
MILU : A Customizable, Runtime-Optimized Higher Order Mutation Testing
Tool for the Full C Language

Yue Jia
King’s College London

Strand, London
WC2R 2LS, UK

yue.jia@kcl.ac.uk

Mark Harman
King’s College London

Strand, London
WC2R 2LS, UK

mark.harman@kcl.ac.uk

Abstract

This paper introduces MILU, a C mutation testing tool
designed for both first order and higher order mutation test-
ing. All previous mutation testing tools apply all possible
mutation operators to the program under test. By contrast,
MILU allows customization of the set of mutation opera-
tors to be applied. To reduce runtime cost, MILU uses a
novel ‘test harness’ technique to embed mutants and their
associated test sets into a single-invocation procedure.

1. Introduction

Mutation testing (or mutation analysis) is a fault based
testing technique used to measure the quality of a test set
[8, 9]. In mutation testing, for a program p, a set of faulty
programs p′, called mutants, is generated by small changes
to the original program p. A transformation rule that gener-
ates a mutant from the original program is known as a muta-
tion operator. Mutants can be classified into two types: First
Order Mutants (FOMs) and Higher Order Mutants (HOMs).
FOMs are generated by applying mutation operators only
once. HOMs are generated by applying mutation operators
more than once.

In traditional mutation testing, only FOMs will be
adopted. Each FOM p′ will be run against a test set T . If
the result of running p′ is different from the result of run-
ning p for any test case in T , then the mutant p′ is said to be
“killed”, otherwise it is said to have “survived”. The ade-
quacy level of the test set T can be measured by a mutation
score that is computed in terms of the number of mutants
killed by T .

In higher order mutation testing we use the full range of
mutants, including higher order (where the order is greater
than one) and first order (a special case of higher order

in which the order is simply one). The HOMs used by
MILU in our approach to higher order mutation testing are
called subsuming HOMs; ones that are harder to kill than
the FOMs from which they are constructed. The full de-
tail and motivation for higher order mutation testing can be
found elsewhere [12].

This paper introduces a mutation testing tool called
MILU. MILU is specially designed for higher order mu-
tation testing of C Programs. However, though designed
to support higher order mutation testing, MILU is also an
efficient and flexible tool for First Order Mutation Testing.
MILU adopts the 77 C mutation operators of Agrawal et
al. [2]. Furthermore, it provides customized mutation op-
erators. This paper concentrates on MILU’s approach to
efficiency and flexibility. The tool is available from the
MILU website [1].

MILU (in Chinese characters: :¶) is the name of a
deer composed of four other animals. It has a horse’s head,
a deer’s antlers, a donkey’s body and a cow’s hooves. It
is sometimes also known as Père David’s Deer (Elaphurus
davidianus) [3]. As a result, a MiLu is an example of a
HOM; it applies the mutation operators of nature four times.
Furthermore, because of its conservation status, MiLus are
currently a critically endangered species, so the name also
signifies the characteristics of a strongly subsuming HOM;
rare but valuable [12].

The rest of the paper is organized as follows. In Section
2, work on previous mutation testing tools are briefly sur-
veyed. Section 3 describes the architecture of MILU. Sec-
tion 4 introduces a scripting language to increase the flex-
ibility by allowing users to customize mutation operators
used by MILU. Section 5 discusses the optimization tech-
niques used by other mutation testing tools and introduces
the ‘test harness’ approach that MILU uses to optimize per-
formance. The paper concludes with Section 6.

2. Background

Since mutation testing was proposed in 1987, a number
of mutation testing tools have developed in academic world.
Mothra is one of the most widely known mutation testing
systems for FORTRAN 77 in the early historical develop-
ment of mutation testing [6]. It was the first tool that im-
plemented mutation analysis as a complete software testing
environment. Following the introduction of mutation opera-
tors for the programming language C, proposed in 1989 [2],
the first mutation testing tool for ANSI C program was de-
veloped, called Proteum [7]. From 1995, as Java became
more popular, many mutation tools for Java were devel-
oped. One of most widely known one is MuJava, which not
only supports traditional mutation operators but also pro-
vides class-level mutation operators [15].

In recent years, a number of open source mutation tools
have also been implemented for many programming lan-
guages. For example, PesTer [16] is a mutation testing tool
for Python and PyUnit tests. Nester [17] is a mutation test-
ing tool for C# code. SQLMutation [20] is a mutation test-
ing tool for database queries.

