
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2007; 00:1–7 (DOI: 10.1002/000)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/000

Regression Testing
Minimisation, Selection and
Prioritisation : A Survey
S. Yoo, M. Harman

King’s College London, Centre for Research on Evolution, Search & Testing,
Strand, London, WC2R 2LS, UK

SUMMARY

Regression testing is a testing activity that is performed to provide confidence that changes do not harm
the existing behaviour of the software. Test suites tend to grow in size as software evolve, often making it
too costly to execute entire test suites. A number of different approaches have been studied to maximise
the value of the accrued test suite: minimisation, selection and prioritisation. Test suite minimisation seeks
to eliminate redundant test cases in order to reduce the number of tests to run. Test case selection seeks
to identify the test cases that are relevant to some set of recent changes. Test case prioritisation seeks to
order test cases in such a way that early fault detection is maximised. This paper surveys each area of
minimisation, selection and prioritisation technique and discusses open problems and potential directions
for future research.

Copyright c© 2007 Shin Yoo & Mark Harman

Received 23 September 2007; Revised 24 September 2007

KEY WORDS: Regression Testing, Test Suite Minimisation, Regression Test Selection, Test Case Prioritisation

1. Introduction

Regression testing is performed when changes are made to existing software; the purpose of regression
testing is to provide confidence that the newly introduced changes do not obstruct the behaviours of
the existing, unchanged part of the software. It is a complex procedure that is all the more challenging
because of some of the recent trends in software development paradigms. For example, the component-
based software development method tends to result in use of many black-box components, often
adopted from a third-party. Any change in the third-party components may interfere with the rest of
the software system, yet it is hard to perform regression testing because the internals of the third-party
components are not known to their users. The shorter life-cycle of software development, such as the

Contract/grant sponsor: Your sponsor; contract/grant number:

Copyright c© 2007 Shin Yoo & Mark Harman
Prepared using stvrauth.cls [Version: 2007/09/24 v1.00]

2 S.YOO AND M. HARMAN

one suggested by the agile programming discipline, also imposes restrictions and constraints on how
regression testing can be performed within limited resources.

Naturally, the most straightforward approach to this problem is to simply execute all the existing
test cases in the test suite; this is called a retest-all approach. However, as software evolves, the test
suite tends to grow, which means it may be prohibitively expensive to execute the entire test suite.
This limitation forces consideration of techniques that seek to reduce the effort required for regression
testing in various ways.

A number of different approaches have been studied to aid the regression testing process. The three
major branches include test suite minimisation, test case selection and test case prioritisation. Test
suite minimisation is a process that seeks to identify and then eliminate the obsolete or redundant test
cases from the test suite. Test case selection deals with the problem of selecting a subset of test cases
that will be used to test the changed parts of the software. Finally, test case prioritisation concerns the
identification of the ‘ideal’ ordering of test cases that maximises desirable properties, such as early fault
detection. Existing empirical studies show that the application of these techniques can be cost-effective.

This paper surveys work undertaken in these three related branches of regression testing. Section 2
introduces the nomenclature. Section 3 describes different test suite minimisation techniques as well
as their efficiency and effectiveness. Section 4 examines test case selection techniques according to
the specific analysis technique used, and evaluates the strengths and weaknesses of each approach.
Section 5 introduces test case prioritisation techniques. Section 6 introduces meta-empirical studies
concerning evaluation methodologies and cost-effectiveness analysis of regression testing techniques.
Section 7 presents a summary of the field and identifies trends and issues. Section 8 introduces
some gaps in the existing literature, thereby suggesting potential directions for future work. Section 9
concludes.

1.1. Motivation

When writing a survey paper there are two natural questions that need to be asked:

1. Why is this the right set of topics for a survey?
2. Is there already a recent survey in this area?

The first question concerns the motivation for the scope chosen for the survey, while the second
concerns the perceived need for such a survey, once a suitable scope is established. For this paper the
scope has been chosen to include topics on test suite minimisation, Regression Test Selection (RTS)
and test case prioritisation. The reason for the choice of this scope is that these three topics are related
by a common thread of optimisation; each is an approach that optimises the application of an existing
pool of test cases.

The fact that all three approaches assume the existence of a pool of test cases distinguishes these
topics from test case generation, which seeks to create pools of test data. The three topics form a
coherent set of approaches, each of which shares a common starting point; that the tester has a pool of
test cases that is simply too large to allow all cases to be applied to the System Under Test (SUT). Each
of the three approaches denotes a different way of coping with this problem of scale.

The relationship between the three techniques goes deeper than the mere shared application to pools
of test data. It is not only the sets of problems addressed by each that exhibit overlap, but also the

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 3

solution approaches that are applied. There is an intimate relationship between solutions to the three
related problems, as this survey reveals. For instance, one way of selecting (or minimising) a set of n
test cases from a test pool would be to prioritise the whole set and pick the first n in priority order. Of
course, there may be more optimal choices, since prioritisation has to contend with any possible choice
of n, whereas selection merely requires that an optimal choice is found for a given value of n.

Turning to the second question, the closest previous papers to this survey are a survey of Regression
Test Selection (RTS) techniques undertaken in 1996 [1] and a recent systematic review on RTS [2] that
concerns a specific set of research questions rather than a survey of the whole area. No previous survey
on regression testing considered minimisation, selection and prioritisation collectively. The present
survey claims that these classes of techniques are closely related to each other and denote a coherent
sub-area of study. Our survey also includes recent applications of techniques that were surveyed in the
earlier work of Rothermel and Harrold [1]. There are existing comparative studies on RTS [3–7], but
these papers only concern a small number of specific RTS techniques and do not provide an overview
of the field.

1.2. Selection of Papers

This survey aims to collect and consider papers that deal with three regression testing techniques:
test suite minimisation, regression test selection and test case prioritisation. Our intention is not to
undertake a systematic review, but rather to provide a broad state-of-the-art view on these related
fields. Many different approaches have been proposed to aid regression testing, which has resulted in
a body of literature that is spread over a wide variety of domains and publication venues. The majority
of surveyed literature has been published in the software engineering domain, and especially in the
software testing and software maintenance literature. However, the regression testing literature also
overlaps with those of programming language analysis, empirical software engineering and software
metrics.

Therefore, the paper selection criteria on which this survey is based are the problems considered
in papers, while focusing on the specific topics of minimisation, selection and prioritisation. The
formal definitions of these problems are presented in Section 2.2. The selected papers are listed in
the Appendix. Fast abstracts and short papers have been excluded.

2. Background

This section introduces the basic concepts and definitions that form a nomenclature of regression
testing and minimisation, selection and prioritisation techniques.

2.1. Regression Testing

Regression testing is performed between two different versions of software in order to provide
confidence that the newly introduced features of the System Under Test (SUT) do not interfere with the
existing features. While the exact details of the modifications made to SUT will often be available, they
may not be easily available in some cases. For example, when the new version is written in a different
programming language or when the source code is unavailable, modification data will be unavailable.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 S.YOO AND M. HARMAN

The following notations are used to describe concepts in the context of regression testing. Let P be
the current version of the program under test, and P ′ be the next version of P . Let S be the current set
of specifications for P , and S′ be the set of specifications for P ′. T is the existing test suite. Individual
test cases will be denoted by lower case: t. P (t) stands for the execution of P using t as input.

2.2. Distinction between Classes of Techniques

It is necessary at this point to establish a clear terminological distinction between the different classes
of techniques described in the paper. Test suite minimisation techniques seek to reduce the size of
a test suite by eliminating redundant test cases from the test suite. Minimisation is sometimes also
called ‘test suite reduction’, meaning that the elimination is permanent. However, these two concepts
are essentially interchangeable because all reduction techniques can be used to produce a temporary
subset of the test suite, whereas any minimisation techniques can be used to permanently eliminate test
cases. More formally, following Rothermel et al. [8], the test suite minimisation is defined as follows:

Definition 1. Test Suite Minimisation Problem

Given: A test suite, T , a set of test requirements {r1, . . . , rn}, that must be satisfied to provide the
desired ‘adequate’ testing of the program, and subsets of T , T1, . . . , Tn, one associated with each of
the ris such that any one of the test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test requirement in {r1, . . . , rn} is satisfied. A test
requirement, ri, is satisfied by any test case, tj , that belongs to the Ti, a subset of T . Therefore, the
representative set of test cases is the hitting set of the Tis. Furthermore, in order to maximise the effect
of minimisation, T ′ should be the minimal hitting set of the Tis. The minimal hitting set problem is an
NP-complete problem as is the dual problem of the minimal set cover problem [9].

While test case selection techniques also seek to reduce the size of a test suite, the majority of
selection techniques are modification-aware. That is, the selection is not only temporary (i.e. specific
to the current version of the program), but also focused on the identification of the modified parts
of the program. Test cases are selected because they are relevant to the changed parts of the SUT,
which typically involves a white-box static analysis of the program code. Throughout this survey, the
meaning of ‘test case selection problem’ is restricted to this modification-aware problem. It is also often
referred to as the Regression Test case Selection (RTS) problem. More formally, following Rothermel
and Harrold [1], the selection problem is defined as follows (refer to Section 4 for more details on how
the subset T ′ is selected):

Definition 2. Test Case Selection Problem

Given: The program, P , the modified version of P , P ′, and a test suite, T .

Problem: Find a subset of T , T ′, with which to test P ′.

Finally, test case prioritisation concerns ordering test cases for early maximisation of some desirable
properties, such as the rate of fault detection. It seeks to find the optimal permutation of the sequence of

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 5

test cases. It does not involve selection of test cases, and assumes that all the test cases may be executed
in the order of the permutation it produces, but that testing may be terminated at some arbitrary point
during the testing process. More formally, the prioritisation problem is defined as follows:

Definition 3. Test Case Prioritisation Problem

Given: a test suite, T , the set of permutations of T , PT , and a function from PT to real numbers,
f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

This survey focuses on papers that consider one of these three problems. Throughout the paper, these
three techniques will be collectively referred to as ‘regression testing techniques’.

2.3. Classification of Test Cases

Leung and White present the first systematic approach to regression testing by classifying types
of regression testing and test cases [10]. Regression testing can be categorised into progressive
regression testing and corrective regression testing. Progressive regression testing involves changes
of specifications in P ′, meaning that P ′ should be tested against S′. On the other hand, corrective
regression testing does not involve changes in specifications, but only in design decisions and actual
instructions. It means that the existing test cases can be reused without changing their input/output
relation.

Leung and White categorise test cases into five classes. The first three classes consist of test cases
that already exist in T .

• Reusable: reusable test cases only execute the parts of the program that remain unchanged
between two versions, i.e. the parts of the program that are common to P and P ′. It is
unnecessary to execute these test cases in order to test P ′; however, they are called reusable
because they may still be retained and reused for the regression testing of the future versions of
P .

• Retestable: retestable test cases execute the parts of P that have been changed in P ′. Thus
retestable test cases should be re-executed in order to test P ′.

• Obsolete: test cases can be rendered obsolete because 1) their input/output relation is no longer
correct due to changes in specifications, 2) they no longer test what they were designed to test
due to modifications to the program, or 3) they are ‘structural’ test cases that no longer contribute
to structural coverage of the program.

The remaining two classes consist of test cases that have yet to be generated for the regression testing
of P ′.

• New-structural: new-structural test cases test the modified program constructs, providing
structural coverage of the modified parts in P ′.

• New-specification: new-specification test cases test the modified program specifications, testing
the new code generated from the modified parts of the specifications of P ′.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 S.YOO AND M. HARMAN

Leung and White go on to propose a retest strategy, in which a test plan is constructed based on the
identification of changes in the program and classification of test cases. Although the definition of a test
plan remains informal, it provides a basis for the subsequent literature. It is of particular importance
to regression test case selection techniques, since these techniques essentially concern the problem of
identifying retestable test cases. Similarly, test suite minimisation techniques concern the identification
of obsolete test cases. Test case prioritisation also can be thought of as a more sophisticated approach
to the construction of a test plan.

It should be noted that the subsequent literature focusing on the idea of selecting and reusing test
cases for regression testing is largely concerned with corrective regression testing only. For progressive
regression testing, it is very likely that new test cases are required in order to test the new specifications.
So far, this aspect of the overall regression testing picture has been a question mainly reserved for test
data generation techniques. However, the early literature envisages a ‘complete’ regression testing
strategy that should also utilise test data generation techniques.

3. Test Suite Minimisation

Test suite minimisation techniques aim to identify redundant test cases and to remove them from the test
suite in order to reduce the size of the test suite. The minimisation problem described by Definition 1
can be considered as the minimal hitting set problem.

Note that the minimal hitting set formulation of the test suite minimisation problem depends on the
assumption that each ri can be satisfied by a single test case. In practice, this may not be true. For
example, suppose that the test requirement is functional rather than structural and, therefore, requires
more than one test case to be satisfied. The minimal hitting set formulation no longer applies. In order
to apply the given formulation of the problem, the functional granularity of test cases needs to be
adjusted accordingly. The adjustment process may be either that a higher level of abstraction would be
required so that each test case requirement can be met with a single test scenario composed of relevant
test cases, or that a ‘large’ functional requirement needs to be divided into smaller sub-requirements
that will correspond to individual test cases.

3.1. Heuristics

The NP-completeness of the test suite minimisation problem encourages the application of heuristics;
previous work on test case minimisation can be regarded as the development of different heuristics for
the minimal hitting set problem [11–14].

Horgan and London applied linear programming to the test case minimisation problem in their
implementation of a data-flow based testing tool, ATAC [13,15]. Harrold et al. presented a heuristic for
the minimal hitting set problem with the worst case execution time of O(|T | ∗max(|Ti|)) [12]. Here
|T | represents the size of the original test suite, and max(|Ti|) represents the cardinality of the largest
group of test cases among T1, . . . , Tn.

Chen and Lau applied GE and GRE heuristics and compared the results to that of the HGS (Harrold-
Gupta-Soffa) heuristic [11]. The GE and GRE heuristics can be thought of as variations of the greedy
algorithm that is known to be an effective heuristic for the set cover problem [16]. Chen et al. defined
essential test cases as the opposite of redundant test cases. If a test requirement ri can be satisfied

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 7

Test Case Testing Requirements

r1 r2 r3 r4 r5 r6

t1 x x x
t2 x x
t3 x x
t4 x x
t5 x

Table I. Example test suite taken from Tallam and Gupta [18]. The early selection made by the
greedy approach, t1, is rendered redundant by subsequent selections, {t2, t3, t4}.

by one and only one test case, the test case is an essential test case. On the other hand, if a test case
satisfies only a subset of the test requirements satisfied by another test case, it is a redundant test case.
Based on these concepts, the GE and GRE heuristics can be summarised as follows:

• GE heuristic: first select all essential test cases in the test suite; for the remaining test
requirements, use the additional greedy algorithm, i.e. select the test case that satisfies the
maximum number of unsatisfied test requirements.
• GRE heuristic: first remove all redundant test cases in the test suite, which may make some test

cases essential; then perform the GE heuristic on the reduced test suite.

Their empirical comparison suggested that no single technique is better than the other. This is a
natural finding, because the techniques concerned are heuristics rather than precise algorithms.

Offutt et al. also treated the test suite minimisation problem as the dual of the minimal hitting set
problem, i.e., the set cover problem [14]. Their heuristics can also be thought of as variations of the
greedy approach to the set cover problem. However, they adopted several different test case orderings,
instead of the fixed ordering in the greedy approach. Their empirical study applied their techniques to
a mutation-score-based test case minimisation, which reduced sizes of test suites by over 30%.

Whereas other minimisation approaches primarily considered code-level structural coverage, Marré
and Bertolino formulated test suite minimisation as a problem of finding a spanning set over a
graph [17]. They represented the structure of the SUT using a decision-to-decision graph (ddgraph).
A ddgraph is a more compact form of the normal CFG since it omits any node that has one entering
edge and one exiting edge, making it an ideal representation of the SUT for branch coverage. They
also mapped the result of data-flow analysis onto the ddgraph for testing requirements such as def-use
coverage. Once testing requirements are mapped to entities in the ddgraph, the test suite minimisation
problem can be reduced to the problem of finding the minimal spanning set.

Tallam and Gupta developed the greedy approach further by introducing the delayed greedy
approach, which is based on the Formal Concept Analysis of the relation between test cases and testing
requirements [18]. A potential weakness of the greedy approach is that the early selection made by the
greedy algorithm can eventually be rendered redundant by the test cases subsequently selected. For
example, consider the test suite and testing requirements depicted in Table I, taken from Tallam and
Gupta [18]. The greedy approach will select t1 first as it satisfies the maximum number of testing

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 S.YOO AND M. HARMAN

requirements, and then continues to select t2, t3 and t4. However, after the selection of t2, t3 and t4, t1
is rendered redundant. Tallam et al. tried to overcome this weakness by constructing a concept lattice,
a hierarchical clustering based on the relation between test cases and testing requirements. Tallam et
al. performed two types of reduction on the concept lattice. First, if a set of requirements covered
by ti is a superset of the set of requirements covered by tj , then tj is removed from the test suite.
Second, if a set of test cases that cover requirement ri is a subset of the set of test cases that cover
requirement rj , requirement ri is removed. The concept lattice is a natural representation that supports
the identification of these test cases. Finally, the greedy algorithm is applied to the transformed set
of test cases and testing requirements. In the empirical evaluation, the test suites minimised by this
‘delayed greedy’ approach were either the same size or smaller than those minimised by the classical
greedy approach or by the HGS heuristic.

Jeffrey and Gupta extended the HGS heuristic so that certain test cases are selectively retained [19,
20]. This ‘selective redundancy’ is obtained by introducing a secondary set of testing requirements.
When a test case is marked as redundant with respect to the first set of testing requirements, Jeffrey
and Gupta considered whether the test case is also redundant with respect to the second set of testing
requirements. If it is not, the test case is still selected, resulting in a certain level of redundancy with
respect to the first set of testing requirements. The empirical evaluation used branch coverage as the
first set of testing requirements and all-uses coverage information obtained by data-flow analysis. The
results were compared to two versions of the HGS heuristic, based on branch coverage and def-use
coverage. The results showed that, while their technique produced larger test suites, the fault detection
capability was better preserved compared to single-criterion versions of the HGS heuristic.

Whereas the selective redundancy approach considers the secondary criterion only when a test case
is marked as being redundant by the first criterion, Black et al. considered a bi-criteria approach that
takes into account both testing criteria [21]. They combined the def-use coverage criterion with the
past fault detection history of each test case using a weighted-sum approach and used Integer Linear
Programming (ILP) optimisation to find subsets. The weighted-sum approach uses weighting factors
to combine multiple objectives. For example, given a weighting factor α and two objectives o1 and o2,
the new and combined objective, o′, is defined as follows:

o′ = αo1 + (1− α)o2

Consideration of a secondary objective using the weighted-sum approach has been used in other
minimisation approaches [22] and prioritisation approaches [23]. Hsu and Orso also considered the use
of an ILP solver with multi-criteria test suite minimisation [22]. They extended the work of Black et
al. by comparing different heuristics for a multi-criteria ILP formulation: the weighted-sum approach,
the prioritised optimisation and a hybrid approach. In prioritised optimisation, the human user assigns
a priority to each of the given criteria. After optimising for the first criterion, the result is added as
a constraint, while optimising for the second criterion, and so on. However, one possible weakness
shared by these approaches is that they require additional input from the user of the technique in the
forms of weighting coefficients or priority assignment, which might be biased, unavailable or costly to
provide.

Contrary to these approaches, Yoo and Harman treated the problem of time-aware prioritisation
as a multi-objective optimisation problem [24]. Instead of using a fitness function that combines
selection and prioritisation, they used a Pareto-efficient multi-objective evolutionary algorithm to

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 9

simultaneously optimise for multiple objectives. You and Harman argued that the resulting Pareto-
frontier not only provides solutions but also allows the tester to observe trade-offs between objectives,
providing additional insights.

McMaster and Memon proposed a test suite minimisation technique based on call-stack coverage.
A test suite is represented by a set of unique maximum depth call stacks; its minimised test suite is
a subset of the original test suite whose execution generates the same set of unique maximum depth
call stacks. Note that their approach is different from simply using function coverage for test suite
minimisation. Consider two test cases, t1 and t2, respectively producing call stacks c1 =< f1, f2, f3 >
and c2 =< f1, f2 >. With respect to function coverage, t2 is rendered redundant by t1. However,
McMaster and Memon regard c2 to be unique from c1. For example, it may be that t2 detects a failure
that prevents the invocation of function f3. Once the call-stack coverage information is collected, the
HGS heuristic can be applied. McMaster and Memon later applied the same approach to Graphical
User Interface (GUI) testing [25]. It was also implemented for object-oriented systems by Smith et
al. [26].

While most test suite minimisation techniques are based on some kind of coverage criteria, there
do exist interesting exceptions. Harder et al. approached test suite minimisation using operational
abstraction [27]. An operational abstraction is a formal mathematical description of program behaviour.
While it is identical to formal specifications in form, an operational abstraction expresses dynamically
observed behaviour. Harder et al. use the widely studied Daikon dynamic invariant detector [28] to
obtain operational abstractions. Daikon requires executions of test cases for the detection of possible
program invariants. Test suite minimisation is proposed as follows: if the removal of a test case does
not change the detected program invariant, it is rendered redundant. They compared the operational
abstraction approach to branch coverage based minimisation. While their approach resulted in larger
test suites, it also maintained higher fault detection capability. Moreover, Harder et al. also showed
that test suites minimised for coverage adequacy can often be improved by considering operational
abstraction as an additional minimisation criterion.

Leitner et al. propose a somewhat different version of the minimisation problem [29]. They start
from the assumption that they already have a failing test case, which is too complex and too long for
the human tester to understand. Note that this is often the case with randomly generated test data;
the test case is often simply too complex for the human to establish the cause of failure. The goal of
minimisation is to produce a shorter version of the test case; the testing requirement is that the shorter
test case should still reproduce the failure. This minimisation problem is interesting because there is
no uncertainty about the fault detection capability; it is given as a testing requirement. Leitner et al.
applied the widely studied delta-debugging technique [30] to reduce the size of the failing test case.

Schroeder and Korel proposed an approach of test suite minimisation for black-box software
testing [31]. They noted that the traditional approach of testing black-box software with combinatorial
test suites may result in redundancy, since certain inputs to the software may not affect the outcome
of the output being tested. They first identified, for each output variable, the set of input variables
that can affect the outcome. Then, for each output variable, an individual combinatorial test suite is
generated with respect to only those input variables that may affect the outcome. The overall test suite
is a union of all combinatorial test suites for individual output variables. This has a strong connection
to the concept of Interaction Testing, which is discussed in detail in Section 5.2.

Other work has focused on model-based test suite minimisation [32, 33]. Vaysburg et al. introduced
a minimisation technique for model based test suites that uses dependence analysis of Extended Finite

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 S.YOO AND M. HARMAN

State Machines (EFSMs) [32]. Each test case for the model is a sequence of transitions. Through
dependence analysis of the transition being tested, it is possible to identify the transitions that affect
the tested transition. In other words, testing a transition T can be thought of as testing a set of
other transitions that affect T . If a particular test case tests the same set of transitions as some other
test case, then it is considered to be redundant. Korel et al. extended this approach by combining
the technique with automatic identification of changes in the model [33]. The dependence analysis
based minimisation technique was applied to the set of test cases that were identified to execute the
modified transitions. Chen et al. extended Korel’s model-based approach to incorporate more complex
representations of model changes [34].

A risk shared by most test suite minimisation techniques is that a discarded test case may detect
a fault. In some domains, however, test suite minimisation techniques can enjoy the certainty of
guaranteeing that discarding a test case will not reduce the fault detection capability. Anido et al.
investigated test suite minimisation for testing Finite State Machines (FSMs) in this context [35]. When
only some components of the SUT need testing, the system can be represented as a composition of two
FSMs: component and context. The context is assumed to be fault-free. Therefore, certain transitions of
the system that concern only the context can be identified to be redundant. Under the ‘testing in context’
assumption (i.e. the context is fault-free), it follows that it is possible to guarantee that a discarded test
case cannot detect faults.

Kaminski and Ammann investigated the use of a logic criterion to reduce test suites while
guaranteeing fault detection in testing predicates over Boolean vairables [36]. From the formal
description of fault classes, it is possible to derive a hierarchy of fault classes [37]. From the hierarchy,
it follows that the ability to detect a class of faults may guarantee the detection of another class.
Therefore, the size of a test suite can be reduced by executing only those test cases for the class of
faults that subsume another class, whenever this is feasible.

3.2. Impact on Fault Detection Capability

Although the techniques discussed so far reported reduced test suites, there has been a persistent
concern about the effect that the test suite minimisation has on the fault-detection capability of test
suites. Several empirical studies were conducted to investigate this effect [8, 38–40].

