 10. Set 1 of MSGs of programs with enormous dependence clusters.

“How many programs studied contain large clusters?”

Figure 15 shows a count of programs with large dependence clusters for various

largeness thresholds. For example, at the extremes a threshold of zero causes all

45 program to include a cluster, while none of the programs include a clusters that

consumes 100% of the program. Setting the threshold for largeness at 10% all but

5 of the 45 programs have large dependence clusters. While the choice of ‘largeness

threshold’ is arbitrary, it would seem that a cluster that consumed 10% of the

program would be worth investigation and so would be sufficiently large to appear
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Fig. 11. Set 2 of MSGs of programs with enormous dependence clusters.

on the ‘investigation radar’ of many programmers. Furthermore, at the quartile

points 24, 18, and 4 programs include at least one cluster of at least 25%, 50%, and

75% of the code in the program. It is clear from this data that for any reasonable

definition of large, there is a considerable number of programs that contain large

clusters. Furthermore, some of these clusters are enormous relative to the size of

the program. This result has far-reaching implications for analysis techniques that

rely upon program dependence analysis.

The data in Figure 15 takes a rather strict view on the slices that potentially

form a cluster: it requires that slice size match exactly. A common pattern found

in the source code studied involves overlapping slices of similar size. For example,

consider the statement if (i > 10) within the loop for(i=0; i<N; i++). Often the
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Fig. 12. Size/Frequency for programs with no large clusters. See Figure 7 for the corresponding
MSGs.

Fig. 13. Size/Frequency for programs with large clusters. See Figures 8 and 9 for the corresponding

MSGs.

only difference between the slices on these two statements is the presence of the if

statement; thus, the two are identical excepting for a single statement.
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Fig. 14. Size/Frequency for programs with enormous clusters. See Figure 10 and 11 for the
corresponding MSGs.

Fig. 15. The number of the 45 programs having large clusters for various largeness thresholds.

This suggests that provision should be made for minor tolerance in slice size. As

with the largeness threshold, tolerance is treated as a parameter to the analysis, so

that the effect of different levels of tolerance can be judged by the reader. Formally,

tolerance is incorporated into the analysis as follows: let s[i] denote the number

of slices of having size i. The count of slices having size i within tolerance t is

computed as the sum of s[i] through s[i + t]. For example, when tolerance is 2, the

number of slices in the cluster for size i is given as the sum s[i] + s[i + 1] + s[i + 2];

thus, Figure 15 shows the data for tolerance of t = 0.
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Fig. 16. The effect of tolerance on programs having large clusters. Tolerance is measured in SDG
nodes. There are several nodes per statement. As the figure shows, a small allowance of this
tolerance increase the number of programs that would be considered to contain large dependence

clusters.

Figure 16 expands Figure 15 to include other values of tolerance. In the figure,

a point at (x, y, z) for (Tolerance, Largeness Threshold, Program Count) means

that there are z programs with clusters larger than y% of the program’s nodes

when clusters are permitted to be constructed from slices that differ by no more

than x nodes. The 140 mode maximum x value for tolerance corresponds to about

10 statements. Note that, in the figure, there is an evident increase going from a

tolerance of zero to a tolerance of one. After this the increases continues, but at a

slower rate.

While it is clear from Figure 15 that even when no tolerance is permitted, there

are programs that have large clusters, admitting a small amount of tolerance ini-

tially has a dramatic effect on the results. This tolerance essentially allows more

nodes to be considered to have identical slices (give or take a “few nodes of tol-

erance”). As seen in Figure 16, allowing a little tolerance initially produces more

programs that fall into the category of having large clusters. However, this ef-
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fect soon diminishes, indicating that there are a large number of ‘near miss’ large

clusters, which are only a few nodes away from being counted.

6. CAUSES OF DEPENDENCE CLUSTERS

A complete treatment of the possible causes of dependence clusters is beyond the

scope of the present paper. However, such an investigation is a priority for fu-

ture work, since the present paper has presented evidence to suggest that large

dependence clusters may be highly prevalent and may have detrimental effects on

software evolution.