In the industrial setting, several companies have incor-
porated the idea of mutation testing into their commercial
products. Plextest [11] is an automated mutation testing
system for C++; one that implements the original idea of
mutation with a unit testing framework. Insure++ [19] from
Parasoft applies the idea of equivalent mutants to detect er-
rors in C and C++ programs. Certitude [5] from Certess has
taken the idea from mutation testing to develop a functional
qualification; one that provides the ability to measure the
quality of a verification environment.

Although both the academic and the industrial world
have embraced mutation testing and have implemented mu-
tation testing tools, the objective of these two worlds are
different. The tools from academia often implement new
ideas, or adapt new techniques, but tend to be less reliable.
By contrast, the industrial tools are more stable, but do not
provide the flexibility needed for experimentation. MILU is
an academic tool for higher order mutation testing that also
aims to provide both a reliable and a flexible environment
for traditional mutation testing.

3. MILU Architecture

MILU provides two modes for mutation testing: tradi-
tional mode and higher order mode. Traditional mode is de-
signed to support first order mutation testing. In this mode,
users are able to use either pre-defined mutation operators
or their own customized mutation operators. To automate
the testing process, the user also needs to specify a compar-
ison method, distinguishing the results between the mutants
and the original program. MILU will take care of rest of
the work; it will generate the mutants, execute each of them

with the given test set and report the mutation score and
other information that may be of use to an experimenter.

By contrast, higher order mode is designed to help re-
searchers study subsuming HOMs. In higher order mode,
users can either choose a pre-defined search-based opti-
mization algorithm [10] or specify their own algorithm and
fitness function to search for subsuming HOMs. The sub-
suming HOMs so-found can be applied in traditional mode
to substitute for FOMs. MILU provides a user friendly GUI
interface for users running this two modes, and it also pro-
vides a set of APIs for researches programming their own
plug-in for the generation and evaluation of the mutants.

The structure of MILU is shown in Figure 1. The top
level of MILU consists of three components: a Source Code
Analyzer (SCA), a Mutating System (MTS), and a Testing
and Evaluation System (TES). Each of these components
also provides a utility interface to allow the users extending
the features.

The SCA component works as a C parser. It takes a C
program as input, and parses the source into a token list
first. In order to support subsequent customization of mu-
tation operators, not only syntactic, but contextual informa-
tion will be preserved. Therefore, a simple Abstract Syntax
Tree (AST) is also constructed from the token list by SCA.

MTS is the core component of MILU. It takes the AST
from SCA and the mutation operators that user specified
as input and generates a ‘mutant template’; one that con-
tains the possible position and type of all the FOMs to the
program source. In MILU, each mutant is represented as
a vector of integers called the ‘Mutation Id’. The ‘mutant
template’ can be used to generate the ‘Mutant Id’ of all the
FOMs.

In traditional mode, the FOMs generated by SCA will
be passed to TES directly. However, in higher order mode,
MTS will use these FOMs as initial population to gener-
ate subsuming HOMs using the search-based algorithm that
user specified. These so-generated subsuming HOMs will
replace some of the FOMs first, then they will be passed to
TES with rest of the FOMs.

TES is mainly used to run the mutants against a test set.
It takes each mutant from MTS and passes it to the GCC
compiler. Instead of compiling it into a executable program,
the mutant is compiled into a shared library. In order to
optimize the running cost, a ‘test harness’ is generated by
the input test set. This ‘test harness’ is able to run all the test
cases by invoking the mutant shared library dynamically.

In traditional mode, TES will execute the test harness
to generate a detailed mutation report summarizing all run-
ning information during the testing process. Additionally,
in higher order mode, for each generated HOM, TES will
analyze the FOMs from which each HOM is constructed,
and compute the fitness according the selected fitness func-
tion. A detailed report for these HOMs will be generated.

Figure 1. The Architecture of MILU

4. Flexibility

Mutation operators are a set of transformation rules used
to generate mutants. According to the structure and pur-
poses of each program and each programming language,
each of them has their own set of rules that represent the
faults that programmers often make. However, in order to
experiment with mutation testing, it is often convenient to
select only a subset of operators to apply in order to explore
the effect of this set in isolation from the large body of all
operators [18]. Also, in the practical application of mutation
testing, it may be convenient to select a set of mutation op-
erators that denote a particular fault model [4]. Therefore,
MILU offers the user the opportunity to use a scripting lan-
guage, the Mutation Operator Constraint Script (MOCS), to
define the mutation operators to be applied. MOCS is able
to add constraints to any mutation operators. It provides two
types of constraints: direct substitutions and environmental
conditions.