Wong, Horgan, London and Mathur studied ten common Unix programs using randomly generated
test suites; this empirical study is often referred to as the WHLM study [39]. To reduce the size of the
test suites, they used the ATAC testing tool developed by Horgan and London [13,15]. First, a large pool
of test cases was created using a random test data generation method. From this pool, several test suites
with different total block coverage were generated. After generating test suites randomly, artificial
faults were seeded into the programs. These artificial faults were then categorised into 4 groups. Faults
in Quartile-I can be detected by [0− 25)% of the test cases from the original test suite; the percentage
for Quartile-II, III, and IV is [25− 50)%, [50− 75)%, and [75− 100]% respectively. Intuitively, faults
in Quartile-I are harder to detect than those in Quartile-IV. The effectiveness of the minimisation itself
was calculated as follows:

(1− number of test cases in the reduced test suite
number of test cases in the original test suite

) ∗ 100%

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 11

The impact of test suite minimisation was measured by calculating the reduction in fault detection
effectiveness as follows:

(1− number of faults detected by the reduced test suite
number of faults detected by the original test suite

) ∗ 100%

By categorising the test suites (by different levels of block coverage) and test cases (by difficulty of
detection), they arrived at the following observation. First, the reduction in size is greater in test suites
with a higher block coverage in most cases. This is natural considering that test suites with higher
block coverage will require more test cases in general. The average size reduction for test suites with
(50-55)%, (60-65)%,(70-75)%,(80-85)%, and (90-95)% block coverage was 1.19%, 4.46%, 7.78%,
17.44%, 44.23% respectively. Second, the fault detection effectiveness was decreased by test case
reduction, but the overall decrease in fault detection effectiveness is not excessive and could be regarded
as worthwhile for the reduced cost. The average effectiveness reduction for test suites with (50-55)%,
(60-65)%,(70-75)%,(80-85)%, and (90-95)% block coverage was 0%, 0.03%, 0.01%, 0.38%, 1.45%
respectively. Third, test suite minimisation did not decrease the fault detection effectiveness for faults
in Quartile-IV at all, meaning all faults in Quartile-IV had been detected by the reduced test suite.
The average decrease in fault detection effectiveness for Quartile-I, II, and III was 0.39%, 0.66%, and
0.098% respectively. The WHLM study concluded that, if the cost of testing is directly related to the
number of test cases, then the use of the reduction technique is recommended.

Wong, Horgan, London and Pasquini followed up on the WHLM study by applying the ATAC tool
to test suites of another, bigger C program; this empirical study is often referred to as the WHLP
study [40]. The studied program, space, was an interpreter for the ADL(Array Description Language)
developed by the European Space Agency. In the WHLP study, test cases were generated, not randomly,
but from the operational profiles of space. That is, each test case in the test case pool was generated
so that it matches an example of real usage of space recorded in an operational profile. From the test
case pool, different types of test suites were generated. The first group of test suites was constructed by
randomly choosing a fixed number of test cases from the test case pool. The second group of test suites
was constructed by choosing test cases from the test case pool until a predetermined block coverage
target was met. The faults in the program were not artificial, but real faults that were retrieved from
development logs.

The results of the WHLP study confirmed the findings of the WHLM study. As in the WHLM
study, test suites with low initial block coverage (50%, 55%, 60%, and 65%) showed no decrease in
fault detection effectiveness, after test suite minimisation. For both the fixed size test suites and fixed
coverage test suites, the application of the test case reduction technique did not affect the fault detection
effectiveness in any significant way; the average effectiveness reduction due to test suite minimisation
was less than 7.28%.

While both the WHLM and WHLP studies showed that the impact of test suite minimisation
on fault detection capability was insignificant, other empirical studies produced radically different
findings. Rothermel et al. also studied the impact of test suite minimisation on the fault detection
capability [38]. They applied the HGS heuristics to the Siemens suite [41], and later expanded this to
include space [8]. The results from these empirical studies contradicted the previous findings of the
WHLM and WHMP studies.

For the study of the Siemens suite [38], Rothermel et al. constructed test suites from the test case
pool provided by the Siemens suite so that the test suites include varying amounts of redundant test

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 S.YOO AND M. HARMAN

cases that do not contribute to the decision coverage of the test suite. The effectiveness and impact of
reduction was measured using the same metrics that were used in the WHLM study.

Rothermel et al. reported that the application of the test suite minimisation technique produced
significant savings in test suite size. The observed tendency in size reduction suggested a logarithmic
relation between the original test suite size and the reduction effectiveness. The results of logarithmic
regression confirmed this.

However, Rothermel et al. also reported that, due to the size reduction, the fault detection capabilities
of test suites were severely compromised. The reduction in fault detection effectiveness was over 50%
for more than half of 1,000 test suites considered, with some cases reaching 100%. Rothermel et al.
also reported that, unlike the size reduction effectiveness, the fault detection effectiveness did not show
any particular correlation with the original test suite size.

This initial empirical study was subsequently extended [8]. For the Siemens suite, the results of
the HGS heuristic were compared to random reduction by measuring the fault detection effectiveness
of randomly reduced test suites. Random reduction was performed by randomly selecting, from the
original test suite, the same number of test cases as in the reduced version of the test suite. The results
showed that random reduction produced larger decreases in fault detection effectiveness. To summarise
the results for the Siemens suite, the test suite minimisation technique produced savings in test suite
size, but at the cost of decreased fault detection effectiveness; however, the reduction heuristic showed
better fault detection effectiveness than the random reduction technique.

Rothermel et al. also expanded the previous empirical study by including the larger program,
space [8]. The reduction in size observed in the test suites of space confirmed the findings of the
previous empirical study of the Siemens suite; the size reduction effectiveness formed a logarithmic
trend, plotted against the original test suite size, similar to the programs in the Siemens suite. More
importantly, the reduction in fault detection effectiveness was less than those of the Siemens suite
programs. The average reduction in fault detection effectiveness of test suites reduced by the HGS
heuristic was 8.9%, while that of test suites reduced by random reduction was 18.1%.

Although the average reduction in fault detection effectiveness is not far from that reported for the
WHLP study in the case of space, those of the Siemens suite differed significantly from both the
WHLP study and the WHLM study, which reported that the application of the minimisation technique
did not have significant impact on fault detection effectiveness. Rothermel et al. [8] pointed out the
following differences between these empirical studies as candidates for the cause(s) of the contradictory
findings, which is paraphrased as follows:

1. Different subject programs: the programs in the Siemens suite are generally larger than those
studied in both the WHLM and the WHLP study. Difference in program size and structure
certainly could have impact on the fault detection effectiveness.

2. Different types of test suites: the WHLM study used test suites that were not coverage-adequate
and much smaller compared to test suites used by Rothermel et al. The initial test pools used
in the WHLM study also did not necessarily contain any minimum number of test cases per
covered item. These differences could have contributed to less redundancy in test suites, which
led to reduced likelihood that test suite minimisation will exclude fault-revealing test cases.

3. Different types of test cases: the test suites used in the WHLM study contained a few test cases
that detected all or most of the faults. When such strong test cases are present, reduced versions
of the test suites may well show little loss in fault-detection effectiveness.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 13

4. Different types of faults: the faults studied by Rothermel et al. were all Quartile-I faults according
to the definition of the WHLM study, whereas only 41% of the faults studied in the WHLM study
belonged to the Quartile-I group. By having more ‘easy-to-detect’ faults, the test suites used in
the WHLM study could have shown less reduction in fault-detection effectiveness after test suite
minimisation.

Considering the two contradicting empirical results, it is natural to conclude that the question of
evaluating the effectiveness of the test suite minimisation technique is very hard to answer in general
and for all testing scenarios. The answer depends on too many factors, such as the structure of the SUT,
the quality of test cases and test suites and the types of faults present. This proliferation of potential
contributory factors makes it very difficult to generalise any empirical result.

The empirical studies from WHLM, WHLP and Rothermel et al. all evaluated the effectiveness of
test suite minimisation in terms of two metrics: percentage size reduction and percentage fault detection
reduction. McMaster and Memon noticed that neither metric considers the actual role each testing
requirement plays on fault detection [42]. Given a set of test cases, TC, a set of known faults, KF and
a set of testing requirements, CR, fault correlation for a testing requirement i ∈ CR to fault k ∈ KF
is defined as follows:

|{j ∈ TC|j covers i} ∩ {j ∈ TC|j detects k}|
|{j ∈ TC|j covers i}|

The expected probability of finding a given fault k after test suite minimisation is defined as the
maximum fault correlation of all testing requirements with k. From this, the probability of detecting
all known faults in KF is the product of expected probability of finding all k ∈ KF . Since CR is
defined by the choice of minimisation criterion, e.g. branch coverage or call-stack coverage, comparing
the probability of detecting all known faults provides a systematic method of comparing different
minimisation criteria, without depending on a specific heuristic for minimisation. The empirical
evaluation of McMaster and Memon compared five different minimisation criteria for the minimisation
of test suites for GUI-intensive applications: event coverage (i.e. each event is considered as a testing
requirement), event interaction coverage (i.e. each pair of events is considered as a testing requirement),
function coverage, statement coverage and call-stack coverage proposed in [43]. While call-stack
coverage achieved the highest average probability of detecting all known faults, McMaster and Memon
also found that different faults correlate more highly with different criteria. This analysis provides
valuable insights into the selection of minimisation criterion.

Yu et al. considered the effect of test suite minimisation on fault localisation [44]. They applied
various test suite minimisation techniques to a set of programs, and measured the impact of the size
reduction on the effectiveness of coverage-based fault localisation techniques. Yu et al. reported that
higher reduction in test suite size, typically achieved by statement coverage-based minimisation, tends
to have a negative impact on fault localisation, whereas minimisation techniques that maintain higher
levels of redundancy in test suites have negligible impact.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 S.YOO AND M. HARMAN

4. Test Case Selection

Test case selection, or the regression test selection problem, is essentially similar to the test suite
minimisation problem; both problems are about choosing a subset of test cases from the test suite.
The key difference between these two approaches in the literature is whether the focus is upon the
changes in the SUT. Test suite minimisation is often based on metrics such as coverage measured
from a single version of the program under test. By contrast, in regression test selection, test cases are
selected because their execution is relevant to the changes between the previous and the current version
of the SUT.

To recall Definition 2, T ′ ideally should contain all the faults-revealing test cases in T , i.e., the test
cases that will reveal faults in P ′. In order to define this formally, Rothermel and Harrold introduced
the concept of a modification− revealing test case [45]. A test case t is modification-revealing for
P and P ′ if and only if P (t) 6= P ′(t). Given the following two assumptions, it is possible to identify
the fault-revealing test cases for P ′ by finding the modification-revealing test cases for P and P ′.

• P -Correct-for-T Assumption : It is assumed that, for each test case t ∈ T , when P was tested
with t, P halted and produced the correct output.
• Obsolete-Test-Identification Assumption : It is assumed that there exists an effective procedure

for determining, for each test case t ∈ T , whether t is obsolete for P ′.

From these assumptions, it is clear that every test case in T terminates and produces correct output
for P , and is also supposed to produce the same output for P ′. Therefore, a modification-revealing test
case t must be also fault-revealing. Unfortunately, it is not possible to determine whether a test case
t is fault-revealing against P ′ or not because it is undecidable whether P ′ will halt with t. Rothermel
considers a weaker criterion for the selection, which is to select all modification-traversing test cases
in T . A test case t is modification-traversing for P and P ′ if and only if :

1. it executes new or modified code in P ′, or
2. it formerly executed code that had been deleted in P ′

Rothermel also introduced the third assumption, which is the Controlled-Regression-Testing
assumption.

• Controlled-Regression-Testing Assumption : When P ′ is tested with t, all factors that might
influence the output of P ′, except for the code in P ′, are kept constant with respect to their states
when P was tested with t.

Given that the Controlled-Regression-Testing assumption holds, a non-obsolete test case t can
thereby be modification-revealing only if it is also modification-traversing for P and P ′. Now, if
the P -Correct-for-T assumption and the Obsolete-Test-Identification assumption hold along with the
Controlled-Regression-Testing assumption, then the following relation also holds between the subset
of fault-revealing test cases, Tfr, the subset of modification-revealing test cases, Tmr, the subset of
modification-traversing test cases, Tmt, and the original test suite, T :

Tfr = Tmr ⊆ Tmt ⊆ T

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 15

Rothermel and Harrold admitted that the Controlled-Regression-Testing assumption may not be
always practical, since certain types of regression testing may make it impossible to control the testing
environment, e.g. testing of a system ported to different operating system [1]. Other factors like non-
determinism in programs and time dependencies are also difficult to control effectively. However,
finding the subset of modification-traversing test cases may still be an useful approach in practice,
because Tmt is the closest approximation to Tmr that can be achieved without executing all test cases.
In other words, by finding Tmt, it is possible to exclude those test cases that are guaranteed not to reveal
any fault in P ′. The widely used term, safe regression test selection, is based on this concept [46]. A
safe regression test selection technique is not safe from all possible faults; however, it is safe in a sense
that, if there exists a modification-traversing test case in the test suite, it will definitely be selected.

Based on Rothermel’s formulation of the problem, it can be said that test case selection techniques
for regression testing focus on identifying the modification-traversing test cases in the given test suite.
The details of the selection procedure differ according to how a specific technique defines, seeks
and identifies modifications in the program under test. Various approaches have been proposed using
different techniques and criteria including Integer Programming [47, 48], data flow analysis [49–52],
symbolic execution [53], dynamic slicing [54], CFG graph-walking [46, 55–57], textual difference in
source code, [58,59] SDG slicing [60], path analysis [61], modification detection [62], firewall [63–66],
CFG cluster identification [67] and design-based testing [68, 69]. The following subsections describe
these in more detail, highlighting their strengths and weaknesses.

4.1. Integer Programming Approach

One of the earliest approaches to test case selection was presented by Fischer and Fischer et
al. who used Integer Programming (IP) to represent the selection problem for testing FORTRAN
programs [47, 48]. Lee and He implemented a similar technique [70]. Fischer first defined a program
segment as a single-entry, single exit block of code whose statements are executed sequentially. Their
selection algorithm relies on two matrices that describe the relation between program segments and
test cases, as well as between different program segments.

For a program with m segments and n test cases, the IP formulation is given as the problem of
finding the decision vector,< x1, . . . , xn >, that minimises the following objective function, Z :

Z = c1x1 + c2x2 + . . .+ cnxn

subject to :

a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2

· · ·

am1x1 + am2x2 + . . .+ amnxn ≥ bm

The decision vector, < x1, . . . , xn >, represents the subset of selected test cases; xi is equal to 1 if
the ith test case is included; 0 otherwise. The coefficients, c1, . . . , cn, represent the cost of executing
each corresponding test case; Fischer et al. used the constant value of 1 for all coefficients, treating all

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 S.YOO AND M. HARMAN

test cases as being equally expensive. The test case dependency matrix, a11, . . . , amn represents the
relations between test cases and the program segments. The element aij is equal to 1 if the ith program
segment is executed by the test case j; 0 otherwise.

After deriving the series of inequalities, the set of bk values are determined by using a reachability
matrix that describes the program segments that are reachable from other segments. Using this
approach, when the modified segments are known, it is possible to calculate all the segments that
are reachable from the modified segments, which thus need to be tested at least once. The integer
programming formulation is completed by assigning 1 to the b values for all the segments that need to
be tested. The inequality, ai1x1 + . . . + ainxn ≥ bi, thus ensures that at least one included test case
covers the program element reachable from a change.

Hartmann and Robson implemented and extended a version of Fischer’s algorithm in order to apply
the technique to C [71–73]. They treat subroutines as segments, achieving subroutine coverage rather
than statement coverage.

One weakness in Fischer’s approach is its inability to deal with control-flow changes in P ′. The test
case dependency matrix, a11, . . . , amn, depends on the control-flow structure of the program under
test. If the control-flow structure changes, the test case dependency matrix can be updated only by
executing all the test cases, which negates the point of applying the selection technique.

4.2. Data-flow Analysis Approach

Several test case selection techniques have been proposed based on data-flow analysis [49–52]. Data-
flow analysis based selection techniques seek to identify new, modified or deleted definition-use pairs
in P ′, and select test cases that exercise these pairs.

Harrold and Soffa presented data-flow analysis as the testing criterion for an incremental approach
to unit testing during the maintenance phase [50]. Taha, Thebaut, and Liu built upon this idea and
presented a test case selection framework based on an incremental data-flow analysis algorithm [52].
Harrold and Soffa developed both intra-procedural and inter-procedural selection techniques [51, 74].
Gupta et al. applied program slicing techniques to identify definition-use pairs that are affected by a
code modification [49]. The use of slicing techniques enabled identification of definition-use pairs that
need to be tested without performing a complete dataflow analysis, which is often very costly. Wong et
al. combined a data-flow selection approach with a coverage-based minimisation and prioritisation to
further reduce the effort [75].

One weakness shared by all data-flow analysis-based test case selection techniques is the fact that
they are unable to detect modifications that are unrelated to data-flow change. For example, if P ′

contains new procedure calls without any parameter, or modified output statements that contain no
variable uses, data-flow techniques may not select test cases that execute these.

Fisher II et al. applied the data-flow based regression test selection approach for test re-use in
spreadsheet programs [76]. Fisher II et al. proposed an approach called What-You-See-Is-What-
You-Test (WYSIWYT) to provide incremental, responsive and visual feedback about the testedness
of cells in spreadsheets. The WYSIWYT framework collects and updates data-flow information
incrementally as the user of the spreadsheet makes modifications to cells, using Cell Relation Graph
(CRG). Interestingly, the data-flow analysis approach to re-test spreadsheets is largely free from
the difficulties associated with data-flow testing of procedural code, because spreadsheet programs

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 17

lack tricky semantic features such as aliasing and unstructured control flow. This makes spreadsheet
programs better suited to a data-flow analysis approach.

4.3. Symbolic Execution Approach

Yau and Kishmoto presented a test case selection technique based on symbolic execution of the
SUT [53]. In symbolic execution of a program, the variables’ values are treated as symbols, rather
than concrete values [77]. Yau and Kishimoto’s approach can be thought of as an application of
symbolic execution and input partitioning to the test case selection problem. First, the technique
statically analyses the code and specifications to determine the input partitions. Next, it produces test
cases so that each input partition can be executed at least once. Given information on where the code
has been modified, the technique then identifies the edges in the control flow graph that lead to the
modified code. While symbolically executing all test cases, the technique determines test cases that
traverse edges that do not reach any modification. The technique then selects all test cases that reach
new or modified code. For the symbolic test cases that reach modifications, the technique completes
the execution; the real test cases that match these symbolic test cases should be retested.

While it is theoretically powerful, the most important drawback of the symbolic execution approach
is the algorithmic complexity of the symbolic execution. Yau and Kishmoto acknowledge that symbolic
execution can be very expensive. Pointer arithmetic can also present challenging problems for symbolic
execution based approaches.

4.4. Dynamic Slicing Based Approach

Agrawal et al. introduced a family of test case selection techniques based on different program slicing
techniques [54]. An execution slice of a program with respect to a test case is what is usually referred
to as an execution trace; it is the set of statements executed by the given test case. A dynamic slice of a
program with respect to a test case is the set of statements in the execution slice that have an influence
on an output statement. Since an execution slice may contain statements that do not affect the program
output, a dynamic slice is a subset of an execution slice. For example, consider the program shown in
Figure 1. It contains two faults in line S3 and S11 respectively. The execution slice of the program
with respect to test case T3 in Table II is shown in column ES of Figure 1. The dynamic slice of the
program with respect to test case T1 in Table II is shown in column DS of Figure 1.

In order to make the selection more precise, Agrawal et al. proposed two additional slicing criteria:
a relevant slice and an approximate relevant slice. A relevant slice of a program with respect to a test
case is the dynamic slice with respect to the same test case together with all the predicate statements in
the program that, if evaluated differently, could have caused the program to produce a different output.
An approximated relevant slice is a more conservative approach to include predicates that could have
caused a different output; it is the dynamic slice with all the predicate statements in the execution slice.
By including all the predicates in the execution slice, an approximated relevant slice caters for the
indirect references via pointers. For example, consider the correction of S3 in the program shown in
Figure 1. The dynamic slice of T4 does not include S3 because the class value of T4 is not affected
by any of the lines between S3 and S8. However, the relevant slice of T4, shown in column DS of
Figure 1, does include S3 because it could have affected the output when evaluated differently.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 S.YOO AND M. HARMAN

 S1: read(a,b,c);
 S2: class := scalene;
 S3: if a = b or b = a
 S4: class := isosceles;
 S5: if a * a = b * b + c * c
 S6: class := right
 S7: if a = b and b = c
 S8: class := equilateral
 S9: case class of:
S10: right : area = b * c / 2;
S11: equilateral : area = a * 2 * sqrt(3) / 4;
S12: otherwise : s := (a + b + c) / 2;
S13: area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Slices
ES DS RS
x x x
x x
x x

x x
x
x x x
 x
x x x
x
 x
 x
 x
x
x

Figure 1. Example triangle classification program taken from Agrawal et al. [54]. Note that it is assumed that the
input vector is sorted in descending order. It contains two faults. In S3, b = a should be b = c. In S11, a *
2 should be a * a. The column ES represents the statements that belong to the execution slice with respect to
test case T3 in table II. Similarly, column DS represents the dynamic slice with respect to test case T1 in Table II

and column RS the relevant slice with respect to test case T4 in Table II.

Testcase Input Output

a b c class area

T1 2 2 2 equilateral 1.73
T2 4 4 3 isosceles 5.56
T3 5 4 3 right 6.00
T4 6 5 4 scalene 9.92
T5 3 3 3 equilateral 2.60
T6 4 3 3 scalene 4.47

Table II. Test cases used with the program shown in Figure 1, taken from Agrawal et al. [54].
Note that T5 detects the fault in S11, because the value for area should be 3.90. Similarly, T6

detects the fault in S3, because the value for class should be isosceles.

The test suite and the previous version of the program under test are preprocessed using these slicing
criteria; each test case is connected to a slice, sl, constructed by one of the four slicing criteria. After
the program is modified, test cases for which sl contains the modified statement should be executed
again. For example, assume that the fault in S11, detected by T5, is corrected. The program should
be retested with T5. However, T3 need not be executed because the execution slice of T3, shown in
column ES of Figure 1, does not contain S11. Similarly, assume that the fault in S3, detected by T6,
is corrected. The program should be retested with T6. The execution slice technique selects all six

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 19

test cases, T1 to T6, after the correction of the fault in S3 because the execution slices of all six test
cases include S3. However, it is clear that T1 and T3 are not affected by the correction of S3; their
class values are overwritten after the execution of S3. The dynamic slicing technique overcomes
this weakness. The dynamic slice of T1 is shown in column DS of Figure 1. Since S3 does not affect
the output of T1, it is not included in the dynamic slice. Therefore, the modification of S3 does not
necessitate the execution of T1.

Agrawal et al. first built their technique on cases in which modifications are restricted to those
that do not alter the control flow graph of the program under test. As long as the control flow graph
of the program remains the same, their technique is safe and can be regarded as an improvement
over Fischer’s integer programming approach. Slicing removes the need to formulate the linear
programming problem, reducing the effort required from the tester. Agrawal et al. later relaxed the
assumption about static control flow graphs in order to cater for modifications in the control flow
graphs of the SUT. If a statement s is added to P , now the slice sl contains all the statements in P
that uses the variables defined in s. Similarly, if a predicate p is added to P , the slice sl contains all
the statements in P that are control-dependent on p. This does cater for the changes in the control
flow graph to some degree, but it is not complete. For example, if the added statement is a simple
output statement that does not define or use any variable, then this statement can still be modification-
revealing. However, since the new statement does not contain any variable, its addition will not affect
any of the existing slices, resulting in an empty selection.

4.5. Graph-Walk Approach

Rothermel and Harrold presented regression test case selection techniques based on graph walking
of Control Dependence Graphs (CDGs), Program Dependence Graphs (PDGs), System Dependence
Graphs (SDGs) and Control Flow Graphs (CFGs) [46, 56, 57, 78]. The CDG is similar to PDG but
lacks data dependency relations. By performing a depth-first traversal of the CDGs of both P and
P ′, it is possible to identify points in a program through which the execution trace reaches the
modifications [46]. If a node in the CDG of P is not lexically equivalent to the corresponding node in
the CDG of P ′, the algorithm selects all the test cases that execute the control-dependence predecessors
of the mismatching node. The CDG based selection technique does not cater for inter-procedural
regression test case selection; Rothermel and Harrold recommend application of the technique at the
individual procedural level.

Rothermel and Harrold later extended the graph walking approach to use PDGs for intra-procedural
selection, and SDGs for inter-procedural selection [56]. A weakness of the CDG based technique is
that, due to the lack of data dependence, the technique will select test cases that execute modified
definitions but not the actual uses of a variable. If the modified definition of a variable is never used, it
cannot contribute to any different output, and therefore its inclusion is not necessary for safe regression
testing. PDGs contain data dependence for a single procedure; SDGs extend this to a complete program
with multiple procedures. By using these graphs, Rothermel and Harrold’s algorithm is able to check
whether a modified definition of a variable is actually used later.

Rothermel and Harrold later presented the graph walking approach based on CFGs [57]. The CFG-
based technique essentially follows the approach introduced for the CDG-based technique, but on
CFGs rather than on CDGs. Since CFG is a much simpler representation of the structure of a program,
the CFG-based technique may be more efficient. However, the CFG lacks data dependence information,

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 S.YOO AND M. HARMAN

so the CFG based technique may select test cases that are not capable of producing different outputs
from the original programs, as explained above. The technique has been evaluated against various
combinations of subject programs and test suites [79]. Ball improved the precision of the graph walk
approach with respect to branch coverage [80].

Rothermel et al. extended the CFG-based graph walk approach for object-oriented software using the
Interprocedural Control Flow Graph (ICFG) [81]. The ICFG connects methods using call and return
edges. Harrold et al. adopted a similar approach for test case selection for Java software, using the
Java Interclass Graph as representation (JIG) [82]. Xu and Rountev later extended this technique to
consider AspectJ programs by incorporating the interactions between methods and advices at certain
join points into the CFG [83]. Zhao et al. also considered a graph representation of AspectJ programs
to apply a graph walk approach for RTS [84]. Beydeda and Gruhn extended the graph walk approach
by adding black-box data-flow information to the Class Control Flow Graph (CCFG) to test object-
oriented software [85].