In this section, results are presented that give a glimpse of the possibilities for

future study of dependence cluster causes. The section shows that consideration of

the nodes of the dependence graph, each in turn, can be used to reveal those nodes

that can be deemed to cause clusters to occur. The results are promising, because

they reveal that there do, indeed, exist nodes that account for large portions of the

code found to reside inside some of the large dependence clusters.

This observation is encouraging. If the analysis can identify causes and if these

can be removed, then the pernicious effects of large dependence clusters may be

avoidable. More work is required to investigate this possibility.

In order to identify causes of clusters, each SDG node in each of the programs

studied was considered in turn. For each node, its effect on large clusters was

assessed by marking the node and recomputing the slices without traversing the

marked node. This approach provides a quick and simple technique for identifying

nodes that have a big impact on the presence of large clusters. The results for

three of the programs studied are presented in Figure 18. These are typical of the

distribution of ‘node effects’ for the other programs studied. The results for all

vertices (in all programs studied) that have a greater than 1% effect on dependence

are shown in Figure 19.

As can be seen, for most nodes, there is little effect; the nodes cause little overall

dependence on their own, and marking them has little or no effect on slice sizes.
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However, there are a few ‘important’ nodes that do have a strong and noticeable

effect on the sizes of dependence clusters in the programs studied. It turns out

that these are all predicate nodes, that denote important decisions in the control

structure of the program. These decision points gather together and control impor-

tant computations, leading to a cluster. Simply removing the decision point from

slice computation breaks up the cluster. Of course, the automated identification

of clusters and these causes can only point to the cause. It remains a task for the

software engineer to consider whether or not the program can be re-structured to

avoid this cause. However, the automated analysis helps to inform and guide this

human decision making process.

Figure 17 presents a table listing the code fragments that denote each of these

important predicates. The predicates are listed in descending order of their con-

tribution to the size of large dependence clusters. For example, consider the copia

running example. This program has a large dependence cluster and it turns out

that this cluster has one node that causes it.

Inspection of the code reveals that copia has 234 small functions that call one

large function, seleziona, which in turn, calls the smaller functions. The choice as to

which of the smaller functions is called is made by passing a numeric token that plays

the role of a kind of ‘run time program counter’. The counter is checked in seleziona

and each of the smaller functions passes a value indicating the next function to be

called. The node that causes the dependence cluster occurs in seleziona; it is the

switch statement that determines which of the 234 smaller functions is called. This

creates a mutual recursion that involves most of the functionality of the program.

The mutual recursion that occurs because, statically, all functions may call all other

functions producing the large dependence cluster.

7. FORWARD DEPENDENCE CLUSTERS

Hitherto, this paper has considered backward dependence and the dependence clus-

ters that can occur as a result of inter dependencies. The dependence clusters
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Program Percentage Vertex Type Source

copia 80.20% control-point switch (a)
time-1.7 47.06% control-point switch (*++fmt)
replace 13.82% control-point if (in set 2())
copia 13.70% formal-in int a
copia 13.66% actual-in m
which 13.57% control-point while (next)
copia 13.57% expression m=urna[n]
copia 13.11% expression urna[j]=probtab[i].posizione
replace 12.58% actual-out in set 2()
findutils 11.92% expression parse function = find parser ()
findutils 11.91% actual-out find parser ()
findutils 11.63% indirect-call (*parse function) ()
copia 10.75% control-point while (i<riga)
compress 10.73% expression text buffer[bufindex]=c2
replace 10.56% actual-out amatch()
compress 10.56% expression c2=getranchar()
copia 10.55% formal-in int riga
replace 10.49% expression m = amatch()
compress 10.43% actual-out getranchar()
which 10.11% call-site find command in path()

Fig. 17. The source code corresponding to the top vertices that cause dependence in the programs
studied

considered so far in the paper can therefore be thought of as ‘backward depen-

dence clusters’. Since dependence can also be computed in a forward direction, it is

natural to consider whether forward dependence clusters are also prevalent in the

programs studied and whether they are similarly large.