Direct Substitution Constraint: allows users to select
a specific transformation rule that performs a simple re-
placement. For example, in the C programming language,
programmers often misuse = as ==. Applying traditional
mutation operators would also involve applying all ratio-
nal operators, for example >,<, ..., etc. However, by using
MOCS, the rules can simply specify a single operator:

“==” − > “=”

Although the idea of this substitution constraint is sim-
ple, it is highly flexible especially when the requirements
are beyond the ability of the predetermined mutation opera-
tors. For example, Jones’ research [13] is only interested in
the impact of programmers who wrongly change the prece-
dence of arithmetic operators by adding parentheses in the
wrong place. Three different examples of scripts that cap-

ture different levels of choice with regard to this kind of
specialization are:

1. “VAR AOP VAR” − > “(VAR AOP VAR)”

2. “VAR + VAR” − > “(VAR + VAR)”

3. “INT VAR + INT VAR” − > “(INT VAR + INT VAR)”

The first script will add parentheses to any expression with
two variables and a arithmetic operator. The second script
only affects the expression with + operator while the third
script only affects the expression with two integer variables
and + operator. None of these are ‘standard’ mutation op-
erators, but MOCS makes it easy to add them.

Environmental Condition Constraint: sometimes, in-
stead of applying a mutation operator to all source code,
only a subset of the statements is interesting. The environ-
mental condition constraint is used to specify a domain for
applying mutation operator. For example, if we are only in-
terested in applying rational operators in if statements, we
can achieve this as follow:

[IF] ORRE

Where ORRE is the mutation operator for rational operator
replacement. Environment condition constraints can also be
used with direct substitution constraints together to provide
more detailed control. For example, to check only whether
the && is mistyped as & in an if predicate can be specified
by

[IF] “&” − > “&&”

In order to let the users specify the constraints, SCA does
not only parses the program into tokens at a syntactic level,
but also builds a simple Abstract Syntax Tree (AST) to pre-
serve structural contextual information. For example, the
type of each variable and statement. However none of the
expressions are evaluated during the analysis process.

5. Efficiency
From its inception, mutation testing has been considered

expensive and so much engineering effort have concentrated
upon efficiency. The interpreter-based technique is one of
the optimization techniques used in first generation of mu-
tation testing tools [14]. This technique implements a in-
terpreter to interpret the result of a mutant from its source
code directly, as shown in Figure 2. The total run time cost
therefore is it×n×m. Where it is the interpreting time, m
and n are the number of mutants and test cases respectively.
This technique is efficient for small programs. However,
due to the nature of interpretation, it becomes slower as the
scale of programs increases.

Figure 2. Interpreter-based Technique

To reduce the cost of interpretation, compiler-based tech-
niques were subsequently introduced [7]. In compiler-based
techniques, the mutant source is compiled into an exe-
cutable program first, then each of them will be executed
by a number of test cases, as shown in Figure 3. The total
run time cost is m(ct + rt × n), where ct is the compila-
tion time and rt is run time for each test set. This technique
is faster than the interpreter-based, technique especially for
large programs, because the run time, rt, for an executable
program, is faster than the interpretation time it. However,
this technique also introduces an extra overhead cost ct.

The Mutant schemata approach is designed to reduce the
overhead cost of the traditional compiler-based techniques
[21]. Instead of compiling each mutant separately, the mu-
tant schemata technique generates a metaprogram. Just like
a “super mutant” this metaprogram can be used to represent
all possible mutants, as shown in Figure 4. Therefore, to
run each mutant against the test set, only this metaprogram
need be compiled. As this metaprogram is a compiled pro-
gram, its running speed is faster than the interpreter-based
technique. The total run time is ct′ + rt′ × n × m where
ct′ and rt′ are the compilation and run time of the metapro-
gram respectively. As the metaprogram is often a very large
program, both ct′ and rt′ are slightly slower than compiling
and running each mutant separately.

Most of the techniques introduced above focus on their
optimization effort on reducing the compilation cost (left
hand side of the figures). The reason is that in “20th Century
mutation testing”, this property is considered to be the main
cost of the total cost of mutation testing. However, in “21st

Century mutation testing tools”, the bottleneck has migrated
from compilation time to running cost, as explained in Fig-
ure 5. Therefore, MILU focuses on optimizing the right
hand side of the figures; reducing the running cost.

Figure 3. Compiler-based Technique

Figure 4. Mutant Schemata Technique

As the run time for a compiled mutant is already very
fast, it is hard to improve the efficiency by reducing the sin-
gle run time. Therefore, MILU reduces the running cost by
reducing the totle execution times, as there are a number of
overhead costs for running each mutant as a individual pro-
gram. In MILU, a test harness is created containing all test
cases and the settings for running each mutant as shown in
Figure 6. Each mutant is compiled into a shared library that
can be dynamically invoked by a test harness. During the
testing process, only the test harness need to be executed,
and each mutant runs as an internal function call. Compare
this approach to the more expensive option of running each
mutant on each test case separately which needs an oper-
ating system call to create a new process for each test case.
Each such call will involve the allocation of many resources.