Orso et al. considered using different types of graph representation of the system to improve
the scalability of graph-walk approach [86]. Their approach initially relies on a high-level graph
representation of SUT to identify the parts of the system to be further analysed. Subsequently, the
technique uses more detailed graph representation to perform more precise selection.

One strength of the graph walk approach is its generic applicability. For example, it has been
successfully used in black-box testing of re-usable classes [87]. Martins and Vieira captured the
behaviours of a re-usable class by constructing a directed graph called the Behavioural Control
Flow Graph (BCFG) from the Activity Diagram (AD) of the class. The BCFG is a directed graph,
G = (V,E, s, x), with vertices V , edges E, a unique entry vertex s and an exit vertex x. Each vertex
contains a label that specifies the signature of a method; each edge is also labelled according to the
corresponding guards in AD. A path in G from s to x represents a possible life history of an object.
By mapping changes made to the object to its BCFG and applying the graph walking algorithm, it
is possible to select test cases based on the behavioural difference between two versions of the same
object. This approach requires traceability between the behavioural model and the actual test cases,
because test cases are selected, not based on their structural coverage, but based on their behavioural
coverage measured on BCFG. Activity diagrams have also been directly used for RTS by Chen et
al. [88].

Orso et al. used a variation of the graph walk approach to consider an RTS technique based on
meta-data and specifications obtained from software components [89,90]. They presented two different
techniques based on meta-data: code-based RTS using component meta-data and specification-based
RTS using component meta-data. For code-based RTS, it was assumed that each software component
was capable of providing structural coverage information, which was fed into the graph walk
algorithm. For specification-based RTS, the component specification was represented in UML state-
chart diagrams, which were used by the graph walk algorithm.

The graph walk algorithm has also been applied to test web services, despite the challenges that arise
from the distributed nature of web services [91–95]. Several different approaches have been introduced
to overcome these challenges. Lin et al. adopted the JIG-based approach after transforming the web
services to a single-JVM local application [91]. Ruth et al. collected a coarse-grained CFG from
developers of each web service that forms a part of the entire application [92,93,95]. Finally, Tarhini et
al. utilised Timed Labeled Transition System (TLTS), which is a coarse-grained representation of web
services that resembles a labelled state machine [94].

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 21

4.6. Textual Difference Approach

Volkolos and Frankl proposed a selection technique based on the textual difference between the source
code of two versions of SUT [58, 59]. They identified modified parts of SUT by applying the diff
Unix tool to the source code of different versions. The source code was pre-processed into canonical
forms to remove the impact of cosmetic differences. Although their technique operates on a different
representation of SUT, its behaviour is essentially very similar to that of the CFG based graph-walk
approach.

4.7. SDG Slicing Approach

Bates and Horwitz proposed test case selection techniques based on program slices from Program
Dependency Graphs (PDGs) [60]. Bates and Horwitz approach the regression test selection problem in
two stages. First, all the test cases that can be reused for P ′ need to be identified. Bates and Horwitz
introduce the definition of an equivalent execution pattern. If statements s and s′ belong to P and P ′

respectively, s and s′ have equivalent execution patterns if and only if all of the following hold:

1. For any input file on which both P and P ′ terminate normally, s and s′ are exercised the same
number of times.

2. For any input file on which P terminates normally but P ′ does not, s′ is exercised at most as
many times as s is exercised.

3. For any input file on which P ′ terminates normally but P does not, s is exercised at most as
many times as s′ is exercised.

Using program slicing, Bates and Horwitz categorize statements into execution classes. Statement s
from P and s′ from P ′ belong to the same execution class if and only if any test that exercises s will
also exercise s′.

Now, a statement s′ in P ′ is affected by the modification if and only if one of the following holds:

1. There is no corresponding statement s in P .
2. The behaviour of s′ is not equivalent to the corresponding statement s in P .

Equivalent behaviour is determined by PDG slice isomorphism; if the PDG slices of two statements
are isomorphic, then those statements share an equivalent behaviour. For each affected statement in P ′,
reusable test cases are selected based on the information retrieved from the identification stage.

While Bates and Horwitz’s technique selects test cases for modified or newly added statements in
P ′, it does not select tests that exercise statements that are deleted from P , and therefore is not safe.

Binkley [96, 97] presented a technique based on System Dependence Graph (SDG) slicing, which
extends Bates and Horwitz’s intra-procedural selection technique to inter-procedural test case selection.
Binkley introduced the concept of common execution patterns, which corresponds to the equivalent
execution patterns of Bates and Horwitz, to capture the multiple invocation of a procedure.

4.8. Path Analysis

Benedusi et al. applied path analysis for test case selection [61]. They construct exemplar paths from P
and P ′ expressed in an algebraic expression. By comparing two sets of exemplar paths, they classified

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 S.YOO AND M. HARMAN

paths in P ′ as new, modified, cancelled, or unmodified. Test cases and the paths they execute in P are
known; therefore, they selected all the test cases that will traverse modified paths in P ′.

One potential weakness of the path analysis approach of Benedusi et al. lies not in path analysis
itself, but in the potentially over-specific definition of ‘modification’ used in the post-analysis selection
phase. No test cases are selected for the paths that are classified to be new or cancelled. However, new
or cancelled paths denote modifications that represent differences between P and P ′; test cases that
execute new or cancelled paths in P ′ may be modification-revealing. As presented, therefore, the path
analysis approach is not safe.

4.9. Modification-based Technique

Chen et al. introduced a testing framework called TestTube, which utilises a modification-based
technique to select test cases [62]. TestTube partitions the SUT into program entities, and monitors
the execution of test cases to establish connections between test cases and the program entities that
they execute. TestTube also partitions P ′ into program entities, and identifies program entities that
are modified from P . All the test cases that execute the modified program entities in P should be
re-executed.

TestTube can be thought of as an extended version of the graph walk approach. Both techniques
identify modifications by examining the program source code, and select test cases that will execute
the modified parts. TestTube extends the CDG-based graph walk technique by introducing program
entities that include both functions and entities that are not functions, i.e. variables, data types, and pre-
processor macros. Any test case that executes modified functions will be selected. Therefore, TestTube
is a safe test case selection technique.

One weakness of TestTube is pointer handling. By including variable and data types as program
entities, TestTube requires that all value creations and manipulations in a program can be inferred from
source code analysis. This is only valid for languages without pointer arithmetic and type coercion.
As a result, TestTube makes assumptions; for example, it assumes that all pointer arithmetics are well-
bounded. If these assumptions do not hold then safety cannot be guaranteed.

4.10. Firewall Approach

Leung and White introduced and later implemented what they called a firewall technique for regression
testing of system integration [63–66]. The main concept is to draw a firewall around the modules of
the system that need to be retested. They categorise modules into the following categories:

• No Change : module A has not been modified, NoCh(A).
• Only Code Change : module A has the same specification but its code has been modified,
CodeCh(A).

• Spec Change : module A has modified specifications, SpecCh(A).

If a module A calls a module B, there exist 9 possible pairings between the states of A and B. The
integration betweenA andB can be ignored for regression testing ifNoCh(A)∧NoCh(B), leaving 8

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 23

pairings. If both A and B are modified either in code or in specifications, the integration tests between
A and B should be executed again as well as the unit tests of A and B; this accounts for 4 of the
remaining 8 pairings. The other 4 pairings are cases in which an unchanged module calls a changed
module, or vice versa; these pairs form the boundary for integration testing, i.e. the so-called firewall.

By considering modules as the atomic entities, Leung and White maintained a very conservative
approach to test case selection. If a module has been modified, any test case that tests the integration
of the modified module should be selected. Therefore, all modification-traversing test cases will be
selected. However, their technique may also select other test cases that execute the modified module,
but are not modification-traversing in any way. Leung and White also noted that, in practice, the test
suite for system integration is often not very reliable. The low reliability means that it is more likely
that there may still exist a fault-revealing test case that does not belong to the test suite, and therefore
cannot be selected. Note that it is always a risk that a fault-revealing test case exists outside the given
test suite in any type of testing, not only in integration testing. What Leung and White pointed out
was that such a risk can be higher in system integration testing due to the generally low quality of test
suites.

The Firewall approach has been applied to Object-Oriented programs [98–100] and GUIs [101].
Firewall approach has also been successfully applied to RTS for black-box Commercial Off-the-Shelf
(COTS) components. Zheng et al. applied the firewall technique of Leung and White based on the
information extracted from the deployed binary code [102–105]. Skoglund and Runeson applied the
firewall approach to a large-scale banking system [106].

4.11. Cluster Identification

Laski and Szemer presented a test case selection technique based on analysis of the CFG of the program
under test [67]. Their technique identifies single-entry, single-exit subgraphs of CFG called clusters.
Given a program P and its modified version P ′,

• each cluster in P encapsulates some modifications to P ,
• there is a unique cluster in P ′ that corresponds to the cluster in P , and
• when clusters in each graph are replaced by single nodes, there is a one-to-one correspondence

between nodes in both graphs.

The CFGs of the original program and the modified program are reduced using a set of operators
such as node collapse and node removal. During the process, if the counterpart of a node from the CFG
of the original program cannot be found in the CFG of the modified program, this node is labelled as
‘MOD’, indicating a modification at the node. Eventually, all the modifications will be enclosed in one
or more MOD cluster nodes. As with other test case selection techniques, their technique requires that
the tester records the execution history of each test case in the test suite. Once clustering is completed,
test case selection is performed by selecting all the test cases for which the corresponding execution
path enters any of the MOD clusters.

The strength of the cluster identification technique is that it guarantees to select all modification-
traversing test cases regardless of the type of the modification, i.e. addition or deletion of statements
and control structures. However, since the clusters can encapsulate much larger areas of the SUT than
the scope of actual modification, the technique may also select test cases that are not modification-
traversing. In this sense the approach sacrifices precision in order to achieve safety.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 S.YOO AND M. HARMAN

4.12. Design-based Approach

Briand et al. presented a black-box, design level regression test selection approach for UML-based
designs [68, 69]. Assuming that there is traceability between the design and regression test cases,
it is possible to perform regression test selection of code-level test cases from the impact analysis
of UML design models. Briand et al. formalised possible changes in UML models, and classified
the relevant test cases into the categories defined by Leung and White [10]: obsolete, retestable and
reusable. They implemented an automated impact analysis tool for UML and empirically evaluated it
using both student projects and industrial case studies.

The results showed that the changes made to a model can have a widely variable impact on
the resulting system, which, in turn, yields varying degrees of reduction of effort in terms of the
number of selected test cases. However, Briand et al. noted that the automated impact analysis
itself can be valuable, especially for very large systems, such as the cruise control and monitoring
system they studied. The UML use-cases of the model of the system had 323,614 corresponding
test cases. UML-based models also have been considered by Dent et al. [107], Pilskalns et al. [108]
and Farooq et al. [109] for regression test selection; Le Traon et al. [110] and Wu and Offutt [111]
considered the use of UML models in the wider context of regression testing in general. Muccini et al.
considered the RTS problem at the software architecture level, although they did not use UML for the
representation [112, 113].

5. Test Case Prioritisation
Test case prioritisation seeks to find the ideal ordering of test cases for testing, so that the tester obtains
maximum benefit, even if the testing is prematurely halted at some arbitrary point. The approach was
first mentioned by Wong et al. [39]. However, in that work it was only applied to test cases that were
already selected by a test case selection technique. Harrold and Rothermel [114, 115] proposed and
evaluated the approach in a more general context.

For example, consider the test suite described in Table III. Note that the example depicts an ideal
situation in which fault detection information is known. The goal of prioritisation is to maximise
early fault detection. It is obvious that the ordering A-B-C-D-E is inferior to B-A-C-D-E. In fact, any
ordering that starts with the execution of C-E is superior to those that do not, because the subsequence
C-E detects faults as early as possible; should testing be stopped prematurely, this ensures that the
maximum possible fault coverage will have been achieved.

Note that the problem definition concerns neither versions of the program under test, nor exact
knowledge of modifications. Ideally, the test cases should be executed in the order that maximises
early fault detection. However, fault detection information is typically not known until the testing is
finished. In order to overcome the difficulty of knowing which tests reveal faults, test case prioritisation
techniques depend on surrogates, hoping that early maximisation of a certain chosen surrogate property
will result in maximisation of earlier fault detection. In a controlled regression testing environment, the
result of prioritisation can be evaluated by executing test cases according to the fault detection rate.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 25

Test Case Fault revealed by test case

1 2 3 4 5 6 7 8 9 10

A x x
B x x x x
C x x x x x x x
D x
E x x x

Table III. Example test suite with fault detection information, taken from Elbaum et al [116]. It
is clearly beneficial to execute test case C first, followed by E.

5.1. Coverage-based Prioritisation

Structural coverage is a metric that is often used as the prioritisation criterion [115–121]. The intuition
behind the idea is that early maximisation of structural coverage will also increase the chance of
early maximisation of fault detection. Therefore, while the goal of test case prioritisation remains
that of achieving a higher fault detection rate, prioritisation techniques actually aim to maximise early
coverage.

Rothermel et al. reported empirical studies of several prioritisation techniques [115, 121]. They
applied the same algorithm with different fault detection rate surrogates. The considered surrogates
were: branch-total, branch-additional, statement-total, statement-additional, Fault Exposing Potential
(FEP)-total, and FEP-additional.

The branch-total approach prioritises test cases according to the number of branches covered by
individual test cases, while branch-additional prioritises test cases according to the additional number
of branches covered by individual test cases. The statement-total and statement-additional approaches
apply the same idea to program statements, rather than branches. Algorithmically, ‘total’ approaches
are essentially instances of greedy algorithms whereas ‘additional’ approaches are essentially instances
of additional greedy algorithms.

The FEP of a test case is measured using program mutation. Program mutation introduces a simple
syntactic modification to the program source, producing a mutant version of the program [122]. This
mutant is said to be killed by a test case if the test case reveals the difference between the original
program and the mutant. Given a set of mutants, the mutation score of a test case is the ratio of mutants
that are killed by the test case to the total kill-able mutants. The FEP-total approach prioritises test cases
according to the mutation score of individual test cases, while the FEP-additional approach prioritises
test cases according to the additional increase in mutation score provided by individual test cases. Note
that FEP criterion can be constructed to be at least as strong as structural coverage; to kill a mutant,
a test case not only needs to achieve the coverage of the location of mutation but also to execute the
mutated part with a set of test inputs that can kill the mutant. In other words, coverage is necessary but
not sufficient to kill the mutants.

It is important to note that all the ‘additional’ approaches may reach 100% realisation of the utilised
surrogate before every test case is prioritised. For example, achieving 100% branch coverage may not

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 S.YOO AND M. HARMAN

require all the test cases in the test suite, in which case none of the remaining test cases can increase
the branch coverage. Rothermel et al. reverted to the ‘total’ approach once such a condition is met.

The results were evaluated using the Average Percentage of Fault Detection (APFD) metric. Higher
APFD values denote faster fault detection rates. When plotting the percentage of detected faults against
the number of executed test cases, APFD can be calculated as the area below the plotted line. More
formally, let T be the test suite containing n test cases and let F be the set of m faults revealed by T .
For ordering T ′, let TFi be the order of the first test case that reveals the ith fault. The APFD value for
T ′ is calculated as following [123]:

APFD = 1− TF1 + . . .+ TFm

nm
+

1

2n

Note that, while APFD is commonly used to evaluate test case prioritisation techniques, it is not the
aim of test case prioritisation techniques to maximise APFD. Maximisation of APFD would be possible
only when every fault that can be detected by the given test suite is already known. This would imply
that all test cases have been already executed, which would nullify the need to prioritise. APFD is
computed after the prioritisation only to evaluate the performance of the prioritisation technique.

Rothermel et al. compared the proposed prioritisation techniques to random prioritisation, optimal
prioritisation, and no prioritisation, using the Siemens suite programs. Optimal prioritisation is possible
because the experiment was performed in a controlled environment, i.e. the faults were already known.
The results show that all the proposed techniques produce higher APFD values than random or no
prioritisation. The surrogate with the highest APFD value differed between programs, suggesting
that there is no single best surrogate. However, on average across the programs, the FEP-additional
approach performed most effectively, producing APFD value of 74.5% compared to the 88.5% of the
optimal approach. It should still be noted that these results are dependent on many factors, including
the types of faults used for evaluation and types of mutation used for FEP, limiting the scope for
generalisation.

Elbaum et al. extended the empirical study of Rothermel et al. by including more programs
and prioritisation surrogates [116]. Among the newly introduced prioritisation surrogates, function-
coverage and function-level FEP enabled Elbaum et al. to study the effects of granularity on
prioritisation. Function-coverage of a test case is calculated by counting the number of functions that
the test case executes. Function-level FEP is calculated, for each function f and each test case t, by
summing the ratio of mutants in f killed by t. Elbaum et al. hypothesised that approaches with coarser
granularity would produce lower APFD values, which was confirmed statistically.

Jones and Harrold applied the greedy-based prioritisation approach to Modified Condition/Decision
Coverage (MC/DC) criterion [124]. MC/DC is a ‘stricter form’ of branch coverage; it requires
execution coverage at condition level. A condition is a Boolean expression that cannot be factored into
simpler Boolean expressions. By checking each condition in decision predicates, MC/DC examines
whether each condition independently affects the outcome of the decision [125]. They presented an
empirical study that contained only an execution time analysis of the prioritisation technique and not
an evaluation based on fault detection rate.

Srivastava and Thiagarajan combined the greedy-based prioritisation approach with regression test
selection [126]. They first identified the modified code blocks in the new version of the SUT by
comparing its binary code to that of the previous version. Once the modified blocks are identified, test

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 27

case prioritisation is performed using greedy-based prioritisation, but only with respect to the coverage
of modified blocks.

Do and Rothermel applied coverage-based prioritisation techniques to the JUnit testing environment,
a popular unit testing framework [127]. The results showed that prioritised execution of JUnit test cases
improved the fault detection rate. One interesting finding was that the random prioritisation sometimes
resulted in an APFD value higher than the untreated ordering, i.e. the order of creation. When executed
in the order of creation, newer unit tests are executed later. However, it is the newer unit tests that have a
higher chance of detecting faults. The empirical results showed that random prioritisation could exploit
this weakness of untreated ordering in some cases.

Li et al. applied various meta-heuristics for test case prioritisation [128]. They compared random
prioritisation, a hill climbing algorithm, a genetic algorithm, a greedy algorithm, the additional
greedy algorithm, and a two-optimal greedy algorithm. The greedy algorithm corresponds to the total
approaches outlined above, whereas the additional greedy algorithm corresponds to the additional
approaches outlined above. The two-optimal greedy is similar to the greedy algorithm except that
it considers two candidates at the same time rather than a single candidate for the next order. They
considered the Siemens suite programs and the program space, and evaluated each technique based
on APBC (Average Percentage of Block Coverage) instead of APFD. The results showed that the
additional greedy algorithm is the most efficient in general.

5.2. Interaction Testing

Interaction testing is required when the SUT involves multiple combinations of different components.
A common example would be configuration testing, which is required to ensure that the SUT executes
correctly on different combinations of environment, such as different operating systems or hardware
options. Each component that can be changed is called a factor; the number of choices for each factor
is called the level of the corresponding factor. As the number of factors and levels of each factor
increase, exhaustive testing of all possible combinations of factors becomes infeasible as it requires an
exponentially large test suite.

Instead of testing exhaustively, pair-wise interaction testing requires only that every individual
pair of interactions between different factors are included at least once in the testing process. The
reduction grows larger as more factors and levels are involved. More formally, the problem of obtaining
interaction testing combinations can be expressed as the problem of obtaining a covering array,
CA(N ; t, k, v), which is an array with N rows and k columns; v is the number of levels associated
with each factor, and t is the strength of the interaction coverage (2 in the case of pair-wise interaction
testing).

One important research direction in interaction testing is how to efficiently generate an interaction
test suite with high interaction coverage. This shares the same basic principles of test case prioritisation.
For example, the greedy approach aims to find, one by one, the ‘next’ test case that will most
increase the k-way interaction coverage [129, 130], which resembles the greedy approach to test case
prioritisation. However, the similarities are not just limited to the generation of interaction test suites.
Bryce and Colbourn assume that testers may value certain interactions higher than others [131, 132].
For example, an operating system with a larger user base may be more important than one with
a smaller user base. After weighting each level value for each factor, they calculate the combined
benefit of a given test by adding the weights of each level value selected for the test. They present a

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 S.YOO AND M. HARMAN

Deterministic Density Algorithm (DDA) that prioritises interaction tests according to their combined
benefit. Qu et al. compared different weighting schemes used for prioritising covering arrays [133,134].

Bryce and Memon also applied the principles of interaction coverage to the test case prioritisation
of Event-Driven Software (EDS) [135]. EDS takes sequences of events as input, changes state and
outputs new event sequences. A common example would be GUI-based programs. Bryce and Memon
interpreted t-way interaction coverage as sequences that contain different combinations of events over t
unique GUI windows. Interaction coverage based prioritisation of test suites was compared to different
prioritisation techniques such as unique event coverage (the aim is to cover as many unique events as
possible, as early as possible), longest to shortest (execute the test case with the longest event sequence
first) and shortest to longest (execute the test case with the shortest event sequence first). The empirical
evaluation showed that interaction coverage based testing of EDS can be more efficient than the other
techniques, provided that the original test suite contains higher interaction coverage. Note that Bryce
and Memon did not try to generate additional test cases to improve interaction coverage; they only
considered permutations of existing test cases.

5.3. Prioritisation Approaches Based on Other Criteria

While the majority of existing prioritisation literature concerns structural coverage in some form or
another, there are prioritisation techniques based on other criteria [136–139].

Distribution-based Approach Leon and Podgurski introduced distribution-based filtering and
prioritisation [136]. Distribution-based techniques minimise and prioritise test cases based on the
distribution of the profiles of test cases in the multi-dimensional profile space. Test case profiles are
produced by the dissimilarity metric, a function that produces a real number representing the degree
of dissimilarity between two input profiles. Using this metric, test cases can be clustered according to
their similarities. The clustering can reveal some interesting information. For example:

• Clusters of similar profiles may indicate a group of redundant test cases
• Isolated clusters may contain test cases inducing unusual conditions that are perhaps more likely

to cause failures
• Low density regions of the profile space may indicate uncommon usage behaviours

The first point is related to reduction of effort; if test cases in a cluster are indeed very similar, it may
be sufficient to execute only one of them. The second and third points are related to fault-proneness.
Certain unusual conditions and uncommon behaviours may tend to be harder to reproduce than more
common conditions and behaviours. Therefore, the corresponding parts of the program are likely to
be tested less than other, more frequently used parts of the program. Assigning a high priority to test
cases that execute these unusual behaviours may increase the chance of early fault detection. A good
example might be exception handling code.

Leon and Podgurski developed new prioritisation techniques that combine coverage-based priori-
tisation with distribution-based prioritisation. This hybrid approach is based on the observation that
basic coverage maximisation performs reasonably well compared to repeated coverage maximisation.
Repeated coverage maximisation refers to the prioritisation technique of Elbaum et al. [116], which,
after realising 100% coverage, repeatedly prioritises test cases starting from 0% coverage again. In

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 29

contrast, basic coverage maximisation stops prioritising when 100% coverage is achieved. Leon and
Podgurski observed that the fault detection rate of repeated coverage maximisation is not as high as that
of basic coverage maximisation. This motivated them to consider a hybrid approach that first prioritises
test cases based on coverage, then switches to distribution-based prioritisation once the basic coverage
maximisation is achieved. They considered two different distribution-based techniques. The one-per-
cluster approach samples one test case from each cluster, and prioritises them according to the order
of cluster creation during the clustering. The failure-pursuit approach behaves similarly, but it adds the
k closest neighbours of any test case that finds a fault. The results showed that the distribution-based
prioritisation techniques could outperform repeated coverage maximisation.

Human-based Approach Tonella et al. combined Case-Based Reasoning (CBR) with test case
prioritisation [137]. They utilised a machine learning technique called boosting, which is a framework
to combine simple learners into a single, more general and effective learner [140]. They adopted a
boosting algorithm for ranking learning called Rankboost [141]. The algorithm takes a test suite, T ,
an initial prioritisation index, f , and a set of pair-wise priority relations between test cases, Φ, as
input. The pair-wise priority relation is obtained from comparisons of test cases made by the human
tester. The output is a ranking function H : T → R such that, with test cases t1 and t2, t1 ≺ t2 if
H(t1) > H(t2). The ranking function H is then used to prioritise test cases.

They used the statement coverage metric and the cyclomatic complexity computed for the functions
executed by test cases as the initial prioritisation index. The test suite of the space program was
considered. In order to measure the human effort required for the learning process, different test suite
sizes were adopted, ranging from 10 to 100 test cases. The results were compared to other prioritisation
techniques including optimal ordering, random prioritisation, statement coverage prioritisation, and
additional statement coverage prioritisation (the latter two correspond to statement-total and statement-
additional respectively).