Of course, forward dependence analysis is a dual of backward dependence [Hor-

witz et al. 1990] and so it would be reasonable to expect a relationship between

forward and backward dependence clusters. However, Binkley and Harman [2005a]

showed that forward slice distributions are different to their backward counterparts;

the forward slice distribution contains far more smaller slices and a few super large

slices compared to the backward slice distribution counterparts.

Figure 20 shows the numbers of programs that have large dependence clusters on

the y-axis, against the size above which a cluster is considered to be large on the x

axis. As can be seen the number and distribution is similar (though not identical)

to the results for backward dependence clusters (shown earlier in Figure 15).
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Fig. 18. Stacked figures: Vertex Reduction for three of the programs studied, illustrating the
distribution of vertices that cause large amounts of dependence

Fig. 19. The effect of vertices on dependence: Top 1% of vertices.

8. THE IMPACT OF DEPENDENCE CLUSTERS ON IMPACT ANALYSIS

There is a relationship between forward dependence and impact analysis. The

forward slice of a program p at a point n in p indicates all those statements that
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Fig. 20. Programs with large Dependence Clusters for Forward Dependence

can be statically determined to have potential effects arising from changes to n.

The relationship is not quite as simple as ‘all those statements in the forward slice

are affected should n be changed’ for two reasons:

(1) Static dependence caters for all inputs and so the effect may not occur in

practice if the experience of practical execution avoids those inputs that lead

to the effect manifesting itself

(2) Static analysis is conservative and so it may indicate dependencies between

nodes of the SDG even where no such dependence is present (for any possible

input). This is a necessary limitation arising from the undecidability of minimal

slicing.

However, the size of the forward slice is one possible indication of the potential

impacts of a change. Such an analysis is essentially a static analysis of potential

change impact in the spirit of other dependence based static change impact analy-

ses [Yau and Collofello 1985; Black 2001]. Recent work on change impact analysis

has also considered more dynamic forms of analysis, based on existing pools of test

data and on the original and changed versions of the program [Ren et al. 2006; Ren

et al. 2005]. Forward dependence cluster analysis could also be used to consider dy-

namic dependencies by adopting a union slicing approach [Beszédes and Gyimóthy

2002; De Lucia et al. 2003] over dynamic slices and checking for dependence clus-

ters. However, such a problem remains a topic for future work. Impact analysis
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has also recently been applied to other software engineering artifacts as well as pro-

grams [Canfora and Cerulo 2005; Sherriff and Williams 2008]. It is possible that

dependence clustering among these artifacts may also be worthy of consideration

in future work.

Programs with large forward dependence clusters are potential courses of prob-

lems for on-going software maintenance and evolution, because many of the possible

changes to these programs may have very far reaching effects. That is, a change to

any statement inside the forward dependence cluster, potentially affects all other

statements inside the cluster. Even where these effects are partly the product of

over-conservatism in the static analysis, it may, nonetheless be a requirement that

potential effects are explored following any such change. There is a large human

cost associated with this checking process, whether the effects are real or merely

apparent. As such, programs with large forward dependence clusters are worthy of

special consideration if they are likely to undergo change.

Furthermore, it may be possible to determine the cause of a large forward depen-

dence cluster. In such situations, the developer can use dependence analysis, not

only to identify the presence of dependence clusters, but also to locate their cause.

This may permit remedial action or other steps to ameliorate the effects of the large

forward dependence cluster, with potential benefits to on-going maintenance and

evolution.

As an example of this possibility, consider again the running example program:

copia. The program has a large forward dependence cluster. The analysis of the

effect on dependence of each vertex suggests that the switch statement may be

the primary cause of this cluster. In order to further explore this possibility, we

performed a simple ‘by hand’ refactoring that simulates the replacement of the

integer variable next state with direct recursive function calls. This removed the

potentially problematic switch statement. The ‘before’ and ‘after’ MSGs are shown

in Figure 21. As can be seen from this figure, removing the switch and its control
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MSG profile with cluster MSG profile without cluster

Fig. 21. The copia program with and without its large cluster

dependence removes the cluster. As a result of this, the potential impact of changes

to the program could be greatly reduced.