6. Conclusion
This paper has introduced a mutation testing tool called

MILU for C programs. To satisfy the different purposes
from both academia and industry, MILU not only imple-
ments a full set of C mutation operators, but also pro-
vides MOCS; a flexible scripting language to allow user-
customization of mutation operators. To reduce the total
cost of mutation testing, MILU introduces a novel ‘test har-
ness’ technique to invoke the mutant efficiently as a shared
library.

Figure 5. Changing Trends in Compilation and Running Cost for Mutation Testing. In the “20th Century”,
the number of mutants used in mutation testing were numerous. “21st Century mutation testing tools” use advanced mutation testing
techniques, for example selective mutation [18] and mutant sampling [22], so the number of mutants to be considered has fallen
from m to m′. However, more demanding testing means that the number of test cases has increased from n to n′. Furthermore, due
to increasing computational power, both compilation and run time have reduced from ct and rt to cp′ and rt′ respectively. These
changes in performance cost have tended to shift the dominant cost from complication to execution.

Figure 6. MILU’s Test Harness Technique

References

[1] Milu website. www.dcs.kcl.ac.uk/pg/jiayue/milu.
[2] H. Agrawal, R. Demillo, R. Hathaway, W. Hsu, W. Hsu,

E. Krauser, R. J. Martin, A. Mathur, and E. Spafford. De-
sign of mutant operators for the C programming language.
Technical report, Mar. 1989.

[3] Brinklow. Gestation periods in the Pere David’s Deer (Ela-
phurus davidianus): evidence for embryonic diapause or de-
layed development. Reproduction, Fertility and Develop-
ment, 5:567–575, 1993.

[4] K. M. Butler. Stuck-at fault: a fault model for the next mil-
lennium. In IEEE International Test Conference, page 1166,
1997.

[5] Certess. Certitude delivering functional qualification.
http://www.certess. com/product/, 2008.

[6] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin, A. P.
Mathur, A. J. Offutt, H. Pan, and E. H. Spafford. The Mothra
tool set (software testing). In System Sciences, volume 2,
pages 275–284, Jan. 1989.

[7] M. E. Delamaro and J. C. Maldonado. Proteum - A tool
for the assessment of test adequacy for C programs: User’s
guide. Technical report, Jan. 20 1996.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: help for the practicing programmer. IEEE
Computer, 11(4):34–41, Apr. 1978.

[9] R. G. Hamlet. Testing programs with the aid of a compiler.
IEEE Transactions on Software Engineering, 3(4):279–290,
July 1977.

[10] M. Harman. The current state and future of search based
software engineering. In International Conference on Soft-
ware Engineering, Future of Software Engineering, pages
342–357, 2007.

[11] ITRegister. Plextest. http://www.itregister.com.au/products
/plextest.htm, 2008.

[12] Y. Jia and M. Harman. Milu: A customizable, runtime-
optimized higher order mutation testing tool for the full c
language. In 8th IEEE International Working Conference
on Source Code Analysis and Manipulation, Beijing, China,
September 2008 To appear.

[13] D. M. Jones. Developer beliefs about binary operator prece-
dence. In ACCU: C user group(UK), 2006.

[14] K. N. King and A. J. Offutt. A Fortran language system for
mutation-based software testing. Software—Practice and
Experience, 21(7):685–718, July 1991.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated
class mutation system. Software Testing, Verification & Re-
liability, 15(2):97–133, 2005.

[16] I. Moore. Jester-the junit test tester. http://jester.source-
forge.net/, 2008.

[17] I. Moore. Nester: What is this? http://nester.sourceforge.-
net/, 2008.

[18] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental
evaluation of selective mutation. In International Confer-
ence on Software Engineering, pages 100–107, 1993.

[19] Parasoft. Insure++. http://www.parasoft.com/jsp/products/-
home.jsp?product=Insure, 2008.

[20] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. Sqlmuta-
tion: A tool to generate mutants of SQL database queries.
In MUTATION ’06: Proceedings of the Second Workshop
on Mutation Analysis, page 1, Washington, DC, USA, 2006.
IEEE Computer Society.

[21] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation anal-
ysis using mutant schemata. In International Symposium on
Software Testing and Analysis, pages 139–148, 1993.

[22] W. E. Wong and A. P. Mathur. Reducing the cost of mu-
tation testing: An empirical study. Journal of Systems and
Software, 31(3):185–196, 1995.