The results showed that, for all test suite sizes, the CBR approach was outperformed only by the
optimal ordering. The number of pair-wise relations entered manually showed a linear growth against
the size of test suites. Tonella et al. reported that for test suites of space with fewer than 60 test cases,
the CBR approach can be more efficient than other prioritisation techniques with limited human effort.
Note that empirical evaluation was performed based on an ideal user model, i.e. it was assumed that
the human tester always makes the correct decision when comparing test cases. One notable weakness
of this approach was that it did not scale well. The input from the human tester becomes inconsistent
beyond a certain number of comparisons, which in turn limits the size of the learning samples for CBR.

Yoo et al. tried to improve the scalability of human-based prioritisation approaches by combining
pair-wise comparisons of test cases with a clustering technique [138]. While the prioritisation is still
based on the comparisons made by the human tester, the tester is presented with clusters of similar test
cases instead of individual test cases. The prioritisation between clusters (inter-cluster prioritisation)
is, therefore, performed by the tester. However, the prioritisation within each cluster (intra-cluster
prioritisation) is performed based on coverage. After both layers of prioritisation are complete, the final
ordering of test cases is determined by selecting the test case with the highest priority, determined by
intra-cluster prioritisation, from the next cluster in the order determined by inter-cluster prioritisation,
until all the clusters are empty. This is called the Interleaved Clusters Prioritisation (ICP) technique.

With the use of clustering, Yoo et al. were able to reduce the size of the prioritisation problem so
that they could apply a more expensive pair-wise approach called Analytic Hierarchy Process (AHP).

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 S.YOO AND M. HARMAN

AHP is a pair-wise comparison technique developed by the Operations Research community [142] and
has been successfully applied to Requirements Engineering [143]. The combination of AHP and ICP
has been empirically evaluated for programs and test suites of various sizes, using a more realistic user
model (with errors). The results showed that this combination of techniques can be much more effective
than coverage-based prioritisation. One surprising finding was that sometimes, an error rate higher than
50%, i.e. the human tester making wrong comparisons half the time, did not prevent this technique
from achieving higher APFD than coverage-based prioritisation. Yoo et al. explained this unexpected
finding by showing that a certain amount of improvement derived from the effect of clustering. This
confirms the argument of Leon and Podgurski about the benefits of distribution-based approach [136];
the clustering sometimes enables the early execution of a fault-revealing test case that would have been
assigned low priority due to its low contribution to code coverage.

Probabilistic Approach Kim and Porter proposed a history based approach to prioritise test cases that
are already selected by regression test selection [144]. If the number of test cases selected by an RTS
technique is still too large, or if the execution costs are too high, then the selected test cases may have to
be further prioritised. Since the relevance to the recent change in SUT is assumed by the use of an RTS
technique, Kim et al. focus on the execution history of each test case, borrowing from statistical quality
control. They define the probabilities of each test case tc to be selected at time t as Ptc,t(Htc, α), where
Htc is a set of t timed observations {h1, . . . , ht} drawn from previous runs of tc and α is a smoothing
constant. Then the probability Ptc,t(Htc, α) is defined as follows:

P0 = h1
Pk = αhk + (1− α)Pk−1 (0 ≤ α ≤ 1, k ≥ 1)

Different definitions of Htc result in different prioritisation approaches. For example, Kim et al.
define Least Recently Used (LRU) prioritisation by using test case execution history as Htc with α
value that is as close to 0 as possible. The empirical evaluation showed that the LRU prioritisation
approach can be competitive in a severely constrained testing environment, i.e. when it is not possible
to execute all test cases selected by an RTS technique.

Mirarab and Tahvildari took a different probabilistic approach to test case prioritisation using
Bayesian Networks [145]. The Bayesian Network model is built upon changes in program elements,
fault proneness of program elements and probability of each test case to detect faults. Mirarab and
Tahvildari extended the approach by adding a feedback route to update the Bayesian Network as
prioritisation progresses [146]. For example, if a test case covers a set of program elements, the
probability of selecting other test cases that cover the same elements will be lowered. Note that this
corresponds to the ‘additional’ approach described by Rothermel et al. [115, 121].

History-based Approach Sherriff et al. presented a prioritisation technique based on association
clusters of software artefacts obtained by a matrix analysis called singular value decomposition [147].
The prioritisation approach depends on three elements: association clusters, relationship between test
cases and files and a modification vector. Association clusters are generated from a change matrix
using SVD; if two files are often modified together as a part of a bug fix, they will be clustered
into the same association cluster. Each file is also associated with test cases that affect or execute
it. Finally, a new system modification is represented as a vector in which the value indicates whether

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 31

a specific file has been modified. Using the association clusters and the modification vector, it is then
possible to assign each file with a priority that corresponds to how closely the new modification matches
each test case. One novel aspect of this approach is that any software artefact can be considered for
prioritisation. Sherriff et al. noted that the faults that are found in non-source files, such as media files
or documentation, can be as severe as those found in source code.

Requirement-based Approach Srikanth et al. presented requirement-based test case prioritisa-
tion [139]. Test cases are mapped to software requirements that are tested by them, and then
prioritised by various properties of the mapped requirements, including customer-assigned priority
and implementation complexity. One potential weakness of this approach is the fact that requirement
properties are often estimated and subjective values. Krishnamoorthi and Sahaaya developed a similar
approach with additional metrics [148].

Model-based Approach Korel et al. introduced a model based prioritisation approach [149–151].
Their initial approach was called selective prioritisation, which was strongly connected to RTS [149].
Test cases were classified into a high priority set, TSH , and a low priority set, TSL. They defined and
compared different definitions of high and low priority test cases, but essentially a test case is assigned
high priority if it is relevant to the modification made to the model. The initial selective prioritisation
process consists of the random prioritisation of TSH followed by the random prioritisation of
TSL. Korel et al. developed more sophisticated heuristics based on the dependence analysis of the
models [150, 151].

Other Approaches The use of mutation score for test case prioritisation has been analysed by
Rothermel et al. along with other structural coverage criteria [115,121]. Hou et al. considered interface-
contract mutation for the regression testing of component-based software and evaluated it with the
additional prioritisation technique [152].

Sampath et al. presented the prioritisation of test cases for web applications [153]. The test cases are,
in this case, recorded user sessions from the previous version of the SUT. Session-based test cases are
thought to be ideal for testing web applications because they tend to reflect the actual usage patterns
of real users, thereby making for realistic test cases. They compared different criteria for prioritisation
such as the number of HTTP requests per test case, coverage of parameter values, frequency of visits for
the pages recorded in sessions and the number of parameter values. The empirical evaluations showed
that prioritised test suites performed better than randomly ordered test suites, but also that there is not
a single prioritisation criterion that is always best. However, the 2-way parameter-value criterion, the
prioritisation criterion that orders tests to cover all pair-wise combinations of parameter-values between
pages as soon as possible, showed the highest APFD value for 2 out of 3 web applications that were
studied.

Fraser and Wotawa introduced a model-based prioritisation approach [154]. Their prioritisation
technique is based on the concept of property relevance [155]. A test case is relevant to a model
property if it is theoretically possible for the test case to violate the property. The relevance relation
is obtained by the use of a model-checker, which is used as the input to the greedy algorithm. While
they showed that property-bsed prioritisation can outperform coverage-based prioritisation, they noted
that the performance of property-based prioritisation is heavily dependent on the quality of the model
specification.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

32 S.YOO AND M. HARMAN

A few techniques and analyses used for test suite minimisation or regression test selection problem
have been also applied to test case prioritisation. Rummel et al. introduced a prioritisation technique
based on data-flow analysis by treating each du pair as a testing requirement to be covered [156].
Smith et al. introduced a prioritisation technique based on a call-tree model, which they also used
for test suite minimisation [26]. They prioritised test cases according to the number of call-tree paths
covered by each test case. Jeffrey and Gupta prioritised test cases using relevant slices [157], which was
also used for regression test selection [54]. Each test case was associated with output statements, from
which relevant slices were calculated. Then test cases were prioritised according to the sum of two
elements: the size of the corresponding relevant slice and the number of statements that are executed
by the test case but do not belong to the relevant slice. Both elements were considered to correlate to
the chance of revealing a fault introduced by a recent change.

5.4. Cost-Aware Test Case Prioritisation

Unlike test suite minimisation and regression test selection, the basic definition of test case
prioritisation does not involve filtering out test cases, i.e. it is assumed that the tester executes the
entire test suite following the order given by the prioritisation technique. This may not be feasible in
practice due to limited resources. A number of prioritisation techniques addressed this problem of the
need to be cost-aware [23, 24, 118, 158].

With respect to cost-awareness, the basic APFD metric has two limitations. First, it considers all
faults to be equally severe. Second, it assumes that every test case costs the same in resources. Elbaum
et al. extended the basic APFD metric to APFDc so that the metric incorporates not just the rate of
fault detection but also the severity of detected faults and the expense of executing test cases [118]. An
ordering of test cases according to the APFDc metric detects more severe faults at a lower cost. More
formally, let T be the set of n test cases with costs t1, . . . , tn, and let F be the set of m faults with
severity values f1, . . . , fm. For ordering T ′, let TFi be the order of the first test case that reveals the
ith fault. APFDc of T ′ is calculated as following:

APFDc =

∑m
i=1 (fi × (

∑n
j=TFi

tj − 1
2 tTFi

))∑n
i=1 ti ×

∑m
i=1 fi

Elbaum et al. applied random ordering, additional statement coverage prioritisation, additional
function coverage prioritisation and additional fault index prioritisation techniques to space, which
contains faults discovered during the development stage. They adopted several different models of
test case cost and fault severity, including uniform values, random values, normally distributed values
and models taken from the Mozilla open source project. The empirical results were achieved by
synthetically adding cost severity models to space. This enabled them to observe the impact of
different severity and cost models. They claimed two practical implications. With respect to test case
cost, they proposed the use of many small test cases rather than a few large test cases. Clearly the
number of possible prioritisations is higher with a test suite that contains many small test cases,
compared to one with a small number of large test cases. It was also claimed that having different
models of fault severity distribution can also impact the efficiency of testing. This is true only when
the prioritisation technique considers the fault detection history of previous tests.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 33

Elbaum et al. compared two different severity distribution models: linear and exponential. In the
linear model, the severity values grow linearly as the severity of faults increase, whereas they grow
exponentially in the exponential model. If the previous fault detection history correlates to the fault
detection capability of the current iteration of testing, the exponential model ensures that test cases
with a history of detecting more severe faults are executed earlier.

Walcott et al. presented a time-aware prioritisation technique [23]. Time-aware prioritisation does
not prioritise the entire test suite; it aims to produce a subset of test cases that are prioritised and can
be executed within the given time budget. More formally, it is defined as following:

Given: A test suite, T , the collection of all permutations of elements of the power set of permutations
of T , perms(2T), the time budget, tmax, a time function time : perms(2T) → R, and a fitness
function fit : perms(2T)→ R:

Problem: Find the test tuple σmax ∈ perms(2T) such that time(σmax) ≤ tmax and
∀σ′ ∈ perms(2T) where σmax 6= σ′ and time(σ′) ≤ tmax, fit(σmax) > fit(σ′).

Intuitively, a time-aware prioritisation technique selects and prioritises test cases at the same
time so that the produced ordered subset yields higher fault detection rates within the given time
budget. Walcott et al. utilised a genetic algorithm, combining selection and prioritisation into a single
fitness function. The selection component of the fitness function is given higher weighting so that
it dominates the overall fitness value produced. The results of the genetic algorithm were compared
to random ordering, reverse ordering and the optimal ordering. The results showed that time-aware
prioritisation produces higher rates of fault detection compared to random, initial, and reverse ordering.
However, Walcott et al. did not compare the time-aware prioritisation to the existing, non time-aware
prioritisation techniques. Note that non time-aware prioritisation techniques can also be executed in
‘time-aware’ manner by stopping the test when the given time budget is exhausted.

While Yoo and Harman studied test suite minimisation [24], their multi-objective optimisation
approach is also relevant to the cross-cutting concern of cost-awareness. By using multi-objective
optimisation heuristics, they obtained a Pareto-frontier which represents the trade-offs between the
different criteria, including cost. When there is a constraint on cost, the knowledge of Pareto-frontier
can provide the tester with more information to achieve higher coverage. The tester can then prioritise
the subset selected by observing the Pareto-frontier.

The cost-constraint problem has also been analysed using Integer Linear Programming (ILP) [159,
160]. Hou et al. considered the cost-constraint in web service testing [159]. Users of web services are
typically assigned with a usage quota; testing a system that uses web services, therefore, has to consider
the remaining quota for each web service. The ILP approach was later analysed in more generic context
using execution time of each test as a cost factor [160].

Do and Rothermel studied the impact of time constraints on the cost-effectiveness of existing
prioritisation techniques [158]. In total, six different prioritisation approaches were evaluated: original
order, random order, total block coverage, additional block coverage, Bayesian Network approach
without feedback, Bayesian Network approach with feedback. They considered four different time
constraints, each of which allows {25%, 50%, 75%, 100%} of time required for the execution of all test
cases. Each prioritisation approach was evaluated under these constraints using a cost-benefit model.
The results showed that, although time constraints affect techniques differently, it is always beneficial

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

34 S.YOO AND M. HARMAN

to adopt some prioritisation when under time constraints. The original ordering was always affected
the most severely.

6. Meta-Empirical Studies

Recently, the meta-empirical study of regression testing techniques has emerged as a separate subject
in its own right. It addresses cross-cutting concerns such as cost-benefit analysis of regression testing
techniques and the studies of evaluation methodology for these techniques. Both studies seek to
provide more confidence in efficiency and effectiveness of regression testing techniques. Work in
these directions is still in the early stages compared to the bodies of work available for minimisation,
selection or prioritisation techniques. However, it is believed that these studies will make significant
contributions towards the technology transfer.

Empirical evaluation of any regression testing technique is inherently a post-hoc process that
assumes the knowledge of a set of known faults. Without the a-priori knowledge of faults, it would not
be possible to perform a controlled experiment comparing different regression testing techniques. This
poses a challenge to the empirical evaluation of techniques, since the availability of fault data tends to
be limited [161].

Andrews et al. performed an extensive comparison between real faults and those seeded by
mutation [161]. One concern when using mutation faults instead of real faults is that there is no
guarantee that the detection of mutation faults can be an accurate predictor of the detection of real
faults. After considering various statistical data such as the ratio and distribution of fault detection,
Andrews et al. concluded that mutation faults can indeed provide a good indication of the fault detection
capability of the test suite, assuming that mutation operators are carefully selected and equivalent
mutants are removed. However, they also note that, while mutation faults were not easier to detect
than real faults, they were also not harder to detect. Do and Rothermel extended this study by focusing
the comparison on the result of test case prioritisation techniques [162, 163]. Here, they considered
whether evaluating prioritisation techniques against mutation faults and seeded faults differs. Based on
the comparison of these two evaluation methods, it was concluded that mutation faults can be safely
used in place of real or hand-seeded faults.

Although it was not their main aim, Korel et al. made an important contribution to the empirical
evaluation methodology of regression testing techniques through the empirical evaluation of their
prioritisation techniques [149–151]. They noted that, in order to compare different prioritisation
techniques in terms of their rate of fault detection, they need to be evaluated using all possible
prioritised sequences of test cases that may be generated by each technique. Even deterministic
prioritisation algorithms, such as the greedy algorithm, can produce different results for the same test
suite if some external factors change; for example, if the ordering of the initial test suite changes, there
is a chance that the greedy algorithm will produce a different prioritisation result. Korel et al. argued,
therefore, that the rate of fault detection should be measured in average across all possible prioritised
sequences. They introduced a new metric called Most Likely average Position (MLP), which measures
the average relative position of the first test case that detects a specific fault.

Elbaum et al. extended the empirical studies of prioritisation techniques with the Siemens suite and
space [116] by performing statistical analysis of the variance in APFD [117]. The APFD values were
analysed against various program, change, and test metrics. Program metrics included mean number of

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 35

executable statements, mean function size across all functions, etc. Change metrics included number
of functions with at least one changed statement, number of statements inserted or deleted, etc. Test
metrics included number of tests in the test suite, percentage of tests reaching a changed function,
mean number of changed functions executed by a test over a test suite, etc. The aim was to identify
the source of variations in results. Elbaum et al. reported that the metrics that reflected normalised
program characteristics (such as mean function size across the program) and characteristics of test
suites in relation to programs (such as mean percentage of functions executed by a test over a test
suite) were the primary contributors to the variances in prioritisation. While they reported that this
finding was not the anticipated one, it showed that the prioritisation results are the product of closely
coupled interactions between programs under test, changes and test suites.

Empirical evaluation of different techniques can benefit from a shared evaluation framework.
Rothermel and Harrold presented a comparison framework for RTS techniques [45], which was used
to compare different RTS techniques [1]. While minimisation and prioritisation techniques lack such
a framework, certain metrics have been used as a de facto standard evaluation framework. Rate of
reduction in size and rate of reduction in fault detection capability have been widely used to evaluate
test suite minimisation techniques [12,18–21,25,26,38–40,43]. Similarly, Average Percentage of Fault
Detection (APFD) [116] has been widely used to evaluate prioritisation techniques [23, 116, 117, 120,
121, 123, 127, 136–138, 145, 146, 154, 156, 157, 159, 160, 162–165].

Rothermel et al. studied the impact of test suite granularity and test input grouping on the cost-
effectiveness of regression testing [120,165]. They first introduced the concept of test grains, which is
the smallest unit of test input that is executable and checkable. Test cases are constructed by grouping
test grains. Based on this, they defined test suite granularity as the number of test grains in a test
case, and test input grouping as the way test grains are added to each test case, e.g. randomly or
grouped by their functionality. They reported that having a coarse grained test suite did not significantly
compromise the fault detection capability of the test suite, but resulted in decreased total execution
time. The savings in execution time can be explained by the fact that a coarse grained test suite
contains fewer test cases, thereby reducing the set-up time and other overheads that occur between
execution of different test cases. However, they did not consider the cost of the test oracle. It is not
immediately obvious whether the cost of a test oracle would increase or decrease as the test suite
granularity increases. This oracle cost could affect the overall cost-effectiveness.

Kim et al. studied the impact of test application frequency to the cost-effectiveness of RTS
techniques [166, 167]. Their empirical studies showed that the frequency of regression test application
has a significant impact on the cost-effectiveness of RTS techniques. They reported that RTS techniques
tend to be more cost-effective when the frequency of test application is high. It implies that only a small
amount of changes are made between tests, which makes RTS more effective. However, as intervals
between tests grows, changes are accumulated and RTS techniques tend to select more and more test
cases, resulting in low cost-effectiveness. One interesting finding is that, as intervals between tests
grow, random re-testing tends to work very well. With small testing intervals, the random approach
fails to focus on the modification. As testing intervals increase, more parts of SUT need to be re-tested,
improving the effectiveness of the random approach. Elbaum et al. studied the impacts of changes in
terms of the quantitative nature of modifications [164]. They investigated how the cost-effectiveness
of selection and prioritisation techniques is affected by various change metrics such as percentage of
changed lines of code, average number of lines of code changed per function, etc. Their empirical
analysis confirmed that the differences in these metrics can make a significant impact to the cost-

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

36 S.YOO AND M. HARMAN

effectiveness of techniques. However, they also reported that simple size of change, measured in lines
of code, was not a predominant factor in determining the cost-effectiveness of techniques. Rather, it
was the distribution of changes and the ability of test cases to reach these changes.

Elbaum et al. also presented a technique for selecting the most cost-effective prioritisation
technique [168]. They applied a set of prioritisation techniques to the same set of programs, and
analysed the resulting APFD metric values. Different techniques perform best for different programs;
they applied the classification tree technique to predict the best-suited technique for a program.
Note that the term ‘cost-effectiveness’ in this work means the efficiency of a prioritisation technique
measured by the APFD metric; the computational cost of applying these techniques was not considered.

Rosenblum and Weyuker introduced a coverage-based cost-effective predictor for RTS
techniques [169]. Their analysis is based on the coverage relation between test cases and program
entities. If each program entity has a uniformly distributed probability of being changed in the next
version, it is possible to predict the average number of test cases to be selected by a safe RTS technique
using coverage relation information. They evaluated their predictor with the TestTube RTS tool [62],
using multiple versions of the KornShell [170] and an I/O library for Unix, SFIO [171], as subjects.
Their predictor was reasonably accurate; for example, it predicted an average of 87.3% of the test
suite to be selected for KornShell, when TestTube selected 88.1%. However, according to the cost
model of Leung and White [172], the cost of coverage analysis for RTS per test case was greater
than the cost of execution per test case, indicating that TestTube was not cost-effective. Harrold
et al. introduced an improved version of the cost-effective predictor of Rosenblum et al. for more
accurate cost-effectiveness prediction of version-specific RTS [173]. They evaluated their predictor
using TestTube and another RTS tool, DejaVu [57].

Modelling the cost-effectiveness of regression testing techniques has emerged as a research topic.
This is motivated by the observation that any analysis of cost-effectiveness should depend on some
model. Leung and White introduced an early cost-model for regression testing strategies and compared
the cost models of the retest-all strategy and the selective retesting strategy [172]. Malishevsky et
al. presented detailed models of cost-benefit trade-offs for regression testing techniques [119]. They
applied their models to the regression testing of bash, a popular Unix shell [174], with different
ratio values of f

e+c , where f is the cost of omitting one fault, e is the additional cost per test
and c is the result-validation cost per test. The results implied that if a regression testing technique
does not consider f , it may overestimate the cost-effectiveness of a given technique. The cost
model of Malichevsky et al. has been extended and evaluated against the prioritisation of JUnit test
cases [175]. Smith and Kapfhammer studied the impact of the incorporation of cost into test suite
minimisation [176]. Existing minimisation heuristics including HGS [12], delayed greedy [18] and
2-optimal greedy algorithm [128] were extended to incorporate the execution cost of each test case.
Do and Rothermel considered the impact of time constraints on selection and prioritisation techniques
across multiple consecutive versions of subject programs to incorporate software life-cycle factors into
the study [177].

Reflecting the complexity of regression testing process, cost-effectiveness models often need to be
sophisticated in order to incorporate multiple variables [119, 175–177]. However, complexity can be a
barrier to uptake. Do and Rothermel introduced an approach based on statistical sensitivity analysis to
simplify complicated cost models [178]. Their approach fixed certain cost factors that were deemed to
be the least significant by the sensitivity analysis. The empirical evaluation showed that, while certain
levels of simplification can still preserve the accuracy of the model, over-simplification may be risky.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 37

Year count
1977 1
1978 0
1979 0
1980 0
1981 1
1982 0
1983 0
1984 0
1985 0
1986 0
1987 1
1988 2
1989 5
1990 5
1991 2
1992 4
1993 5
1994 3
1995 3
1996 3
1997 6
1998 6
1999 3
2000 5
2001 9
2002 11
2003 8
2004 7
2005 12
2006 15
2007 22
2008 13
2009 7

159

Year Minimisation Selection Prioritisation Empirical/ComparativeAugmentation
1977 0 1 0 0 0
1978 0 0 0 0 0
1979 0 0 0 0 0
1980 0 0 0 0 0
1981 0 1 0 0 0
1982 0 0 0 0 0
1983 0 0 0 0 0
1984 0 0 0 0 0
1985 0 0 0 0 0
1986 0 0 0 0 0
1987 0 1 0 0 0
1988 0 2 0 0 0
1989 0 5 0 0 0
1990 0 5 0 0 0
1991 0 1 0 1 0
1992 1 3 0 0 0
1993 1 4 0 0 0
1994 0 3 0 1 0
1995 1 2 0 0 0
1996 1 1 0 1 0
1997 0 7 0 3 0
1998 2 3 0 1 0
1999 1 1 2 0 0
2000 1 3 1 1 0
2001 0 5 4 2 0
2002 5 5 5 2 0
2003 3 3 2 1 2
2004 2 4 3 2 0
2005 2 4 5 3 0
2006 1 8 7 3 1
2007 7 9 8 0 0
2008 2 1 6 5 2
2009 3 1 4 1 0

33 83 47 27

0

6

12

18

24

30

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Relative Interest in Different Subjects

Minimisation Selection Prioritisation Empirical/Comparative

Harrold et al.
on minimisation

Rothermel et al.
on prioritisation

Empirical/Comparative
14%

Prioritisation
25%

Selection
44%

Minimisation
17%

Ratio Between Regression Testing Reserach Interest

0

8

17

25

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Number of Regression Testing Technique Publication

Leung et al.
on cost model

Fischer et al. 1977
on selection

Figure 2. Number of surveyed papers in each year since 1977. The field is still growing.

7. Summary & Discussion

7.1. Analysis of Current Global Trends in the Literature

This paper has produced a survey of 159 papers on test suite minimisation, Regression Test Selection
(RTS) and test case prioritisation. This number includes papers on methodologies of empirical
evaluation and comparative studies. Data summarising the results in these papers are shown in
Tables IV, V, VI and VII in Appendix. Note that the last category consists of papers on cross-cutting
concerns for empirical studies, such as methodologies of empirical evaluation and analyses of cost-
effectiveness, as well as purely comparative studies and surveys. Figure 2 plots the number of surveyed
papers for each year since 1977, when Fischer published his paper on regression test selection using
a linear programming approach [47]. The observed trend in the number of publications shows that the
field continues to grow.

Figure 3 shows the chronological trend in the number of studies for each of the topics in this
paper. In this figure, the papers have been classified into four different categories. The first three
categories contain papers on minimisation, selection and prioritisation respectively. The fourth category
contains papers on empirical evaluation and comparative studies, including previous surveys. Papers
that consider more than one subject are represented in each category for which they are relevant; for
example, a survey on RTS [1] is counted in both the selection category and the comparative studies
category. Therefore, while the graph closely resembles Figure 2, it is not a representation of the number
of publications. Rather, the figure should be read as a guide to the trends in study topics over time.