The primary reason for the high level of dependence in the original program lies in

the statement switch(next state). This causes what might be termed ‘conservative

dependence collateral damage’; the static analysis could not determine that when

function f() returned a 5 this caused the switch statement to eventually invoke func-

tion g(). Instead, the analysis made the conservative assumption that a call to f()

might be followed by a call any of the functions appearing in the switch statement.

Once the program was refactored, this conservative dependence collateral damage

was removed.

Of course, in order to reap the benefit of this analysis, the programmer will have

to consider ways in which the program can be re-written to change the flow of

control. Though the switch statement is the primary cause, there may be other

changes required in order to re-write the program so as to avoid the cluster. Such

a refactoring is a change in itself, and for such a large forward dependence cluster,

we argued that change should be considered a potential hazard. Whether such

a refactoring is deemed cost-effective is a decision that can only be taken by the

engineers and managers who have to maintain the program in question. However,

this section illustrates the way in which dependence cluster analysis can provide an

automated mechanism for identifying potential problems and their causes.
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9. THREATS TO VALIDITY

This section considers the threats to the internal and external validity of the results

presented in the two empirical studies. In the experiments, the primary external

threat arises from the possibility that the selected programs are not representative

of programs in general, with the result that the findings of the experiments do

not apply to ‘typical’ programs. This is a reasonable concern that applies to any

study of program properties. To mitigate this concern, the study considered a

large code base covering a wide variety of different tasks including applications,

utilities, games, and operating system code. The code base also contained both

commercial and open source programs. There is, therefore, reasonable cause for

confidence in the results obtained and the conclusions drawn from them. However,

all of the programs studied were C programs, so there is greater uncertainty that

the results will hold for other programming paradigms such as object-oriented or

aspect-oriented [Kiczales 1997].

Internal validity is the degree to which conclusions can be drawn about the causal

effect of the independent variables on the dependent variable. In this experiment,

the possible threats come from the potential for faults in the slicer and the values

chosen for acceptable similarity (which affects the verification study) and largeness

threshold (which affects the validation study). A mature and widely used slicing

tool (CodeSurfer) was used to mitigate the first concern.

For similarity, the results showed that an overwhelming proportion (99.5%) of

clusters of same size slices have over 99% the same nodes. For the applications of

dependence clustering, this level of similarity is well within acceptable limits.

For threshold, a range of values was used. However, other than at very small

values, the number of large clusters is not strongly affected by this number. Once

again, this was a conservative choice, well within that which would be considered

important in the application of dependence cluster analysis. Furthermore, some

of the programs studied were found to have enormous clusters consuming 70% or
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more of the program (e.g., those shown in Figures 10 and 11), suggesting that the

evidence for the existence of large dependence clusters is extremely strong.

Another possible concern comes from the precision of the pointer analysis used.

An overly conservative, and therefore imprecise, analysis may tend to increase the

levels of dependence and potentially may also increase the size of dependence clus-

ters. There is no automatic way to tell whether a cluster arises because of im-

precision in the computation of dependence or whether it is ‘real’. One source of

potential imprecision comes from the pointer analysis used. We used Codesurfer’s

most precise points-to analysis options for the study in order to address this poten-

tial concern. The algorithm, based on the work of Fahndrich et al. [1998], computes

points-to sets by applying a general constraint solver.

10. RELATED WORK

This paper uses a well-established source code analysis technique (slicing) to iden-

tify dependence clusters. The first applications of slicing were for debugging and

testing [Weiser 1982; Lyle and Weiser 1987]. There have been several surveys of

slicing techniques, applications and variations [Binkley and Gallagher 1996; Binkley

and Harman 2004b; De Lucia 2001; Harman and Hierons 2001; Tip 1995]. Slicing

has been applied to many problems related to software engineering, most notably

re-engineering [Canfora et al. 1994], program comprehension [De Lucia et al. 1996],

debugging [Lyle and Weiser 1987], testing [Binkley 1998; Gupta et al. 1992; Har-

man and Danicic 1995], cohesion measurement [Bieman and Ott 1994], and impact

analysis [Gallagher and Lyle 1991].

The work reported in the present paper follows a recent trend toward the use of

slicing as a means to an end rather than an end in itself. This trend finds echoes in

the development of the literature on program slicing. For example, early work on

slice-based metrics began to move away from slices as an end product and toward

their use as a part of the computation of metrics. Bieman and Ott [1994; 1989],

Lakhotia [1993], and later Meyers and Binkley [2004] use slicing and dependence
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analysis as part of a technique to measure the level of functional cohesion, while

Black [2001], uses dependence analysis to measure the ripple effect. Balmas [2002],

and Korel and Rilling [1997; 1998] use dependence analysis indirectly for compre-

hension, Krinke and Snelting [1998] use a variant of static slicing for information

flow validation, Beszédes et al. [2001] and Canfora et al. [1998] use dependence

analysis as part of a wider approach to maintenance and re-engineering.

The remainder of this section considers the implications of the discovery of large

and widespread statement-level dependence clusters. There has been considerable

work concerning clustering in the large where the focus is typically at the function

or module level [Hutchens and Basili 1985; Mancoridis et al. 1999; Eisenbarth

et al. 2003; Mahdavi et al. 2003]. By comparison, the clusters of interest in the

present paper are more fine-grained; they are the nodes of the SDG. This represents

clustering at the statement level.

The present paper is the first to study statement-level dependence clusters using

slicing as an identifying mechanism. It is also the first to report the prevalence of

these clusters. This finding is important because of the many related source code

analyses that rely upon dependence based analysis and which, implicitly, require

freedom from such large clusters for optimal performance. The impact of large de-

pendence clusters are now considered in several related analyses including program

comprehension, testing, maintenance, reuse, and parallelization.

Much work on program comprehension deals with a comprehension process that

inherently revolves around source code. Many authors [Binkley et al. 2000; De

Lucia et al. 1996; Komondoor and Horwitz 2003; Korel and Rilling 1997; Ning

et al. 1994; Zhao 2002] have advocated dependence analysis as a way of aiding the

engineer in the difficult and time-consuming task of program comprehension. Much

of this work rests upon empirical evaluation of relatively small-scale programs. As

such, the widespread presence of large dependence clusters has gone unnoticed and

has, therefore, remained unreported.
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The discovery that large dependence clusters may be considerably more

widespread than previously appreciated will have a significant impact upon the

application of dependence analysis to program comprehension. This will not ren-

der dependence based comprehension approaches inapplicable. However, it does

mean that the presence of dependence clusters needs to be accounted for in practi-

cal applications.

For example, Balmas describes a technique for controlling the complexity of

source code comprehension by hierarchically partitioning source code into nested

blocks [Balmas 2002]. The approach is backed up by a tool that supports zooming

into and out of the hierarchical dependence structure so-created. For programs

with large dependence clusters, such hierarchical decomposition will be seriously

constrained. A dependence cluster will not naturally submit to decomposition,

rendering zooming into a cluster impossible. Further research may be required

in order to find techniques for breaking up dependence clusters in such scenarios.

Similar dependence-based source code browsing is advocated by Deng et al. [Deng

et al. 2001] and by Rilling et al. [Rilling et al. 2001; Rilling and Mudur 2002]. These

approaches will also need to consider the impact of dependence clusters.

In software testing, dependence analysis has been shown to be effective at reduc-

ing the computation effort required to automate the test data generation process

[Binkley and Harman 2004a; Harman et al. 2007]. This is important, because test

automation is widely held to be the key to a successful software testing program

[Baresel et al. 2002; Colin et al. 2004; Ferguson and Korel 1996; Korel 1990; Li

and Wu 2004; Tracey et al. 2000]. Using dependence analysis, it is possible to

reduce both the amount of code to be tested and the size of the input domain. For

example, the analysis may start with a branch to be covered and proceed to use

dependence analysis to determine the part of the program and input space upon

which the branch depends [Harman et al. 2007].
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While programs free from dependence clusters will submit to such analysis, for

those with large clusters no such dependence-based optimization is possible. It is

thus likely that such programs will be harder to test. This suggests the development

of dependence cluster study as a proxy for source code testability [Binder 1994; Voas

and Miller 1995]. It is also possible that testability transformation [Harman et al.