Considering that many different RTS approaches were introduced in the late 80s and 90s, recent
research on RTS techniques has been mostly concerned with the application and evaluation of the

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

38 S.YOO AND M. HARMAN

Year count
1977 1
1978 0
1979 0
1980 0
1981 1
1982 0
1983 0
1984 0
1985 0
1986 0
1987 1
1988 2
1989 5
1990 5
1991 2
1992 4
1993 5
1994 3
1995 3
1996 3
1997 6
1998 6
1999 3
2000 5
2001 9
2002 11
2003 8
2004 7
2005 12
2006 15
2007 22
2008 13
2009 7

159

Year Minimisation Selection Prioritisation Empirical/ComparativeAugmentation
1977 0 1 0 0 0
1978 0 0 0 0 0
1979 0 0 0 0 0
1980 0 0 0 0 0
1981 0 1 0 0 0
1982 0 0 0 0 0
1983 0 0 0 0 0
1984 0 0 0 0 0
1985 0 0 0 0 0
1986 0 0 0 0 0
1987 0 1 0 0 0
1988 0 2 0 0 0
1989 0 5 0 0 0
1990 0 5 0 0 0
1991 0 1 0 1 0
1992 1 3 0 0 0
1993 1 4 0 0 0
1994 0 3 0 1 0
1995 1 2 0 0 0
1996 1 1 0 1 0
1997 0 7 0 3 0
1998 2 3 0 1 0
1999 1 1 2 0 0
2000 1 3 1 1 0
2001 0 5 4 2 0
2002 5 5 5 2 0
2003 3 3 2 1 2
2004 2 4 3 2 0
2005 2 4 5 3 0
2006 1 8 7 3 1
2007 7 9 8 0 0
2008 2 1 6 5 2
2009 3 1 4 1 0

33 83 47 27

0

6

12

18

24

30

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Relative Interest in Different Subjects

Minimisation Selection Prioritisation Empirical/Comparative

Harrold et al.
on minimisation

Rothermel et al.
on prioritisation

Empirical/Comparative
14%

Prioritisation
25%

Selection
44%

Minimisation
17%

Ratio Between Regression Testing Reserach Interest

0

8

17

25

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Number of Regression Testing Technique Publication

Leung et al.
on cost model

Fischer et al. 1977
on selection

Figure 3. Relative research interest in each subject. Papers that consider more than one subject were counted
multiple times.

graph walk approach [83,84,87,90–95]. As the figure reveals, the interest in test case prioritisation has
been steadily growing since the late 90s. In Figures 2 and 3, the data for 2009 is, of course, partial.

Whereas most of the early papers on RTS were theoretical (see Table V), empirical evaluation of
regression testing techniques has recently received a burgeoning interest. Not only are there more
publications on pure empirical/comparative studies (as can be observed in Figure3), but recent studies
of regression testing techniques tend to evaluate the suggested techniques empirically, as can be
observed in Table IV, V and VI.

However, the scale of empirical studies seems to remain limited. Figure 4 shows the maximum size
of SUTs (measured in Lines of Code) and test suites (measured as the number of test cases) studied
empirically in the literature. For both data, only the empirical studies that explicitly note the size of
subject SUTs and test suites have been included. When only the average size of test suites is given,
the maximum average size of studied test suites has been used. For the maximum size of SUTs, only
the empirical studies that use source code as test subjects have been included; for example, studies of
regression testing of UML models are not included. For about 60% of empirical studies, the largest
SUT studied is smaller than 10,000 LoC. For about 70% of empirical studies, the largest test suite
studied contains fewer than 1,000 test cases.

Figure 5 shows the origins of subject SUTs studied in the literature. For detailed information
about the classification, refer to the Appendix. Programs available from the Software Infrastructure
Repository (SIR) [179] account for over 50% of subjects of empirical studies of regression testing
techniques. The predominant programming language is C, followed by Java. Considering that the first
paper appeared in 2002, model-based techniques have shown significant growth. Although there are

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 39

max program size (loc) max test suite

size

Siemens suite Space SIR Unix utils SIR Java utils Other C/C++/

C#

Other Java UML/Other

Model

Web service

Agrawal:1993lr

Anido:2003ph

Ball:1998yk

Bates:1993ul

Benedusi:1988fk

Beydeda:2001dz

Bible:2001oj

Binkley:1995fk

Black:2004xw

Briand:2002rt

Briand:2009yq

Bryce:2005hc

Bryce:2006cs

Bryce:2007kk

Chen:1994qy

Chen:1996lr

Chen:2002le

Chen:2007tx

Deng:2004qp

Do:2004lr

Do:2005ud

Do:2005zp

Do:2006ay

Do:2006jt

Do:2006qf

Do:2008ad

Do:2008zm

Elbaum:2000rr

Elbaum:2001fu

Elbaum:2001lr

Elbaum:2002dp

Elbaum:2003lp

Elbaum:2004yq

Fahad:2008rw

Farooq:2007cz

Fischer:1977vn

Fischer:1981ys

Fraser:2007ta

Graves:1998im

Gupta:1992ys

Harder:2003db

Harrold:1988zr

Harrold:1989gd

Harrold:1989uq

Harrold:1993qy

Harrold:1999bs

Harrold:2001nx

Harrold:2001wl

Hartmann:1989fj

Hartmann:1990fk

Hartmann:1990kx

Horgan:1991fk

Horgan:1992fk

Hou:2007fh

Hou:2008sw

Hsu:2009yq

II:2002jo

Jeffrey:2005ph

Jeffrey:2006bj

Jeffrey:2007rw

Jones:2001fv

Kaminski:2009ix

Kim:2000hb

Kim:2002pi

Kim:2005hb

Korel:2002sp

Korel:2005ai

Korel:2007dp

Korel:2008qe

Krishnamoorthi:
2009dk

Laski:1992yq

Le-Traon:2000bx

Lee:1990kx

Leitner:2007it

Leon:2003vn

Leung:1989pd

Leung:1990ly

Leung:1990vn

Leung:1991rt

Li:2007oq

Lin:2006ri

Malishevsky:
2002kx

Marre:2003rz

Martins:2005ud

McMaster:2005ve

McMaster:2007fr

McMaster:2008wq

Mirarab:2007dw

Mirarab:2008yf

Offutt:1995uq

Orso:2001ta

Orso:2007rz

Pilskalns:2006lk

Qu:2007eu

Qu:2008fp

Rosenblum:
1997by

Rosenblum:1997lr

Rothermel:1993fk

Rothermel:1994fk

Rothermel:1994tv

Rothermel:
1996mz

Rothermel:1996zr

Rothermel:1997rt

Rothermel:1997zh

Rothermel:1998fr

Rothermel:1998if

Rothermel:1999tg

Rothermel:2000cr

Rothermel:2001vn

Rothermel:2002dz

Rothermel:2002ve

Rothermel:2004lq

Rummel:2005oq

Ruth:2007gb

Ruth:2007jl

Ruth:2007kn

Sampath:2008it

Schroeder:2000fy

Sherriff:2007if

Smith:2007dq

Smith:2009qf

Srikanth:2005ly

Srivastava:2002hq

Taha:1989ys

Tallam:2006dk

Tarhini:2006nx

Tonella:2006uq

Vaysburg:2002th

Walcott:2006fj

White:1992fr

White:1993zr

Wong:1998gf

Wong:1999ij

Wu:2003bq

Xu:2007fe

Yau:1987qy

Yoo:2007dq

Yoo:2009cr

Zhang:2009wo

Zhao:2006bc

Zheng:2006ao

Zheng:2006jx

Zheng:2007hb

Zheng:2007ix

Zhong:2008il

Kung:1995qe

Muccini:2005ul

Muccini:2006wd

Orso:2004zr

Skoglund:2005mz

Vokolos:1997lq

Vokolos:1998ul

White:2003gf

White:2004fr

White:2008pd

Wong:1997rt

Yu:2008vl

selection Theory

reduction Theory

selection Theory

selection Theory

selection Theory

selection Theory

comparative 49316 1033 1 1 1

selection Theory

reduction 512 5542 1

selection model, 9 classes 70 methods 596 1

selection model, 32 classe 64 methods 323614 1

prioritisation interaction

prioritisation interaction

prioritisation interaction

selection 11000 39 1

reduction simulation only

selection N/A 306 1

reduction Theory

selection Theory

prioritisation 80400 877 1

empirical; prioritisation 80400 877

empirical Theory

empirical; selection; prioritisation 80400 1533 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 912 1

empirical 80400 912 1

prioritisation 6218 169 1 1

prioritisation 6218 169 1 1

prioritisation 6218 166 1

prioritisation 6218 169 1 1

empirical; selection; prioritisation 65632 1168 1

empirical; prioritisation 68000 1985.32 1 1

comparative survey

selection Theory

selection Theory

selection Theory

prioritisation model, N/A 246 1

comparative 516 398 1

selection Theory

reduction; augmentation 6218 169 1 1

selection Theory

selection Theory

selection Theory

reduction N/A 19 1

selection; prioritisation Theory

selection N/A 189 1 1

empirical; selection 516 19 1

selection Theory

selection Theory

selection Theory

selection 1000 26 1

reduction 1000 26 1

reduction; prioritisation 5500 183 1

prioritisation 12 web services 1000 1

reduction 1892226 5542 1 1 1

selection spreadsheet 493 1

reduction 516 135 1

prioritisation 516 1

reduction 6218 1560 1 1

selection; prioritisation 6218 4712 1 1

reduction logical

empirical; selection 6218 4361 1 1

prioritisation 6218 226 1 1

empirical; selection 6218 4361 1 1

reduction Theory

prioritisation 800 980 1

prioritisation 1416 1000 1

prioritisation 1416 1439 1 1

prioritisation 6000 N/A 1

selection

selection

selection

reduction unit minimisation

prioritisation N/A 3333 1 1

selection

selection

selection 550 235 1

empirical Theory

prioritisation 11148 4350 1 1

selection

empirical; prioritisation; reduction; selection 65632 1168 1

reduction 516 5542 1

selection 902 N/A 1

reduction 6218 4712 1

reduction 11803 1500 1

reduction 11803 1500 1

prioritisation 124000 105 1

prioritisation 80400 912 1

reduction 48 36.8 1

selection 6035 138 1

selection 6035 567 1 1

selection N/A 52 1

prioritisation 17155 796 1

prioritisation 107992 975 1

comparative 49316 1033 1 1

empirical; selection N/A N/A

selection Theory

selection Theory

empirical; selection Theory

comparative survey

selection 516 5542 1 1

selection 516 5542 1

empirical; selection 512 5542 1

reduction 516 260 1

selection 516 5542 1

prioritisation 516 19 1

selection 24849 317 1

prioritisation 6218 169 1 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

reduction 516 260 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

prioritisation 3 classes, 21 methods 21 1

selection Theory

selection Theory

selection Theory

prioritisation 9401 890 1

reduction Theory

selection Theory

reduction; prioritisation 1455 N/A 1

empirical; prioritisation; reduction 6822 110 1

prioritisation 2500 50 1

prioritisation 18000000 3128 1

selection Theory

reduction 6218 539 1 1

selection Theory

prioritisation 6218 169 1

reduction Theory

prioritisation 1808 53 1

selection Theory

selection Theory

reduction 842 33 1

reduction 6218 200 1

selection Theory

selection 3423 63 1

selection Theory

reduction 6218 169 1 1

prioritisation 122169 1061 1 1

prioritisation 5361 209 1

selection Theory

selection 757000 592 1

selection 757000 592 1

selection 757000 592 1

selection 757000 31 1

comparative 26824 N/A 1 1

selection interviewlibrary N/A 1

selection cargoroutermodel N/A 1

selection elevatorandcargorouter N/A 1

selection 532000 707 1

selection 1200000 N/A 1

selection 70 5 1

selection 6218 100 1

selection RealNetwork

selection ABB System

selection overonemillion 202 1

selection 6218 1000 1

reduction 6218 13585 1 1

Max. SUT

Size (LOC)

Count

1~10^3 21

10^3~10^4 34

10^4~10^5 23

> 10^5 13

> 10^5

14%

10^4~10^5

25%

10^3~10^4

37%

1~10^3

23%

Maximum Size of SUT Observed In Literature (LoC)

Max. Test

Suite Size

Count

~100

100~500

500~1000

1000~3000

3000~

16

27

22

14

14

3000~

15%

1000~3000

15%

500~1000

24%

100~500

29%
~100

17%

Max. Size of Test Suite Observed In Literature

Subject Type Count

Siemens

Suite

Space

SIR Unix

Utilities

SIR Java

Programs

Other C/C++/

C# Programs

Other Java

Programs

UML/Model/

Other

Languages

Web

Appliction

32

22

9

11

25

18

12

2

Web Appliction

2%

UML/Model/Other Languages

9%

Other Java Programs

14%

Other C/C++/C# Programs

19%

SIR Java Programs

8%

SIR Unix Utilities

7%

Space

17%
Siemens Suite

24%

Origin of Subject SUT Observed In Literature

max program size (loc) max test suite

size

Siemens suite Space SIR Unix utils SIR Java utils Other C/C++/

C#

Other Java UML/Other

Model

Web service

Agrawal:1993lr

Anido:2003ph

Ball:1998yk

Bates:1993ul

Benedusi:1988fk

Beydeda:2001dz

Bible:2001oj

Binkley:1995fk

Black:2004xw

Briand:2002rt

Briand:2009yq

Bryce:2005hc

Bryce:2006cs

Bryce:2007kk

Chen:1994qy

Chen:1996lr

Chen:2002le

Chen:2007tx

Deng:2004qp

Do:2004lr

Do:2005ud

Do:2005zp

Do:2006ay

Do:2006jt

Do:2006qf

Do:2008ad

Do:2008zm

Elbaum:2000rr

Elbaum:2001fu

Elbaum:2001lr

Elbaum:2002dp

Elbaum:2003lp

Elbaum:2004yq

Fahad:2008rw

Farooq:2007cz

Fischer:1977vn

Fischer:1981ys

Fraser:2007ta

Graves:1998im

Gupta:1992ys

Harder:2003db

Harrold:1988zr

Harrold:1989gd

Harrold:1989uq

Harrold:1993qy

Harrold:1999bs

Harrold:2001nx

Harrold:2001wl

Hartmann:1989fj

Hartmann:1990fk

Hartmann:1990kx

Horgan:1991fk

Horgan:1992fk

Hou:2007fh

Hou:2008sw

Hsu:2009yq

II:2002jo

Jeffrey:2005ph

Jeffrey:2006bj

Jeffrey:2007rw

Jones:2001fv

Kaminski:2009ix

Kim:2000hb

Kim:2002pi

Kim:2005hb

Korel:2002sp

Korel:2005ai

Korel:2007dp

Korel:2008qe

Krishnamoorthi:
2009dk

Laski:1992yq

Le-Traon:2000bx

Lee:1990kx

Leitner:2007it

Leon:2003vn

Leung:1989pd

Leung:1990ly

Leung:1990vn

Leung:1991rt

Li:2007oq

Lin:2006ri

Malishevsky:
2002kx

Marre:2003rz

Martins:2005ud

McMaster:2005ve

McMaster:2007fr

McMaster:2008wq

Mirarab:2007dw

Mirarab:2008yf

Offutt:1995uq

Orso:2001ta

Orso:2007rz

Pilskalns:2006lk

Qu:2007eu

Qu:2008fp

Rosenblum:
1997by

Rosenblum:1997lr

Rothermel:1993fk

Rothermel:1994fk

Rothermel:1994tv

Rothermel:
1996mz

Rothermel:1996zr

Rothermel:1997rt

Rothermel:1997zh

Rothermel:1998fr

Rothermel:1998if

Rothermel:1999tg

Rothermel:2000cr

Rothermel:2001vn

Rothermel:2002dz

Rothermel:2002ve

Rothermel:2004lq

Rummel:2005oq

Ruth:2007gb

Ruth:2007jl

Ruth:2007kn

Sampath:2008it

Schroeder:2000fy

Sherriff:2007if

Smith:2007dq

Smith:2009qf

Srikanth:2005ly

Srivastava:2002hq

Taha:1989ys

Tallam:2006dk

Tarhini:2006nx

Tonella:2006uq

Vaysburg:2002th

Walcott:2006fj

White:1992fr

White:1993zr

Wong:1998gf

Wong:1999ij

Wu:2003bq

Xu:2007fe

Yau:1987qy

Yoo:2007dq

Yoo:2009cr

Zhang:2009wo

Zhao:2006bc

Zheng:2006ao

Zheng:2006jx

Zheng:2007hb

Zheng:2007ix

Zhong:2008il

Kung:1995qe

Muccini:2005ul

Muccini:2006wd

Orso:2004zr

Skoglund:2005mz

Vokolos:1997lq

Vokolos:1998ul

White:2003gf

White:2004fr

White:2008pd

Wong:1997rt

Yu:2008vl

selection Theory

reduction Theory

selection Theory

selection Theory

selection Theory

selection Theory

comparative 49316 1033 1 1 1

selection Theory

reduction 512 5542 1

selection model, 9 classes 70 methods 596 1

selection model, 32 classe 64 methods 323614 1

prioritisation interaction

prioritisation interaction

prioritisation interaction

selection 11000 39 1

reduction simulation only

selection N/A 306 1

reduction Theory

selection Theory

prioritisation 80400 877 1

empirical; prioritisation 80400 877

empirical Theory

empirical; selection; prioritisation 80400 1533 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 912 1

empirical 80400 912 1

prioritisation 6218 169 1 1

prioritisation 6218 169 1 1

prioritisation 6218 166 1

prioritisation 6218 169 1 1

empirical; selection; prioritisation 65632 1168 1

empirical; prioritisation 68000 1985.32 1 1

comparative survey

selection Theory

selection Theory

selection Theory

prioritisation model, N/A 246 1

comparative 516 398 1

selection Theory

reduction; augmentation 6218 169 1 1

selection Theory

selection Theory

selection Theory

reduction N/A 19 1

selection; prioritisation Theory

selection N/A 189 1 1

empirical; selection 516 19 1

selection Theory

selection Theory

selection Theory

selection 1000 26 1

reduction 1000 26 1

reduction; prioritisation 5500 183 1

prioritisation 12 web services 1000 1

reduction 1892226 5542 1 1 1

selection spreadsheet 493 1

reduction 516 135 1

prioritisation 516 1

reduction 6218 1560 1 1

selection; prioritisation 6218 4712 1 1

reduction logical

empirical; selection 6218 4361 1 1

prioritisation 6218 226 1 1

empirical; selection 6218 4361 1 1

reduction Theory

prioritisation 800 980 1

prioritisation 1416 1000 1

prioritisation 1416 1439 1 1

prioritisation 6000 N/A 1

selection

selection

selection

reduction unit minimisation

prioritisation N/A 3333 1 1

selection

selection

selection 550 235 1

empirical Theory

prioritisation 11148 4350 1 1

selection

empirical; prioritisation; reduction; selection 65632 1168 1

reduction 516 5542 1

selection 902 N/A 1

reduction 6218 4712 1

reduction 11803 1500 1

reduction 11803 1500 1

prioritisation 124000 105 1

prioritisation 80400 912 1

reduction 48 36.8 1

selection 6035 138 1

selection 6035 567 1 1

selection N/A 52 1

prioritisation 17155 796 1

prioritisation 107992 975 1

comparative 49316 1033 1 1

empirical; selection N/A N/A

selection Theory

selection Theory

empirical; selection Theory

comparative survey

selection 516 5542 1 1

selection 516 5542 1

empirical; selection 512 5542 1

reduction 516 260 1

selection 516 5542 1

prioritisation 516 19 1

selection 24849 317 1

prioritisation 6218 169 1 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

reduction 516 260 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

prioritisation 3 classes, 21 methods 21 1

selection Theory

selection Theory

selection Theory

prioritisation 9401 890 1

reduction Theory

selection Theory

reduction; prioritisation 1455 N/A 1

empirical; prioritisation; reduction 6822 110 1

prioritisation 2500 50 1

prioritisation 18000000 3128 1

selection Theory

reduction 6218 539 1 1

selection Theory

prioritisation 6218 169 1

reduction Theory

prioritisation 1808 53 1

selection Theory

selection Theory

reduction 842 33 1

reduction 6218 200 1

selection Theory

selection 3423 63 1

selection Theory

reduction 6218 169 1 1

prioritisation 122169 1061 1 1

prioritisation 5361 209 1

selection Theory

selection 757000 592 1

selection 757000 592 1

selection 757000 592 1

selection 757000 31 1

comparative 26824 N/A 1 1

selection interviewlibrary N/A 1

selection cargoroutermodel N/A 1

selection elevatorandcargorouter N/A 1

selection 532000 707 1

selection 1200000 N/A 1

selection 70 5 1

selection 6218 100 1

selection RealNetwork

selection ABB System

selection overonemillion 202 1

selection 6218 1000 1

reduction 6218 13585 1 1

Max. SUT

Size (LOC)

Count

1~10^3 21

10^3~10^4 34

10^4~10^5 23

> 10^5 13

> 10^5

14%

10^4~10^5

25%

10^3~10^4

37%

1~10^3

23%

Maximum Size of SUT Observed In Literature (LoC)

Max. Test

Suite Size

Count

~100

100~500

500~1000

1000~3000

3000~

16

27

22

14

14

3000~

15%

1000~3000

15%

500~1000

24%

100~500

29%
~100

17%

Max. Size of Test Suite Observed In Literature

Subject Type Count

Siemens

Suite

Space

SIR Unix

Utilities

SIR Java

Programs

Other C/C++/

C# Programs

Other Java

Programs

UML/Model/

Other

Languages

Web

Appliction

32

22

9

11

25

18

12

2

Web Appliction

2%

UML/Model/Other Languages

9%

Other Java Programs

14%

Other C/C++/C# Programs

19%

SIR Java Programs

8%

SIR Unix Utilities

7%

Space

17%
Siemens Suite

24%

Origin of Subject SUT Observed In Literature

Figure 4. Maximum size of SUT and test suites studied in literature

max program size (loc) max test suite

size

Siemens suite Space SIR Unix utils SIR Java utils Other C/C++/

C#

Other Java UML/Other

Model

Web service

Agrawal:1993lr

Anido:2003ph

Ball:1998yk

Bates:1993ul

Benedusi:1988fk

Beydeda:2001dz

Bible:2001oj

Binkley:1995fk

Black:2004xw

Briand:2002rt

Briand:2009yq

Bryce:2005hc

Bryce:2006cs

Bryce:2007kk

Chen:1994qy

Chen:1996lr

Chen:2002le

Chen:2007tx

Deng:2004qp

Do:2004lr

Do:2005ud

Do:2005zp

Do:2006ay

Do:2006jt

Do:2006qf

Do:2008ad

Do:2008zm

Elbaum:2000rr

Elbaum:2001fu

Elbaum:2001lr

Elbaum:2002dp

Elbaum:2003lp

Elbaum:2004yq

Fahad:2008rw

Farooq:2007cz

Fischer:1977vn

Fischer:1981ys

Fraser:2007ta

Graves:1998im

Gupta:1992ys

Harder:2003db

Harrold:1988zr

Harrold:1989gd

Harrold:1989uq

Harrold:1993qy

Harrold:1999bs

Harrold:2001nx

Harrold:2001wl

Hartmann:1989fj

Hartmann:1990fk

Hartmann:1990kx

Horgan:1991fk

Horgan:1992fk

Hou:2007fh

Hou:2008sw

Hsu:2009yq

II:2002jo

Jeffrey:2005ph

Jeffrey:2006bj

Jeffrey:2007rw

Jones:2001fv

Kaminski:2009ix

Kim:2000hb

Kim:2002pi

Kim:2005hb

Korel:2002sp

Korel:2005ai

Korel:2007dp

Korel:2008qe

Krishnamoorthi:
2009dk

Laski:1992yq

Le-Traon:2000bx

Lee:1990kx

Leitner:2007it

Leon:2003vn

Leung:1989pd

Leung:1990ly

Leung:1990vn

Leung:1991rt

Li:2007oq

Lin:2006ri

Malishevsky:
2002kx

Marre:2003rz

Martins:2005ud

McMaster:2005ve

McMaster:2007fr

McMaster:2008wq

Mirarab:2007dw

Mirarab:2008yf

Offutt:1995uq

Orso:2001ta

Orso:2007rz

Pilskalns:2006lk

Qu:2007eu

Qu:2008fp

Rosenblum:
1997by

Rosenblum:1997lr

Rothermel:1993fk

Rothermel:1994fk

Rothermel:1994tv

Rothermel:
1996mz

Rothermel:1996zr

Rothermel:1997rt

Rothermel:1997zh

Rothermel:1998fr

Rothermel:1998if

Rothermel:1999tg

Rothermel:2000cr

Rothermel:2001vn

Rothermel:2002dz

Rothermel:2002ve

Rothermel:2004lq

Rummel:2005oq

Ruth:2007gb

Ruth:2007jl

Ruth:2007kn

Sampath:2008it

Schroeder:2000fy

Sherriff:2007if

Smith:2007dq

Smith:2009qf

Srikanth:2005ly

Srivastava:2002hq

Taha:1989ys

Tallam:2006dk

Tarhini:2006nx

Tonella:2006uq

Vaysburg:2002th

Walcott:2006fj

White:1992fr

White:1993zr

Wong:1998gf

Wong:1999ij

Wu:2003bq

Xu:2007fe

Yau:1987qy

Yoo:2007dq

Yoo:2009cr

Zhang:2009wo

Zhao:2006bc

Zheng:2006ao

Zheng:2006jx

Zheng:2007hb

Zheng:2007ix

Zhong:2008il

Kung:1995qe

Muccini:2005ul

Muccini:2006wd

Orso:2004zr

Skoglund:2005mz

Vokolos:1997lq

Vokolos:1998ul

White:2003gf

White:2004fr

White:2008pd

Wong:1997rt

Yu:2008vl

selection Theory

reduction Theory

selection Theory

selection Theory

selection Theory

selection Theory

comparative 49316 1033 1 1 1

selection Theory

reduction 512 5542 1

selection model, 9 classes 70 methods 596 1

selection model, 32 classe 64 methods 323614 1

prioritisation interaction

prioritisation interaction

prioritisation interaction

selection 11000 39 1

reduction simulation only

selection N/A 306 1

reduction Theory

selection Theory

prioritisation 80400 877 1

empirical; prioritisation 80400 877

empirical Theory

empirical; selection; prioritisation 80400 1533 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 877 1

empirical; prioritisation 80400 912 1

empirical 80400 912 1

prioritisation 6218 169 1 1

prioritisation 6218 169 1 1

prioritisation 6218 166 1

prioritisation 6218 169 1 1

empirical; selection; prioritisation 65632 1168 1

empirical; prioritisation 68000 1985.32 1 1

comparative survey

selection Theory

selection Theory

selection Theory

prioritisation model, N/A 246 1

comparative 516 398 1

selection Theory

reduction; augmentation 6218 169 1 1

selection Theory

selection Theory

selection Theory

reduction N/A 19 1

selection; prioritisation Theory

selection N/A 189 1 1

empirical; selection 516 19 1

selection Theory

selection Theory

selection Theory

selection 1000 26 1

reduction 1000 26 1

reduction; prioritisation 5500 183 1

prioritisation 12 web services 1000 1

reduction 1892226 5542 1 1 1

selection spreadsheet 493 1

reduction 516 135 1

prioritisation 516 1

reduction 6218 1560 1 1

selection; prioritisation 6218 4712 1 1

reduction logical

empirical; selection 6218 4361 1 1

prioritisation 6218 226 1 1

empirical; selection 6218 4361 1 1

reduction Theory

prioritisation 800 980 1

prioritisation 1416 1000 1

prioritisation 1416 1439 1 1

prioritisation 6000 N/A 1

selection

selection

selection

reduction unit minimisation

prioritisation N/A 3333 1 1

selection

selection

selection 550 235 1

empirical Theory

prioritisation 11148 4350 1 1

selection

empirical; prioritisation; reduction; selection 65632 1168 1

reduction 516 5542 1

selection 902 N/A 1

reduction 6218 4712 1

reduction 11803 1500 1

reduction 11803 1500 1

prioritisation 124000 105 1

prioritisation 80400 912 1

reduction 48 36.8 1

selection 6035 138 1

selection 6035 567 1 1

selection N/A 52 1

prioritisation 17155 796 1

prioritisation 107992 975 1

comparative 49316 1033 1 1

empirical; selection N/A N/A

selection Theory

selection Theory

empirical; selection Theory

comparative survey

selection 516 5542 1 1

selection 516 5542 1

empirical; selection 512 5542 1

reduction 516 260 1

selection 516 5542 1

prioritisation 516 19 1

selection 24849 317 1

prioritisation 6218 169 1 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

reduction 516 260 1

empirical; prioritisation; reduction; selection 68782 1985 1 1

prioritisation 3 classes, 21 methods 21 1

selection Theory

selection Theory

selection Theory

prioritisation 9401 890 1

reduction Theory

selection Theory

reduction; prioritisation 1455 N/A 1

empirical; prioritisation; reduction 6822 110 1

prioritisation 2500 50 1

prioritisation 18000000 3128 1

selection Theory

reduction 6218 539 1 1

selection Theory

prioritisation 6218 169 1

reduction Theory

prioritisation 1808 53 1

selection Theory

selection Theory

reduction 842 33 1

reduction 6218 200 1

selection Theory

selection 3423 63 1

selection Theory

reduction 6218 169 1 1

prioritisation 122169 1061 1 1

prioritisation 5361 209 1

selection Theory

selection 757000 592 1

selection 757000 592 1

selection 757000 592 1

selection 757000 31 1

comparative 26824 N/A 1 1

selection interviewlibrary N/A 1

selection cargoroutermodel N/A 1

selection elevatorandcargorouter N/A 1

selection 532000 707 1

selection 1200000 N/A 1

selection 70 5 1

selection 6218 100 1

selection RealNetwork

selection ABB System

selection overonemillion 202 1

selection 6218 1000 1

reduction 6218 13585 1 1

Max. SUT

Size (LOC)

Count

1~10^3 21

10^3~10^4 34

10^4~10^5 23

> 10^5 13

> 10^5

14%

10^4~10^5

25%

10^3~10^4

37%

1~10^3

23%

Maximum Size of SUT Observed In Literature (LoC)

Max. Test

Suite Size

Count

~100

100~500

500~1000

1000~3000

3000~

16

27

22

14

14

3000~

15%

1000~3000

15%

500~1000

24%

100~500

29%
~100

17%

Max. Size of Test Suite Observed In Literature

Subject Type Count

Siemens

Suite

Space

SIR Unix

Utilities

SIR Java

Programs

Other C/C++/

C# Programs

Other Java

Programs

UML/Model/

Other

Languages

Web

Appliction

32

22

9

11

25

18

12

2

Web Appliction

2%

UML/Model/Other Languages

9%

Other Java Programs

14%

Other C/C++/C# Programs

19%

SIR Java Programs

8%

SIR Unix Utilities

7%

Space

17%
Siemens Suite

24%

Origin of Subject SUT Observed In Literature

Figure 5. Origins of subject SUTs observed in the literature.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

40 S.YOO AND M. HARMAN

several papers on RTS for web applications [91–95], empirical evaluation of these techniques remains
limited.

7.2. State-of-the-Art, Trends and Issues

7.2.1. State-of-the-Art

Among the class of RTS techniques, the graph walk approach seems to be the predominant technique
in the literature. Although it was originally conceived for Control Dependence Graphs and Program
Dependence Graphs [46, 56], the most widely used form of graph walk approach works on Control
Flow Graphs [57, 79]. Its popularity can be observed from the fact that the approach has been applied
to many forms of graph representation of SUT that are not CFGs [82–84, 87]. Indeed, the strength of
the graph walk approach lies not only in the fact that it is intuitive but also in the generic applicability
of the technique to any graph representation of systems.

By studying the literature, it becomes clear that two ideas played essential roles in the development
of RTS techniques: Leung and White’s early idea of regression testing and test case classification [10],
and Rothermel and Harrold’s definition of a safe regression test selection [45]. Collectively, these two
ideas provided a profound theoretical framework that can be used to evaluate RTS techniques.

The existence of such a theoretical framework is what differentiate RTS techniques from test suite
minimisation and test case prioritisation. For RTS techniques, it is possible to define what a safe
technique should do because the RTS problem is specifically focused on the modifications between
two versions of SUT. Minimisation and prioritisation techniques, on the other hand, are forced to
rely on surrogate metrics for real fault detection capability. Therefore, it may not be clear what ‘safe’
minimisation or prioritisation techniques would mean. A minimisation technique would not be safe
unless the surrogate metric perfectly captures the fault detection capability of the test suite; however,
the empirical studies so far have shown that there is no such single metric. For prioritisation, the concept
of ‘safe’ and ‘non-safe’ does not apply directly since the aim of the technique is to permute the test
suite and not to select a subset out of it.

Naturally, the history of minimisation and prioritisation literature is an on-going exploration of
different heuristics and surrogate metrics. It is interesting to note that the greedy algorithm, a good
approximation for the set cover problem and, therefore, test suite minimisation problem, is also an
efficient heuristic for test case prioritisation precisely because of its greedy nature. In other words,
as much as possible, as soon as possible. As a result of this, the greedy approach and its variations
have a strong presence in the literature on both test suite minimisation [11, 14, 18] and test case
prioritisation [115, 116, 121]. Recently, there are other approaches to test suite minimisation and
test case prioritisation that aim to overcome the uncertainty of surrogates, e.g. the use of multiple
minimisation criteria [21,22,24] and the use of expert knowledge for test case prioritisation [137,138].

7.2.2. Trends

Emphasis on Models: Whereas most of the early regression testing techniques concerned code-based,
white-box regression testing, the model-based regression testing approach has been of more recent
growing interest [32–34, 68, 69, 88, 107–111]. UML models and Extended Finite State Machines

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 41

(EFSMs) are often used.

New Domains: While the majority of existing literature on regression testing techniques concerns
stand-alone programs written in C and Java, there are a growing number of other domains that are
being considered for regression testing. For example, spreadsheets [76], GUIs [25, 180] and web
applications [91–95, 153] have been considered.

Multi-criteria Regression Testing: In minimisation and prioritisation, it is known that there is
no single surrogate metric that correlates to fault prediction capability for all programs [8, 38–
40, 115, 121]. One potential way of overcoming this limitation is to consider multiple surrogates
simultaneously [21, 22] using classical multi-objective optimisation techniques, such as the weighted
sum approach [21] or the prioritised approach [22]. Expert domain knowledge has also been used in
addition to software metrics for test case prioritisation [137,138]. Finally, Multi-Objective Evolutionary
Algorithms (MOEAs) have been used to deal with multiple objectives [24].

Cost-awareness: The cost of regression testing is a cross-cutting concern for all three classes of
regression testing techniques. Studies of cost-aware regression testing can be classified into two
categories. First, there is work that aims to incorporate the cost of testing directly into regression testing
techniques at technical level; for example, cost-aware test case prioritisation [23, 118] or minimisation
techniques that provide the tester with a series of alternative subsets of the original test suites that can
be executed in different amounts of time [24]. Second, there are empirical evaluations of regression
testing techniques that consider whether the application of these techniques is indeed cost-effective in
the wider context of the overall software lifecycle [120, 158, 165, 169, 177].

7.2.3. Issues

Limited Subjects: In Figure 5, subject programs from SIR [179] account for almost 60% of the
subjects of empirical studies observed in the regression testing technique literature. While this is
certainly evidence that SIR has been of tremendous value to the research community, it also means
that many regression testing techniques are being evaluated against a limited set of programs and test
suites. By no means is this a criticism of SIR itself or work that is based on subjects from SIR; rather,
the dependency on SIR shows how time consuming and difficult it is to collect multiple versions of
program source code, their test suites and associated fault information, let alone to make it publicly
available. The SIR commonality also supports and facilitates comparisons. However, the community
faces a possible risk of ‘over-fitting’ the research of these techniques to those programs that are easily
available. Open source software projects are often suggested as an alternative source of data, but from
the results of this survey analysis it seems that their use for research on regression testing techniques is
limited.

Two potential approaches to the issue of limited subjects can be envisioned. The first approach is
to design a method that will allow a realistic simulation of real software faults. There is early work in
this direction. Andrews et al. considered whether mutation faults are similar to real faults [161]; Do
and Rothermel studied the same question especially in the context of regression testing [163]. Jia and
Harman used a search-based approach to obtain higher-order mutation faults that are more ‘subtle’ and,
therefore, potentially harder to detect than first order mutation faults [181].

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

42 S.YOO AND M. HARMAN

The second approach is to engage more actively with industry and open source communities. This
is not an easy task, because the information about testing and software faults tends to be sensitive,
particularly to commercial organisations. The research community faces the challenge of convincing
the wider practitioner community of the cost-effectiveness and usefulness of these techniques. This is
closely related to the issue of technology transfer, to which the paper now turns.

Technology Transfer: A detailed observation of the literature suggests that the community may
have reached a stage of maturity that, in order to progress to the next level of achievement,
technology transfer to industry will play an important role. While the research community may not
have found the ‘silver bullet’, most empirical evaluation of the proposed techniques suggests that
application of minimisation, selection and prioritisation techniques does make a difference from 1)
uncontrolled regression testing, i.e. retest-all approach and un-prioritised regression testing, and 2)
random approaches.

However, empirical evaluation and application of regression testing techniques at industrial level
seems to remain limited [182]. Out of the 159 papers listed in Table IV, V, VI and VII, only 31 papers
list a member of industry as an author or a co-author. More importantly, only 12 papers consider
industrial software artefacts as a subject of the associated empirical studies [68, 69, 88, 99–102, 104–
106, 126, 147]. This suggests that a large scale industrial uptake of these techniques has yet to occur.

8. Future Directions

This section discusses some of the possible future directions in the field of regression testing
techniques. While it is not possible to predict the future direction a field of study will follow, it was
possible to identify some trends in literature, which may suggest and guide the direction of future
research.

8.1. Orchestrating Regression Testing Techniques with Test Data Generation

Automatic test data generation has made advances in both functional and non-functional testing [183].
Superficially test data generation is the counterpart to regression testing techniques; it creates test cases
while regression testing seeks to mange them. However, because these two activities are typically
located at the opposite ends of the testing process, they may become close when the testing process
repeats.

Orchestrating regression testing with test data generation has a long heritage. From the classification
of test cases by Leung and White [10], it follows that regression testing involves two different needs that
are closely related to test data generation: repairing obsolete test cases for corrective regression testing
and generating additional test data for progressive regression testing. The second problem, in particular,
has been referred to as the test suite augmentation problem [184, 185]. There was early work on both
problems. Memon and Soffa considered automatic repair of GUI test cases that were made obsolete by
the changes in the GUI [180], which was later extended by Memon [186]. Similarly, Alshahwan and
Harman focused on the use of user session data for regression testing of web applications, and how the
test cases can be automatically repaired for the next version [187]. Apiwattanapong et al. identified the

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 43

testing requirements that are needed to test the new and modified parts of a SUT so that additional test
data can be generated automatically [184, 185].

However, it is believed that there are additional areas that may be synergetic. For example, test data
generation might possibly refer to the test cases selected and unselected during the last iteration in
order to identify the part of the SUT to focus on. Similarly, regression testing techniques can use the
additional information provided by test data generation techniques in order to make regression testing
more efficient and effective. For example, there are test data generation techniques that target a specific
concern in the SUT, such as detection of the presence of a memory leak. The additional information
about the intention behind each test case could be used to enrich the minimisation, selection and
prioritisation process.

8.2. Multi-Objective Regression Testing
Regression testing is a complex and costly process that may involve multiple objectives and constraints.
For example, the cost of executing a test case is usually measured as the time taken to execute the test
case. However, there may be a series of different costs involved in executing a test case, such as setting
up the environment or preparing a test input, each of which may be subject to a different constraint.
Existing techniques also assume that test cases can be executed in any given order without any change
to the cost of execution, which seems unrealistic. Test cases may have dependency relations between
them. It may also be possible to lower the cost of execution by grouping test cases that share the same
test environment, thereby saving set-up time.

Considering the complexity of real-world regression testing, existing representations of problems
in regression testing may be over-simplistic. Indeed, most of the published empirical studies rely on
relatively small-scale academic examples. Even when real-world programs are studied, they tend to be
individual programs, not a software system as a whole. Larger software systems do not simply entail
larger problem size; they may denote a different level of complexity.

It is believed that, in order to cope with the complexity of regression testing, regression testing
techniques may need to become multi-objective. There is existing, preliminary work that seeks to
represent the cost of test case execution as an additional constraint using evolutionary algorithms [23,
24]. Multi-objective optimisation heuristics may provide the much-needed flexibility that is required
for the representation of problems with high complexity.

Another benefit of moving to a multi-objective paradigm is the fact that it provides additional
insight into the regression testing problem by allowing the testers to observe the inherent trade-offs
between multiple constraints. This is not possible with so called classical approaches to multi-objective
problems that either consider one objective at a time [22] or conflate multiple objectives into a single
objective using weighting [21,23]; these approaches may be based on multiple criteria, but they are not
truly multi-objective in the sense that they all produce a single solution. The result of a multi-objective
optimisation is often a set of solutions that do not dominate each other, thereby forming the trade-offs
between constraints. The insight into the trade-offs may provide additional information that is hard to
obtain manually.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

44 S.YOO AND M. HARMAN

8.3. Problem of Test Oracle and Its Cost

Test oracles present a set of challenging problems for software testing. It is difficult to generate
them automatically, they often require human efforts to verify and the cost of this effort is hard to
estimate and measure. The oracle cost has been considered as a part of cost models [178], but has
not been considered as a part of the process of minimisation, selection and prioritisation itself. Since
regression testing techniques seek to efficiently re-use existing test cases, information about the cost of
verifying the output observed with the existing test suite may be collected across versions. This can be
incorporated into the existing regression testing techniques.

While a test oracle and its cost may be seen as yet another additional objective that can be considered
using a multi-objective approach, it can be argued that the test oracle will present many interesting and
exciting research questions in the context of regression testing and, thus, deserves a special treatment in
its own right. This is because, compared to other testing cost such as the physical execution time of test
cases, the test oracle cost is closely related to the quality of testing. Moreover, unlike some costs that
can be reduced by using more advanced hardware, the cost of oracle verification derives from human
effort and is, therefore, harder to reduce. These characteristics make the issues related to test oracles
challenging but interesting research subjects.

8.4. Consideration of Other Domains

The majority of regression testing techniques studied in this survey concern white-box structural
regression testing of code-level software artefacts. However, other domains are emerging as new and
exciting research subjects.

Recently, Service Oriented Architectures (SOAs) have been of keen interest both for academic
researchers and industrialists. In the SOA paradigm, software system is built, or composed, by
orchestrating a set of web services, each of which takes charge of a specific task. Several approaches
have been introduced to address the issue of regression testing of web services, most of which seek to
apply the same technique developed for traditional applications to web services [91–95]. However, the
inherently distributed nature of an SOA system presents several challenges that are alien to traditional
regression testing techniques.

Web services often reside in remote locations and are developed by a third-party, making it
hard to apply the traditional white-box regression testing techniques that require analysis of source
code. Modifications can happen across multiple services, which can make fault localisation difficult.
High interactivity in web applications may result in complex test cases that may involve human
interaction. Finally, distributed systems often contain concurrency issues. Traditional regression testing
techniques assume that the program produces deterministic output. This may not be adequate for
testing applications with concurrency. Answers to these specific issues in regression testing of web
applications are still in the early stage of development.

Model-based regression testing techniques have also received growing interests [68, 69, 107–111].
It is believed that the model-based regression testing techniques will be of crucial importance in the
future for the following reasons:

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 45

• Higher level regression testing: these techniques can act as a medium between
requirement/specification and testing activities, bringing regression testing from the structural
level to functional level.
• Scalability: in dealing with software systems of industrial scale, model-based techniques will

scale up better than code-based techniques.

However, there are a few open research questions. First, there is the well known issue of traceability.
Unless the traceability from requirements and specifications to code-level artefacts and test cases is
provided, the role of model-based regression testing techniques will be severely limited. Second, there
is the issue of test adequacy: if a test adequacy A is appropriate for a model M , which test adequacy
should be used to test the program P that has been automatically generated from M? Does A still
apply to P ? If so, does it follow that M being adequate for A means P will be adequate for A as well?

There are also other interesting domains to consider. Testing of GUIs has received growing interest,
not only in the context of regression testing [25, 135, 180], but also in the context of testing in
general [188, 189]. Regression testing GUIs presents a different set of challenges to code-based
structural regression testing since GUIs are usually generated in a visual programming environment;
they are often subject to frequent changes and, not being well-typed, do not readily facilitate static
analysis.

8.5. Non-functional Testing

A majority of existing regression testing techniques rely upon structural information about the SUT,
such as data flow analysis, CFG analysis, program slices and structural coverage. The impact that
non-functional property testing will have on regression testing techniques has not been fully studied.
Existing techniques were able to map the problems in the regression testing to well-formed abstract
problems using the properties of structural information. For example, test suite minimisation could
be mapped to the minimal hitting set problem or the set coverage problem, precisely because the
techniques were based on the concept of ‘coverage’. Similarly, graph-walking approaches to test case
selection were made possible because the changes between different versions were defined by structural
differences in CFGs.

Imagine regression testing techniques for non-functional properties. What would be the minimised
test suite that can test the power consumption of an embedded system? How would test cases be
prioritised to achieve an efficient and effective stress testing of a web application? These questions
remain largely unanswered and may require approaches that are significantly different from existing
paradigms.

8.6. Tool Support

Closely related to the issue of technology transfer is the issue of tool support. Without readily
available tools that implement regression testing techniques, practical adoption will remain limited.
One potential difficulty of providing tool support is the fact that, unlike unit testing for which there
exists a series of frameworks based on the xUnit architecture, there is not a common framework for
the regression testing process in general. The closest to a common ground for regression testing would
be an Integrated Development Environment (IDE), such as Eclipse, with which the xUnit architecture

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

46 S.YOO AND M. HARMAN

is already integrated successfully. A good starting point for regression testing techniques may be the
management framework of unit test cases, built upon xUnit architecture and IDEs.

9. Conclusion

This paper provides both a survey and a detailed analysis of trends in regression test case selection,
minimisation and prioritisation. The paper shows how the work on these three topics is closely related
and provides a survey of the landscape of work on the development of these ideas, their applications,
empirical evaluation and open problems for future work.

The analysis of trends reported in the paper reveals some interesting properties. There is evidence
to suggest that the topic of test case prioritisation is of increasing importance, judging by the shift
in emphasis towards it that is evident in the literature. It is also clear that the research community is
moving towards assessment of the complex trade offs and balances between different concerns, with
an increase in work that considers the best way in which to incorporate multiple concerns (cost and
value for instance) and to fully evaluate regression testing improvement techniques.

This focus on empirical methodology is one tentative sign that the field is beginning to mature. The
trend analysis also indicates a rising profile of publication, providing evidence to support the claim that
the field continues to attract growing attention from the wider research community, which is a positive
finding for those working on regression test case selection and minimisation and, in particular those
working on prioritisation problems.

Our survey also provides evidence to indicate that there is a preponderance of empirical work that
draws upon a comparatively small set of subjects (notably those available through the SIR repository).
This is a testament to the importance of this source of case study material. It is valuable because it
allows for cross comparison of results and replication, which is essential for the development of any
science. However, it may potentially suggest a risk of over-fitting.

Acknowledgements: Shin Yoo is supported by the EPSRC SEBASE project (EP/D050863). Mark
Harman is supported by EPSRC Grants EP/D050863, GR/S93684 & GR/T22872, by EU grant IST-
33472 (EvoTest) and also by the kind support of DaimlerChrysler Berlin and Vizuri Ltd., London.

REFERENCES

1. Rothermel G, Harrold MJ. Analyzing regression test selection techniques. IEEE Transactions on Software Engineering
August 1996; 22(8):529–551.

2. Engström E Emelie, Skoglund M, Runeson P. Empirical evaluations of regression test selection techniques: a systematic
review. ESEM ’08: Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering
and measurement, ACM: New York, NY, USA, 2008; 22–31, doi:http://doi.acm.org/10.1145/1414004.1414011.

3. Fahad M, Nadeem A. A survey of UML based regression testing. Intelligent Information Processing 2008; 288:200–210.
4. Bible J, Rothermel G, Rosenblum DS. A comparative study of coarse- and fine-grained safe regression test-selection

techniques. ACM Transactions on Software Engineering and Methodology 2001; 10(2):149–183.
5. Rosenblum D, Rothermel G. A comparative study of regression test selection techniques. In Proceedings of the 2nd

International Workshop on Empirical Studies of Software Maintenance, IEEE Computer Society Press, 1997; 89–94.
6. Zhong H, Zhang L, Mei H. An experimental study of four typical test suite reduction techniques. Information and Software

Technology 2008; 50(6):534–546.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 47

7. Graves T, Harrold MJ, Kim JM, Porter A, Rothermel G. An empirical study of regression test selection techniques.
Proceedings of the 20th International Conference on Software Engineering (ICSE 1998), IEEE Computer Society Press,
1998; 188–197.

8. Rothermel G, Harrold M, Ronne J, Hong C. Empirical studies of test suite reduction. Software Testing, Verification, and
Reliability December 2002; 4(2):219–249.

9. Garey MR, Johnson DS. Computers and Intractability: A guide to the theory of NP-Completeness. W. H. Freeman and
Company: New York, NY, 1979.

10. Leung HKN, White L. Insight into regression testing. Proceedings of Interntional Conference on Software Maintenance
(ICSM 1989), IEEE Computer Society Press, 1989; 60–69.

11. Chen TY, Lau MF. Dividing strategies for the optimization of a test suite. Information Processing Letters 1996; 60(3):135–
141.

12. Harrold MJ, Gupta R, Soffa ML. A methodology for controlling the size of a test suite. ACM Transactions on Software
Engineering and Methodology 1993; 2(3):270–285.

13. Horgan J, London S. ATAC: A data flow coverage testing tool for c. Proceedings of the Symposium on Assessment of
Quality Software Development Tools, IEEE Computer Society Press, 1992; 2–10.

14. Offutt J, Pan J, Voas J. Procedures for reducing the size of coverage-based test sets. Proceedings of the 12th International
Conference on Testing Computer Software, ACM Press, 1995; 111–123.

15. Horgan JR, London S. Data flow coverage and the C language. Proceedings of the Symposium on Testing, Analysis, and
Verification (TAV4), ACM Press, 1991; 87–97.