2004] may be one way to ameliorate the difficulties posed by dependence clusters;

transformation algorithms for cluster decomposition will be required to improve

testability.

In software maintenance, dependence analysis is used to protect the software

maintenance engineer against the potentially unforeseen side effects of a mainte-

nance change. This can be achieved by measuring the impact of the proposed change

[Black 2001; Gallagher 1996; Hutchens and Gallagher 1998; Yau and Collofello 1985]

or by attempting to identify portions of code for which a change can be safely per-

formed free from side effects [Gallagher 1992; Tonella 2003]. For this work, the

presence of large dependence clusters will tend to produce higher values for change

impact metrics, because any change that affects any of a cluster’s nodes will, by

definition, affect all the nodes of the cluster. Furthermore, any effort to identify

safe portions of the code to which changes can be applied will be hampered by the

presence of large dependence clusters; such readily safely-changeable portions of

code will be few and far between.

Program dependence analysis has been proposed as a supporting technology for

salvaging [Canfora et al. 1994] and re-use [Beck and Eichmann 1993; Komondoor

and Horwitz 2000] of pieces of source code, in order to gain value from the presence

of well tested, workable sub-components within legacy systems. The functional-

ity to be reused may be textually scattered throughout the legacy system’s source

code, making it difficult to extract without dependence analysis. This scattering

often arises due to the widely observed phenomenon of gradual architectural de-

cay [Lehman 1980; 1998]. Dependence analysis can assist in this difficult extraction
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process, by teasing out and collecting those computations needed to support the

functionality to be reused. For a legacy system with large dependence clusters, any

attempt to reuse a computation denoted by a source code elements lying inside a

cluster will draw out the entire cluster. This makes reuse expensive, cumbersome,

and error prone.

Program dependence also underpins attempts to transform programs into forms

more amenable to parallel execution [Ryan 2000]. Once again, the presence of

large dependence clusters will impact on the degree to which such automated par-

allelization will be successful. The transformations considered in work on auto-

parallelization focus on loop computation, because loops denote likely computa-

tional bottlenecks. The algorithms attempt to separate computations within a

single loop body, enabling independent execution of several reduced loop-body in-

stances. However, should the body of a loop be located within a large dependence

cluster, then such separation attempts will fail; the precondition of the transforma-

tion will never be satisfied, since no code motion is possible within a dependence

cluster.

11. SUMMARY AND FUTURE WORK

This paper introduced the concept of statement-level dependence clusters and shows

how they can be identified using a slice-based visualisation called the Monotone

Slice-size Graph. The overall approach was evaluated by two empirical studies that

verified the approximation used to identify dependence clusters and validated the

approach in terms of the prevalence of these clusters in a large code base of 45

real-world programs.

The results indicate that dependence clusters are surprisingly prevalent, making

their study both timely and important. The paper shows that most of the 45

programs studied contain large clusters; furthermore, a non-trivial subset contain

truly enormous dependence clusters. The paper also discusses the implications of
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this widespread occurrence of large dependence clusters on comprehension, testing,

maintenance, reuse, and automated parallelization.

The paper considers both forward and backward dependence clusters and illus-

trates the connection between forward dependence cluster analysis and static im-

pact analysis. The paper argues that causes of dependence clusters can and should

be identified, presenting results for one possible cause: individual predicate nodes.

The paper illustrates the application of this analysis by showing how the removal

of a forward dependence cluster may reduce the impact of future changes.

Future work will consider whether there is a relationship between dependence

clusters and other problematic features such as code clones [Kamiya et al. 2002;

Gallagher and Layman 2003] and whether the results for the prevalence of large

dependence clusters are replicated for the OO and AOP programming paradigms. It

will also be interesting to see whether the previously studied relationships between

dependence and faults [Kusumoto et al. 2002] indicate that programs with large

dependence clusters are either more or less fault prone. Future work will also

consider the size and ramifications of clusters of dependence at higher levels of

abstraction than the program level.
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