16. Papadimitriou CH, Steiglitz K. Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications:
Mineola, NY, 1998.

17. Marré M, Bertolino A. Using spanning sets for coverage testing. IEEE Transactions on Software Engineering November
2003; 29(11):974–984.

18. Tallam S, Gupta N. A concept analysis inspired greedy algorithm for test suite minimization. SIGSOFT Software
Engineering Notes 2006; 31(1):35–42.

19. Jeffrey D, Gupta N. Test suite reduction with selective redundancy. Proceedings of the 21st IEEE International Conference
on Software Maintenance 2005 (ICSM’05), IEEE Computer Society Press, 2005; 549–558.

20. Jeffrey D, Gupta N. Improving fault detection capability by selectively retaining test cases during test suite reduction.
IEEE Transactions on Software Engineering 2007; 33(2):108–123.

21. Black J, Melachrinoudis E, Kaeli D. Bi-criteria models for all-uses test suite reduction. Proceedings of the 26th
International Conference on Software Engineering (ICSE 2004), ACM Press, 2004; 106–115.

22. Hsu HY, Orso A. MINTS: A general framework and tool for supporting test-suite minimization. Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009), IEEE Computer Society, 2009; 419–429.

23. Walcott KR, Soffa ML, Kapfhammer GM, Roos RS. Time aware test suite prioritization. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2006), ACM Press, 2006; 1–12.

24. Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of International Symposium on
Software Testing and Analysis (ISSTA 2007), ACM Press, 2007; 140–150.

25. McMaster S, Memon A. Call-stack coverage for gui test suite reduction. IEEE Transactions on Software Engineering
2008; 34(1):99–115.

26. Smith A, Geiger J, Kapfhammer GM, Soffa ML. Test suite reduction and prioritization with call trees. Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE 2007), ACM Press, 2007.

27. Harder M, Mellen J, Ernst MD. Improving test suites via operational abstraction. Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), IEEE Computer Society, 2003; 60–71.

28. Ernst MD, Cockrell J, Griswold WG, Notkin D. Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering Feb 2001; 27(2):99–123.

29. Leitner A, Oriol M, Zeller A, Ciupa I, Meyer B. Efficient unit test case minimization. Proceedings of the 22nd IEEE/ACM
international conference on Automated Software Engineering (ASE 2007), ACM Press, 2007; 417–420.

30. Zeller A. Yesterday, my program worked. today, it does not. why? SIGSOFT Software Engineering Notes 1999;
24(6):253–267.

31. Schroeder PJ, Korel B. Black-box test reduction using input-output analysis. SIGSOFT Software Engineering Notes 2000;
25(5):173–177.

32. Vaysburg B, Tahat LH, Korel B. Dependence analysis in reduction of requirement based test suites. Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA 2002), ACM Press, 2002; 107–111.

33. Korel B, Tahat L, Vaysburg B. Model based regression test reduction using dependence analysis. Proceedings of the IEEE
International Conference on Software Maintenance (ICSM 2002), IEEE Computer Society, 2002; 214–225.

34. Chen Y, Probert RL, Ural H. Regression test suite reduction using extended dependence analysis. Proceedings of the 4th
International Workshop on Software Quality Assurance (SOQUA 2007), ACM Press, 2007; 62–69.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

48 S.YOO AND M. HARMAN

35. Anido R, Cavalli AR, Lima Jr LP, Yevtushenko N. Test suite minimization for testing in context. Software Testing,
Verification and Reliability 2003; 13(3):141–155.

36. Kaminski GK, Ammann P. Using logic criterion feasibility to reduce test set size while guaranteeing fault detection.
Proceedings of International Conference on Software Testing, Verification, and Validation 2009 (ICST 2009), IEEE
Computer Society, 2009; 356–365.

37. Lau MF, Yu YT. An extended fault class hierarchy for specification-based testing. ACM Transactions on Software
Engineering Methodology 2005; 14(3):247–276.

38. Rothermel G, Harrold MJ, Ostrin J, Hong C. An empirical study of the effects of minimization on the fault detection
capabilities of test suites. Proceedings of International Conference on Software Maintenance (ICSM 1998), IEEE
Computer Society Press, 1998; 34–43.

39. Wong WE, Horgan JR, London S, Mathur AP. Effect of test set minimization on fault detection effectiveness. Software
Practice and Experience April 1998; 28(4):347–369.

40. Wong WE, Horgan JR, Mathur AP, Pasquini A. Test set size minimization and fault detection effectiveness: A case study
in a space application. The Journal of Systems and Software October 1999; 48(2):79–89.

41. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. Proceedings of the 16th International Conference on Software Engineering (ICSE 1994), IEEE
Computer Society Press, 1994; 191–200.

42. McMaster S, Memon AM. Fault detection probability analysis for coverage-based test suite reduction. Proceedings of the
21st IEEE International Conference on Software Maintenance (ICSM’07), IEEE Computer Society, 2007.

43. McMaster S, Memon AM. Call stack coverage for test suite reduction. Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), IEEE Computer Society: Washington, DC, USA, 2005; 539–548.

44. Yu Y, Jones JA, Harrold MJ. An empirical study of the effects of test-suite reduction on fault localization. Proceedings of
the International Conference on Software Engineering (ICSE 2008), ACM Press, 2008; 201–210.

45. Rothermel G, Harrold MJ. A framework for evaluating regression test selection techniques. Proceedings of the 16th
International Conference on Software Engineering (ICSE 1994), IEEE Computer Society Press, 1994; 201–210.

46. Rothermel G, Harrold MJ. A safe, efficient algorithm for regression test selection. Proceedings of International
Conference on Software Maintenance (ICSM 2003), IEEE Computer Society Press, 1993; 358–367.

47. Fischer K. A test case selection method for the validation of software maintenance modifications. Proceedings of
International Computer Software and Applications Conference, IEEE Computer Society Press, 1977; 421–426.

48. Fischer K, Raji F, Chruscicki A. A methodology for retesting modified software. Proceedings of the National
Telecommunications Conference, IEEE Computer Society Press, 1981; 1–6.

49. Gupta R, Harrold MJ, Soffa ML. An approach to regression testing using slicing. Proceedings of the International
Conference on Software Maintenance (ICSM 1992), IEEE Computer Society Press, 1992; 299–308.

50. Harrold MJ, Soffa ML. An incremental approach to unit testing during maintenance. Proceedings of the International
Conference on Software Maintenance (ICSM 1998), IEEE Computer Society Press, 1988; 362–367.

51. Harrold MJ, Soffa ML. Interprocedual data flow testing. Proceedings of the 3rd ACM SIGSOFT Symposium on Software
Testing, Analysis, and Verification (TAV3), ACM Press, 1989; 158–167.

52. Taha AB, Thebaut SM, Liu SS. An approach to software fault localization and revalidation based on incremental data
flow analysis. Proceedings of the International Computer Software and Applications Conference (COMPSAC 1989),
IEEE Computer Society Press, 1989; 527–534.

53. Yau SS, Kishimoto Z. A method for revalidating modified programs in the maintenance phase. Proceedings of
International Computer Software and Applications Conference (COMPSAC 1987), IEEE Computer Society Press, 1987;
272–277.

54. Agrawal H, Horgan JR, Krauser EW, London SA. Incremental regression testing. Proceedings of the International
Conference on Software Maintenance (ICSM 1993), IEEE Computer Society, 1993; 348–357.

55. Rothermel G. Efficient, effective regression testing using safe test selection techniques. PhD Thesis, University of
Clemson May 1996.

56. Rothermel G, Harrold MJ. Selecting tests and identifying test coverage requirements for modified software. Proceedings
of International Symposium on Software Testing and Analysis (ISSTA 1994), ACM Press, 1994; 169–184.

57. Rothermel G, Harrold MJ. A safe, efficient regression test selection technique. ACM Transactions on Software
Engineering and Methodology April 1997; 6(2):173–210.

58. Vokolos F, Frankl P. Pythia: A regression test selection tool based on text differencing. Proceedings of the International
Conference on Reliability Quality and Safety of Software Intensive Systems, Chapman and Hall, 1997.

59. Vokolos F, Frankl P. Empirical evaluation of the textual differencing regression testing technique. Proceedings of the
IEEE International Conference on Software Maintenance (ICSM 1998), IEEE Computer Society Press, 1998; 44–53,
doi:10.1109/ICSM.1998.738488.

60. Bates S, Horwitz S. Incremental program testing using program dependence graphs. Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM Press, 1993; 384–396.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 49

61. Benedusi P, Cmitile A, De Carlini U. Post-maintenance testing based on path change analysis. Proceedings of the
International Conference on Software Maintenance (ICSM 1988), IEEE Computer Society Press, 1988; 352–361.

62. Chen YF, Rosenblum D, Vo KP. Testtube: A system for selective regression testing. Proveedings of the 16th International
Conference on Software Engineering (ICSE 1994), ACM PressM, 1994; 211–220.

63. Leung HKN, White L. Insights into testing and regression testing global variables. Journal of Software Maintenance
1990; 2(4):209–222.

64. Leung HKN, White L. A study of integration testing and software regression at the integration level. Proceedings of the
International Conference on Software Maintenance (ICSM 1990), IEEE Computer Society Press, 1990; 290–301.

65. White LJ, Leung HKN. A firewall concept for both control-flow and data-flow in regression integration testing.
Proceedings of International Conference on Software Maintenance (ICSM 1992), IEEE Computer Society Press, 1992;
262–271.

66. White LJ, Narayanswamy V, Friedman T, Kirschenbaum M, Piwowarski P, Oha M. Test manager: A regression testing
tool. Proceedings of International Conference on Software Maintenance (ICSM 1993), IEEE Computer Society Press,
1993; pages 338–347.

67. Laski J, Szermer W. Identification of program modifications and its applications in software maintenance. Proceedings of
the International Conference on Software Maintenance (ICSM 1992), IEEE Computer Society Press, 1992; 282–290.

68. Briand LC, Labiche Y, Buist K, Soccar G. Automating impact analysis and regression test selection based on UML
designs. Proceedings of the International Conference on Software Maintenance (ICSM 2002), IEEE Computer Society,
2002; 252–261.

69. Briand LC, Labiche Y, He S. Automating regression test selection based on UML designs. Journal of Information and
Software Technology 2009; 51(1):16–30.

70. Lee JAN, He X. A methodology for test selection. Journal of Systems and Software 1990; 13(3):177–185.
71. Hartmann J, Robson DJ. Revalidation during the software maintenance phase. Proceedings of the International

Conference on Software Maintenance (ICSM 1989), IEEE Computer Society Press, 1989; 70–80.
72. Hartmann J, Robson DJ. Retest-development of a selective revalidation prototype environment for use in software

maintenance. Proceedings of the International Conference on System Sciences, vol. 2, IEEE Computer Society Press,
1990; 92–101.

73. Hartmann J, Robson DJ. Techniques for selective revalidation. IEEE Software 1990; 7(1):31–36.
74. Harrold MJ, Soffa ML. An incremental data flow testing tool. Proceedings of the 6th International Conference on Testing

Computer Software (ICTCS 1989), ACM Press, 1989.
75. Wong WE, Horgan JR, London S, Bellcore HA. A study of effective regression testing in practice. Proceedings of the 8th

International Symposium on Software Reliability Engineering (ISSRE 1997), IEEE Computer Society, 1997; 264–275.
76. Fisher II M, Jin D, Rothermel G, Burnett M. Test reuse in the spreadsheet paradigm. Proceedings of the International

Symposium on Software Reliability Engineering (ISSRE 2002), IEEE Computer Society: November, 2002; 257–268.
77. IEEE Standard Glossary of Software Engineering Terminology. IEEE Press, 10 Dec 1990.
78. Rothermel G, Harrold MJ. Experience with regression test selection. Empirical Software Engineering: An International

Journal 1997; 2(2):178–188.
79. Rothermel G, Harrold MJ. Empirical studies of a safe regression test selection technique. IEEE Transactions on Software

Engineering 1998; 24(6):401–419.
80. Ball T. On the limit of control flow analysis for regression test selection. Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA 1998), ACM Press, 1998; 134–142.
81. Rothermel G, Harrold MJ, Dedhia J. Regression test selection for C++ software. Software Testing, Verification and

Reliability June 2000; 10(2):77–109.
82. Harrold MJ, Jones JA, Li T, Liang D, Orso A, Pennings M, Sinha S, Spoon S. Regression test selection for Java software.

ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2001), ACM Press,
2001; 312–326.

83. Xu G, Rountev A. Regression test selection for AspectJ software. Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007), IEEE Computer Society, 2007; 65–74.

84. Zhao J, Xie T, Li N. Towards regression test selection for aspect-oriented programs. Proceedings of the 2nd Workshop on
Testing Aspect-Oriented Programs (WTAOP 2006), ACM Press, 2006; 21–26.

85. Beydeda S, Gruhn V. Integrating white- and black-box techniques for class-level regression testing. Proceedings of the
25th IEEE International Computer Software and Applications Conference (COMPSAC 2001), IEEE Computer Society
Press, 2001; 357–362.

86. Orso A, Shi N, Harrold MJ. Scaling regression testing to large software systems. Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2004), ACM Press, 2004; 241–251.

87. Martins E, Vieira VG. Regression test selection for testable classes. Lecture Notes in Computer Science : Dependable
Computing - EDCC 2005 2005; 3463/2005:453–470.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

50 S.YOO AND M. HARMAN

88. Chen Y, Probert RL, Sims DP. Specification-based regression test selection with risk analysis. Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative research (CASCON 2002), IBM Press, 2002; 1–14.

89. Orso A, Harrold MJ, Rosenblum DS, Rothermel G, Soffa ML, Do H. Using component metadata to support the regression
testing of component-based software. Proceedings of the IEEE International Conference on Software Maintenance (ICSM
2001), IEEE Computer Society Press, 2001.

90. Orso A, Do H, Rothermel G, Harrold MJ, Rosenblum DS. Using component metadata to regression test component-based
software: Research articles. Software Testing, Verification, and Reliability 2007; 17(2):61–94.

91. Lin F, Ruth M, Tu S. Applying safe regression test selection techniques to java web services. Proceedings of the
International Conference on Next Generation Web Services Practices (NWESP 2006), IEEE Computer Society, 2006;
133–142.

92. Ruth M, Tu S. A safe regression test selection technique for web services. Proceedings of the 2nd International Conference
on Internet and Web Applications and Services (ICIW 2007), IEEE Computer Society Press, 2007; 47–47.

93. Ruth M, Tu S. Concurrency issues in automating rts for web services. Proceedings of the IEEE International Conference
on Web Services (ICWS 2007), IEEE Computer Society Press, 2007; 1142–1143.

94. Tarhini A, Fouchal H, Mansour N. Regression testing web services-based applications. Proceedings of ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA 2006), IEEE Computer Society Press, 2006;
163–170.

95. Ruth M, Oh S, Loup A, Horton B, Gallet O, Mata M, Tu S. Towards automatic regression test selection for web
services. Proceedings of the 31st International Computer Software and Applications Conference (COMPSAC 2007),
IEEE Computer Society Press, 2007; 729–736.

96. Binkley D. Reducing the cost of regression testing by semantics guided test case selection. Proceedings of the
International Conference on Software Maintenance (ICSM 1995), IEEE Computer Society, 1995; 251–260.

97. Binkley D. Semantics guided regression test cost reduction. IEEE Transactions on Software Engineering 1997; 23(8):498–
516.

98. Kung DC, Gao J, Hsia P, Lin J, Toyoshima Y. Class firewall, test order, and regression testing of object-oriented programs.
Journal of Object–Oriented Programming May 1995; 8(2):51–65.

99. White L, Robinson B. Industrial real-time regression testing and analysis using firewalls. Proceedings of the 20th IEEE
International Conference on Software Maintenance (ICSM 2004), IEEE Computer Society Press, 2004; 18–27.

100. White L, Jaber K, Robinson B, Rajlich V. Extended firewall for regression testing: an experience report. Journal of
Software Maintenance and Evolution 2008; 20(6):419–433.

101. White L, Almezen H, Sastry S. Firewall regression testing of gui sequences and their interactions. Proceedings of the
IEEE International Conference on Software Maintenance (ICSM 2003), IEEE Computer Society Press, 2003; 398–409.

102. Zheng J, Robinson B, Williams L, Smiley K. A lightweight process for change identification and regression
test selection in using cots components. Proceedings of the 5th International Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems (ICCBSS 2006), IEEE Computer Society, 2006; 137–146, doi:
http://dx.doi.org/10.1109/ICCBSS.2006.1.

103. Zheng J, Robinson B, Williams L, Smiley K. Applying regression test selection for COTS-based applications. Proceedings
of the 28th International Conference on Software Engineering (ICSE 2006), ACM Press, 2006; 512–522.

104. Zheng J, Williams L, Robinson B. Pallino: automation to support regression test selection for COTS-based applications.
Proceedings of the 22nd IEEE/ACM international conference on Automated Software Engineering (ASE 2007), ACM
Press, 2007; 224–233.

105. Zheng J, Williams L, Robinson B, Smiley K. Regression test selection for black-box dynamic link library components.
Proceedings of the 2nd International Workshop on Incorporating COTS Software into Software Systems: Tools and
Techniques (IWICSS 2007), IEEE Computer Society, 2007; 9–14.

106. Skoglund M, Runeson P. A case study of the class firewall regression test selection technique on a large scale distributed
software system. Proceedings of International Symposium on Empirical Software Engineering (ISESE 2005), IEEE
Computer Society Press, 2005; 74–83.

107. Deng D, Sheu PY, Wang T. Model-based testing and maintenance. Proceedings of the 6th IEEE International Symposium
on Multimedia Software Engineering (MSE 2004), IEEE Computer Society Press, 2004; 278–285.

108. Pilskalns O, Uyan G, Andrews A. Regression testing uml designs. Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM 2006), IEEE Computer Society Press, 2006; 254–264.

109. Farooq Qua, Iqbal MZZ, Malik ZI, Nadeem A. An approach for selective state machine based regression testing.
Proceedings of the 3rd International Workshop on Advances in Model-based Testing (A-MOST 2007), ACM: New York,
NY, USA, 2007; 44–52.

110. Le Traon Y, Jeron T, Jezequel JM, Morel P. Efficient object-oriented integration and regression testing. IEEE Transactions
on Reliability March 2000; 49(1):12–25.

111. Wu Y, Offutt J. Maintaining evolving component-based software with UML. Proceedings of the 7th European Conference
on Software Maintenance and Reengineering (CSMR 2003), IEEE Computer Society Press, 2003; 133–142.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 51

112. Muccini H, Dias M, Richardson DJ. Reasoning about software architecture-based regression testing through a case study.
Proceedings of the 29th International Computer Software and Applications Conference (COMPSAC 2005), vol. 2, IEEE
Computer Society, 2005; 189–195.

113. Muccini H, Dias M, Richardson DJ. Software-architecture based regression testing. Journal of Systems and Software
October 2006; 79(10):1379–1396.

114. Harrold MJ. Testing evolving software. The Journal of Systems and Software 1999; 47(2–3):173–181.
115. Rothermel G, Untch RH, Chu C, Harrold MJ. Test case prioritization: An empirical study. Proceedings of International

Conference on Software Maintenance (ICSM 1999), IEEE Computer Society Press, 1999; 179–188.
116. Elbaum SG, Malishevsky AG, Rothermel G. Prioritizing test cases for regression testing. Proceedings of International

Symposium on Software Testing and Analysis (ISSTA 2000), ACM Press, 2000; 102–112.
117. Elbaum S, Gable D, Rothermel G. Understanding and measuring the sources of variation in the prioritization of regression

test suites. Proceedings of the Seventh International Software Metrics Symposium (METRICS 2001), IEEE Computer
Society Press, 2001; 169–179.

118. Elbaum SG, Malishevsky AG, Rothermel G. Incorporating varying test costs and fault severities into test case
prioritization. Proceedings of the International Conference on Software Engineering (ICSE 2001), ACM Press, 2001;
329–338.

119. Malishevsky A, Rothermel G, Elbaum S. Modeling the cost-benefits tradeoffs for regression testing techniques.
Proceedings of the International Conference on Software Maintenance (ICSM 2002), IEEE Computer Society Press,
2002; 230–240.

120. Rothermel G, Elbaum S, Malishevsky A, Kallakuri P, Davia B. The impact of test suite granularity on the cost-
effectiveness of regression testing. Proceedings of the 24th International Conference on Software Engineering (ICSE
2002), ACM Press, 2002; 130–140.

121. Rothermel G, Untch RJ, Chu C. Prioritizing test cases for regression testing. IEEE Transactions on Software Engineering
October 2001; 27(10):929–948.

122. Budd TA. Mutation analysis of program test data. PhD Thesis, Yale University, New Haven, CT, USA 1980.
123. Elbaum S, Malishevsky A, Rothermel G. Test case prioritization: a family of empirical studies. IEEE Transactions on

Software Engineering Feb 2002; 28(2):159–182.
124. Jones JA, Harrold MJ. Test-suite reduction and prioritization for modified condition/decision coverage. Proceedings of

International Conference on Software Maintenance (ICSM 2001), IEEE Computer Society Press, 2001; 92–101.
125. Chilenski J, Miller S. Applicability of modified condition/decision coverage to software testing. Software Engineering

Journal Sep 1994; 9(5):193–200.
126. Srivastava A, Thiagarajan J. Effectively prioritizing tests in development environment. Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA 2002), ACM Press, 2002; 97–106.
127. Do H, Rothermel G, Kinneer A. Empirical studies of test case prioritization in a junit testing environment. Proceedings of

15th International Symposium on Software Reliability Engineering (ISSRE 2004), IEEE Computer Society Press, 2004;
113–124.

128. Li Z, Harman M, Hierons RM. Search Algorithms for Regression Test Case Prioritization. IEEE Transactions on Software
Engineering 2007; 33(4):225–237.

129. Bryce RC, Colbourn CJ, Cohen MB. A framework of greedy methods for constructing interaction test suites. Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005), ACM Press, 2005; 146–155.

130. Cohen MB, Dwyer MB, Shi J. Constructing interaction test suites for highly-configurable systems in the presence of
constraints: A greedy approach. IEEE Transactions on Software Engineering 2008; 34(5):633–650.

131. Bryce RC, Colbourn CJ. Test prioritization for pairwise interaction coverage. Proceedings of the ACM workshop on
Advances in Model-Based Testing (A-MOST 2005), ACM Press, 2005; 1–7.

132. Bryce RC, Colbourn CJ. Prioritized interaction testing for pair-wise coverage with seeding and constraints. Journal of
Information and Software Technology 2006; 48(10):960–970.

133. Qu X, Cohen MB, Woolf KM. Combinatorial interaction regression testing: A study of test case generation and
prioritization. Proceedings of IEEE International Conference on Software Maintenance (ICSM 2007), IEEE Computer
Society Press, 2007; 255–264.

134. Qu X, Cohen MB, Rothermel G. Configuration-aware regression testing: an empirical study of sampling and prioritization.
Proceedings of the ACM International Symposium on Software Testing and Analysis (ISSTA 2008), ACM Press, 2008; 75–
86.

135. Bryce RC, Memon AM. Test suite prioritization by interaction coverage. Proceedings of the Workshop on Domain Specific
Approaches to Software Test Automation (DOSTA 2007), ACM, 2007; 1–7.

136. Leon D, Podgurski A. A comparison of coverage-based and distribution-based techniques for filtering and prioritizing
test cases. Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE 2003), IEEE
Computer Society Press, 2003; pp. 442–456.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

52 S.YOO AND M. HARMAN

137. Tonella P, Avesani P, Susi A. Using the case-based ranking methodology for test case prioritization. Proceedings of the
22nd International Conference on Software Maintenance (ICSM 2006), IEEE Computer Society, 2006; 123–133.

138. Yoo S, Harman M, Tonella P, Susi A. Clustering test cases to achieve effective & scalable prioritisation incorporating
expert knowledge. Proceedings of International Symposium on Software Testing and Analysis (ISSTA 2009), ACM Press,
2009; 201–211.

139. Srikanth H, Williams L, Osborne J. System test case prioritization of new and regression test cases. Proceedings of
International Symposium on Empirical Software Engineering, IEEE Computer Society Press, 2005; 64–73.

140. Freund Y, Schapire R. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 1999;
14(5):771–780.

141. Freund Y, Iyer R, Schapire RE, Singer Y. An efficient boosting algorithm for combining preferences. Proceedings of
the 15th International Conference on Machine Learning (ICML 1998), Shavlik JW (ed.), Morgan Kaufmann Publishers,
1998; 170–178.

142. Saaty T. The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation. McGraw-Hill: New York, NY,
USA, 1980.

143. Karlsson J, Wohlin C, Regnell B. An evaluation of methods for prioritizing software requirements. Information &
Software Technology 1998; 39(14-15):939–947.

144. Kim JM, Porter A. A history-based test prioritization technique for regression testing in resource constrained
environments. Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), ACM Press,
2002; 119–129.

145. Mirarab S, Tahvildari L. A prioritization approach for software test cases based on bayesian networks. Proceedings of the
10th International Conference on Fundamental Approaches to Software Engineering, Springer–Verlag, 2007; 276–290.

146. Mirarab S, Tahvildari L. An empirical study on bayesian network-based approach for test case prioritization. Proceedings
of International Conference on Software Testing, Verification and Validation, IEEE Computer Society, 2008; 278–287.

147. Sherriff M, Lake M, Williams L. Prioritization of regression tests using singular value decomposition with empirical
change records. Proceedings of the The 18th IEEE International Symposium on Software Reliability (ISSRE 2007), IEEE
Computer Society: Washington, DC, USA, 2007; 81–90.

148. Krishnamoorthi R, Sahaaya Arul Mary SA. Factor oriented requirement coverage based system test case prioritization of
new and regression test cases. Information and Software Technology 2009; 51(4):799–808.

149. Korel B, Tahat L, Harman M. Test prioritization using system models. Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM 2005), 2005; 559–568.

150. Korel B, Koutsogiannakis G, Tahat LH. Model-based test prioritization heuristic methods and their evaluation.
Proceedings of the 3rd international workshop on Advances in Model-based Testing (A-MOST 2007), ACM Press, 2007;
34–43.

151. Korel B, Koutsogiannakis G, Tahat L. Application of system models in regression test suite prioritization. Proceedings
of IEEE International Conference on Software Maintenance 2008 (ICSM 2008), IEEE Computer Society Press, 2008;
247–256.

152. Hou SS, Zhang L, Xie T, Mei H, Sun JS. Applying interface-contract mutation in regression testing of component-based
software. Proc. 23rd IEEE International Conference on Software Maintenance (ICSM 2007), IEEE Computer Society
Press, 2007; 174–183.

153. Sampath S, Bryce RC, Viswanath G, Kandimalla V, Koru AG. Prioritizing user-session-based test cases for web
applications testing. Proceedings of the 1st International Conference on Software Testing Verification and Validation
(ICST 2008), IEEE Computer Society, 2008; 141–150.

154. Fraser G, Wotawa F. Test-case prioritization with model-checkers. SE’07: Proceedings of the 25th conference on IASTED
International Multi-Conference, ACTA Press: Anaheim, CA, USA, 2007; 267–272.

155. Fraser G, Wotawa F. Property relevant software testing with model-checkers. SIGSOFT Software Engineering Notes 2006;
31(6):1–10.

156. Rummel M, Kapfhammer GM, Thall A. Towards the prioritization of regression test suites with data flow information.
Proceedings of the 20th Symposium on Applied Computing (SAC 2005), ACM Press, 2005.

157. Jeffrey D, Gupta N. Test case prioritization using relevant slices. Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006), IEEE Computer Society: Washington, DC, USA, 2006; 411–
420.

158. Do H, Mirarab SM, Tahvildari L, Rothermel G. An empirical study of the effect of time constraints on the cost-benefits
of regression testing. Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM Press, 2008; 71–82.

159. Hou SS, Zhang L, Xie T, Sun JS. Quota-constrained test-case prioritization for regression testing of service-centric
systems. Proceedings of IEEE International Conference on Software Maintenance (ICSM 2008), IEEE Computer Society
Press, 2008.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 53

160. Zhang L, Hou SS, Guo C, Xie T, Mei H. Time-aware test-case prioritization using Integer Linear Programming.
Proceedings of the International Conference on Software Testing and Analysis (ISSTA 2009), ACM Press, 2009; 212–
222.

161. Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments? Proceedings of the 27th
International Conference on Software Engineering (ICSE 2005), ACM Press, 2005; 402–411.

162. Do H, Rothermel G. A controlled experiment assessing test case prioritization techniques via mutation faults. Proceedings
of the 21st IEEE International Conference on Software Maintenance (ICSM 2005), IEEE Computer Society Press, 2005;
411–420.

163. Do H, Rothermel G. On the use of mutation faults in empirical assessments of test case prioritization techniques. IEEE
Transactions on Software Engineering 2006; 32(9):733–752.

164. Elbaum S, Kallakuri P, Malishevsky A, Rothermel G, Kanduri S. Understanding the effects of changes on the cost-
effectiveness of regression testing techniques. Software Testing, Verification, and Reliability 2003; 13(2):65–83.

165. Rothermel G, Elbaum S, Malishevsky A, Kallakuri P, Qiu X. On test suite composition and cost-effective regression
testing. ACM Transactions on Software Engineering and Methodology July 2004; 13(3):277–331.

166. Kim JM, Porter A, Rothermel G. An empirical study of regression test application frequency. Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000), ACM Press, 2000; 126–135.

167. Kim JM, Porter A, Rothermel G. An empirical study of regression test application frequency. Software Testing,
Verification, and Reliability 2005; 15(4):257–279.

168. Elbaum S, Rothermel G, Kanduri S, Malishevsky AG. Selecting a cost-effective test case prioritization technique.
Software Quality Control 2004; 12(3):185–210.

169. Rosenblum D, Weyuker E. Using coverage information to predict the cost-effectiveness of regression testing strategies.
IEEE Transactions on Software Engineering March 1997; 23(3):Page(s):146 – 156.

170. Bolsky MI, Korn DG. The New KornShell Command and Programming Language. Prentice Hall PTR: Upper Saddle
River, NJ, USA, 1995.

171. Korn D, phong Vo K. SFIO: Safe/Fast String/File IO. Proceedings of the Summer Usenix Conference 1991, 1991; 235–
256.

172. Leung HKN, White L. A cost model to compare regression test strategies. Proceedings of the International Conference
on Software Maintenance (ICSM 1991), IEEE Computer Society Press, 1991; 201–208.

173. Harrold MJ, Rosenblum DS, Rothermel G, Weyuker EJ. Empirical studies of a prediction model for regression test
selection. IEEE Transactions on Software Engineering 2001; 27(3):248–263.

174. Ramey C, Fox B. Bash Reference Manual. 2.2 edn., O’Reilly and Associates: Sebastopol, CA, 1998.
175. Do H, Rothermel G, Kinneer A. Prioritizing junit test cases: An empirical assessment and cost-benefits analysis. Empirical

Software Engineering 2006; 11(1):33–70.
176. Smith AM, Kapfhammer GM. An empirical study of incorporating cost into test suite reduction and prioritization.

Proceedings of the 24th Symposium on Applied Computing (SAC 2009), ACM Press, 2009.
177. Do H, Rothermel G. An empirical study of regression testing techniques incorporating context and lifetime factors and

improved cost-benefit models. SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ACM Press, 2006; 141–151.

178. Do H, Rothermel G. Using sensitivity analysis to create simplified economic models for regression testing. Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2008), ACM Press, 2008; 51–61.

179. Do H, Elbaum SG, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering 2005; 10(4):405–435.

180. Memon AM, Soffa ML. Regression testing of GUIs. ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, ACM: New York, NY, USA, 2003; 118–127.

181. Jia Y, Harman M. Constructing subtle faults using higher order mutation testing. Proceedings of IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2008), IEEE Computer Society Press, 2008; 249–258.

182. Harrold M, Orso A. Retesting software during development and maintenance. Frontiers of Software Maintenance (FoSM
2008), IEEE Computer Society Press, 2008; 99–108.

183. McMinn P. Search-based software test data generation: A survey. Software Testing, Verification and Reliability Jun 2004;
14(2):105–156.

184. Apiwattanapong T, Santelices R, Chittimalli PK, Orso A, Harrold MJ. Matrix: Maintenance-oriented testing requirements
identifier and examiner. Proceedings of Testing: Academic & Industrial Conference on Practice And Research Techniques,
IEEE Computer Society: Los Alamitos, CA, USA, 2006; 137–146.

185. Santelices RA, Chittimalli PK, Apiwattanapong T, Orso A, Harrold MJ. Test-suite augmentation for evolving software.
Proceedings of 23rd IEEE/ACM International Conference on Automated Software Engineering, IEEE, 2008; 218–227.

186. Memon AM. Automatically repairing event sequence-based gui test suites for regression testing. ACM Transactions on
Software Engineering Methodology 2008; 18(2):1–36.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

54 S.YOO AND M. HARMAN

187. Alshahwan N, Harman M. Automated session data repair for web application regression testing. Proceedings of 2008
International Conference on Software Testing, Verification, and Validation, IEEE Computer Society: Los Alamitos, CA,
USA, 2008; 298–307.

188. Bertolini C, Peres G, d’Amorim M, Mota A. An empirical evaluation of automated black box testing techniques for
crashing guis. Proceedings of the 2nd International Conference on Software Testing Verification and Validation (ICST
2009), IEEE Computer Society Press, 2009; 21–30.

189. Fu C, Grechanik M, Xie Q. Inferring types of references to gui objects in test scripts. Proceedings of the 2nd International
Conference on Software Testing Verification and Validation (ICST 2009), IEEE Computer Society Press, 2009; 1–10.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 55

Appendix

The following tables contain detailed information about publications on each class of technique: test
suite minimisation in Table IV, Regression Test Selection (RTS) in Table V, test case prioritisation in
Table VI and empirical/comparative studies in Table VII. Note that publications that consider more
than one class of techniques appear in multiple tables for ease of reference. For example, a survey of
Regression Test Selection [1] appears in both Table V and Table VII.

Information on the maximum size of SUT (measured in Lines of Code) and the maximum size of test
suites were collected from papers only when they were explicitly noted. Some papers that considered
multiple test suites for a single program contained only the average, in which case the size of the test
suite with largest average size was recorded. When the studied SUT cannot be measured in Lines of
Code (LOC), the detailed information was provided in footnotes. Tables also contain information about
the origins of the studied SUT, which are classified as follows:

• Siemens suite [41]: all or part of the following set of C programs - printtokens,
printtokens2, schedule, schedule2, replace, tcas, totinfo, available from
SIR [179].
• space: an interpreter for Array Description Language (ADL), developed by European Space

Agency. Available from SIR.
• Unix utilities in SIR: all or part of the following set of C programs - flex, grep, gzip, sed,
vim, bash, available from SIR
• Java programs in SIR: all or part of the following set of Java programs - siena, ant,
jmeter, jtopas, xml-security, nanoxml, available from SIR
• Other C/C++/C# programs: programs written in C/C++/C# that are not available from SIR
• Other Java programs: programs written in Java that are not available from SIR
• Models and programs in other languages : models including state machines and UML

diagrams. There are also a very few empirical studies that consider programs written in other
languages, e.g. Pascal.
• Web applications : web applications and web services

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

56 S.YOO AND M. HARMAN

Table IV: Summary of publications on test suite minimisation

Reference Year M
ax

.S
U

T
Si

ze
(L

oC
)

M
ax

.T
es

t
Su

ite
Si

ze

Si
em

en
s

Su
ite

s
p
a
c
e

SI
R
U
n
i
x

U
til

iti
es

SI
R

Ja
va

Pr
og

ra
m

s

O
th

er
C

/
C

++
/C

#

O
th

er
Ja

va
Pr

og
ra

m
s

M
od

el
s

&
O

th
er

L
an

gu
ag

es

W
eb

A
pp

lic
at

io
ns

Horgan et al. [13] 1992 1,000 26 •
Harrold et al. [12] 1993 N/A 19 •
Offutt et al. [14] 1995 48 36.8 •
Chen et al. [11] 1996 N/A∗ -
Rothermel et al. [38] 1998 516 260 •
Wong et al. [39] 1998 842 33 •
Wong et al. [40] 1999 6,218 200 •
Schroeder et al. [31] 2000 Theory -
Korel et al. [33] 2002 Theory -
Malishevsky et al. [119] 2002 65,632 1,168 •
Rothermel et al. [120] 2002 68,782 1,985 • •
Rothermel et al. [8] 2002 516 260 •
Vaysburg et al. [32] 2002 Theory -
Anido et al. [35] 2003 Theory -
Harder et al. [27] 2003 6,218 169 • •
Marre et al. [17] 2003 516 5,542 •
Black et al. [21] 2004 512 5,542 •
Rothermel et al. [165] 2004 68,782 1,985 • •
Jeffrey et al. [19] 2005 516 135 •
McMaster et al. [43] 2005 6,218 4,712 •
Tallam et al. [18] 2006 6,218 539 • •
Chen et al. [34] 2007 Theory -
Hou et al. [152] 2007 5,500 183 •
Jeffrey et al. [20] 2007 6,218 1,560 • •
Leitner et al. [29] 2007 N/A† -
McMaster et al. [42] 2007 11,803 1,500 •
Smith et al. [26] 2007 1,455 N/A •
Yoo et al. [24] 2007 6,218 169 • •
McMaster et al. [25] 2008 11,803 1,500 •
Yu et al. [44] 2008 6,218 13,585 • •
Zhong et al. [6] 2008 26,824 N/A • •
Hsu et al. [22] 2009 1,892,226 5,542 • • •
Kaminski et al. [36] 2009 N/A‡ -
Smith et al. [176] 2009 6,822 110 •

∗ Chen et al. [11]1 evaluated their heuristics using simulation rather than real data.
† Leitner et al. [29]2 minimised the length of a unit test case, not a test suite.
‡ Kaminski et al. [36]3 applied logical reduction to a set of 19 boolean predicates taken from avionic software.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 57

Table V: Summary of publications on Regression Test Selection (RTS)

Reference Year M
ax

.S
U

T
Si

ze
(L

oC
)

M
ax

.T
es

t
Su

ite
Si

ze

Si
em

en
s

Su
ite

s
p
a
c
e

SI
R
U
n
i
x

U
til

iti
es

SI
R

Ja
va

Pr
og

ra
m

s

O
th

er
C

/
C

++
/C

#

O
th

er
Ja

va
Pr

og
ra

m
s

M
od

el
s

&
O

th
er

L
an

gu
ag

es

W
eb

A
pp

lic
at

io
ns

Fischer [47] 1977 Theory -
Fischer et al. [48] 1981 Theory -
Yau et al. [53] 1987 Theory -
Benedusi et al. [61] 1988 Theory -
Harrold et al. [50] 1988 Theory -
Harrold et al. [74] 1989 Theory -
Harrold et al. [51] 1989 Theory -
Hartmann et al. [71] 1989 Theory -
Leung et al. [10] 1989 Theory -
Taha et al. [52] 1989 Theory -
Hartmann et al. [73] 1990 Theory -
Hartmann et al. [72] 1990 Theory -
Lee et al. [70] 1990 Theory -
Leung et al. [63] 1990 Theory -
Leung et al. [64] 1990 550 235 •
Horgan et al. [15] 1991 1,000 26 •
Gupta et al. [49] 1992 Theory -
Laski et al. [67] 1992 Theory -
White et al. [65] 1992 Theory -
Agrawal et al. [54] 1993 Theory -
Bates et al. [60] 1993 Theory -
Rothermel et al. [46] 1993 Theory -
White et al. [66] 1993 Theory -
Chen et al. [62] 1994 11,000 39 •
Rothermel et al. [56] 1994 Theory -
Rothermel et al. [45] 1994 Theory -
Binkley [96] 1995 Theory -
Kung et al. [98] 1995 N/A∗ N/A
Rothermel et al. [1] 1996 Survey -
Rothermel [55] 1996 516 5,542 • •
Binkley [97] 1997 623 -‡‡ •
Rosenblum et al. [5] 1997 49,316 1,033 • •
Rosenblum et al. [169] 1997 N/A† N/A
Rothermel et al. [57] 1997 516 5,542 •
Rothermel et al. [78] 1997 512 5,542 •
Wong et al. [75] 1997 6,218 1,000 •
Vokolos et al. [58] 1997 N/A‡ N/A •
Ball [80] 1998 Theory -
Graves et al. [7] 1998 516 398 •
Rothermel et al. [79] 1998 516 5,542 •
Vokolos et al. [59] 1998 6,218 100 •
Harrold [114] 1999 Theory -
Kim et al. [166] 2000 6,218 4,361 • •
Le-Traon et al. [110] 2000 N/A§ N/A
Rothermel et al. [81] 2000 24,849 317 •
Beydeda et al. [85] 2001 Theory -
Bible et al. [4] 2001 49,316 1,033 • • •
Harrold et al. [82] 2001 N/A 189 • •
Harrold et al. [173] 2001 516 19 •
Jones et al. [124] 2001 6,218 4,712 • •
Orso et al. [89] 2001 6,035 138 •
Briand et al. [68] 2002 N/A¶ 596 •
Chen et al. [88] 2002 N/A 306 •
Fisher II et al. [76] 2002 N/A‖ 493 •
Malishevsky et al. [119] 2002 65,632 1,168 •
Rothermel et al. [120] 2002 68,782 1,985 • •
Elbaum et al. [164] 2003 65,632 1,168 •
Wu et al. [111] 2003 Theory -
White et al. [101] 2003 N/A∗∗ N/A •
Deng et al. [107] 2004 Theory -
Rothermel et al. [165] 2004 68,782 1,985 • •
Orso et al. [86] 2004 532,000 707 •
White et al. [99] 2004 N/A∗∗ N/A •
Kim et al. [167] 2005 6,218 4,361 • •
Martins et al. [87] 2005 902 N/A •

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

58 S.YOO AND M. HARMAN

Table V: Summary of publications on Regression Test Selection (RTS)

Reference Year M
ax

.S
U

T
Si

ze
(L

oC
)

M
ax

.T
es

t
Su

ite
Si

ze

Si
em

en
s

Su
ite

s
p
a
c
e

SI
R
U
n
i
x

U
til

iti
es

SI
R

Ja
va

Pr
og

ra
m

s

O
th

er
C

/
C

++
/C

#

O
th

er
Ja

va
Pr

og
ra

m
s

M
od

el
s

&
O

th
er

L
an

gu
ag

es

W
eb

A
pp

lic
at

io
ns

Muccini et al. [112] 2005 N/A¶ •
Skoglund et al. [106] 2005 1,200,000 N/A •
Do et al. [177] 2006 80,400 1,533 •
Lin et al. [91] 2006 N/A†† N/A
Pilskalns et al. [108] 2006 N/A 52 •
Tarhini et al. [94] 2006 Theory -
Zhao et al. [84] 2006 Theory -
Zheng et al. [102] 2006 757,000 592 •
Zheng et al. [103] 2006 757,000 592 •
Muccini et al. [113] 2006 N/A¶ N/A •
Farooq et al. [109] 2007 Theory -
Orso et al. [90] 2007 6,035 567 • •
Ruth et al. [92] 2007 Theory -
Ruth et al. [95] 2007 Theory -
Ruth et al. [93] 2007 Theory -
Sherriff et al. [147] 2007 Theory -
Xu et al. [83] 2007 3,423 63 •
Zheng et al. [104] 2007 757,000 592 •
Zheng et al. [105] 2007 757,000 31 •
Fahad et al. [3] 2008 Survey -
White et al. [100] 2008 Over 1MLoC N/A •
Briand et al. [69] 2009 N/A¶ 323,614 •

∗ Kung et al. applied their technique to InterView C++ library, which contains 147 files and over 140 classes [98].
† Rosenblum and Weyuker [169] evaluated their cost-effectiveness predictor using 31 versions of the KornShell and a

single version of the SFIO (Unix library), but exact versions, sizes of SUT and sizes of test suites were not specified.
‡ Vokolos et al. evaluated their textual difference selection technique using a small C function in addmon family of tools,

power [58].
§ Le-Traon et al. [110] presented a case study of a model of packet-switched data transport service, the size of which was

not specified.
¶ Briand et al. studied UML models rather than real systems, the biggest of which contained either 9 classes with 70

methods [68] or 32 classes with 64 methods [69]. Muccini et al. studied an RTS technique at software architecture level
and presented case studies for the architecture model of an elevator system and a cargo router system [112, 113].

‖ Fisher II et al. [76] evaluated their retesting strategy for spreadsheets with a spreadsheet containing 48 cells, 248 expressions
and 100 predicates.

∗∗ White et al. applied the firewall approach to GUI program with 246 GUI objects [101]. White and Robinson applied the
firewall approach to a real time system developed by ABB [99].

†† Lin et al. [91] applied their technique to a Java Interclass Graph (JIG) with over 100 nodes.
‡‡ Binkley [97] applied his technique to five C programs (the largest of which had 623 statements), but only identified the

statements that require retesting without considering test suites.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

REGRESSION TESTING MINIMISATION, SELECTION AND PRIORITISATION : A SURVEY 59

Table VI: Summary of publications on test case prioritisation

Reference Year M
ax

.S
U

T
Si

ze
(L

oC
)

M
ax

.T
es

t
Su

ite
Si

ze

Si
em

en
s

Su
ite

s
p
a
c
e

SI
R
U
n
i
x

U
til

iti
es

SI
R

Ja
va

Pr
og

ra
m

s

O
th

er
C

/
C

++
/C

#

O
th

er
Ja

va
Pr

og
ra

m
s

M
od

el
s

&
O

th
er

L
an

gu
ag

es

W
eb

A
pp

lic
at

io
ns

Harrold [114] 1999 Theory -
Rothermel et al. [115] 1999 516 19 •
Elbaum et al. [116] 2000 6,218 169 • •
Elbaum et al. [117] 2001 6,218 169 • •
Elbaum et al. [118] 2001 6,218 166 •
Jones et al. [124] 2001 6,218 4,712 • •
Rothermel et al. [121] 2001 6,218 169 • •
Elbaum et al. [123] 2002 6,218 169 • •
Kim et al. [144] 2002 6,218 226 • •
Malishevsky et al. [119] 2002 65,632 1,168 •
Rothermel et al. [120] 2002 68,782 1,985 • •
Srivastava et al. [126] 2002 18,000,000∗ 3,128 •
Elbaum et al. [164] 2003 65,632 1,168 •
Leon et al. [136] 2003 N/A† 3,333 • •
Do et al. [127] 2004 80,400 877 •
Elbaum et al. [168] 2004 68,000 1,985.32 • •
Rothermel et al. [165] 2004 68,782 1,985 • •
Bryce et al. [131] 2005 N/A‡ -
Do et al. [162] 2005 80,400 877
Korel et al. [149] 2005 800 980 •
Rummel et al. [156] 2005 N/A§ 21 •
Srikanth et al. [139] 2005 2,500 50 •
Bryce et al. [132] 2006 N/A‡ -
Do et al. [177] 2006 80,400 1,533 •
Do et al. [175] 2006 80,400 877 •
Do et al. [163] 2006 80,400 877 •
Jeffrey et al. [157] 2006 516 N/A •
Tonella et al. [137] 2006 6,218 169 •
Walcott et al. [23] 2006 1,808 53 •
Bryce et al. [135] 2007 N/A‡ -
Fraser et al. [154] 2007 N/A§ 246 •
Hou et al. [152] 2007 5,500 183 •
Korel et al. [150] 2007 1,416 1,000 •
Li et al. [128] 2007 11,148 4,350 • •
Mirarab et al. [145] 2007 124,000 105 •
Qu et al. [133] 2007 17,155 796 •
Smith et al. [26] 2007 1,455 N/A •
Do et al. [158] 2008 80,400 912 •
Hou et al. [159] 2008 N/A¶ 1,000
Korel et al. [151] 2008 1,416 1,439 • •
Mirarab et al. [146] 2008 80,400 912 •
Qu et al. [134] 2008 107,992 975 •
Sampath et al. [153] 2008 9,401 890
Krishnamoorthi et al. [148] 2009 6,000 N/A •
Smith et al. [176] 2009 6,822 110 •
Yoo et al. [138] 2009 122,169 1,061 • •
Zhang et al. [160] 2009 5,361 209 •

∗ Srivastava and Thiagarajan [126] considered the biggest software system so far, an office productivity application with over
18 million LoC. However, the technique took the executable binary as input, not the source code. The compiled application
was 8.8Mb in size, with a 22Mb symbol table.

† Leon et al. [136] considered three compilers: javac, jikes and gcc. The sizes of the source code were not specified.
‡ Bryce et al. [131, 132, 135] studied interaction coverage prioritisation, for which the LoC metric is not appropriate.
§ These papers considered models rather than real software systems. Rummel et al. [156] applied their technique to a model

with 3 classes and 21 methods. Fraser et al. [154] did not specify the size of the studied models and test suites.
¶ Hou et al. [159] evaluated their technique using a web application composed of 12 web services.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

60 S.YOO AND M. HARMAN

Table VII: Summary of publications on empirical evaluation & comparative studies

Reference Year M
ax

.S
U

T
Si

ze
(L

oC
)

M
ax

.T
es

t
Su

ite
Si

ze

Si
em

en
s

Su
ite

s
p
a
c
e

SI
R
U
n
i
x

U
til

iti
es

SI
R

Ja
va

Pr
og

ra
m

s

O
th

er
C

/
C

++
/C

#

O
th

er
Ja

va
Pr

og
ra

m
s

M
od

el
s

&
O

th
er

L
an

gu
ag

es

W
eb

A
pp

lic
at

io
ns

Leung et al. [172] 1991 Theory -
Rothermel et al. [45] 1994 Theory -
Rothermel et al. [1] 1996 Survey -
Rosenblum et al. [5] 1997 49,316 1,033 • •
Rosenblum et al. [169] 1997 N/A∗ N/A
Rothermel et al. [78] 1997 512 5,542 •
Graves et al. [7] 1998 516 398 •
Kim et al. [166] 2000 6,218 4,361 • •
Bible et al. [4] 2001 49,316 1,033 • • •
Harrold et al. [173] 2001 516 19 •
Malishevsky et al. [119] 2002 65,632 1,168 •
Rothermel et al. [120] 2002 68,782 1,985 • •
Elbaum et al. [164] 2003 65,632 1,168 •
Elbaum et al. [168] 2004 68,000 1985.32 • •
Rothermel et al. [165] 2004 68,782 1,985 • •
Do et al. [162] 2005 80,400 877
Do et al. [179] 2005 Theory -
Kim et al. [167] 2005 6,218 4,361 • •
Do et al. [177] 2006 80,400 1,533 •
Do et al. [175] 2006 80,400 877 •
Do et al. [163] 2006 80,400 877 •
Do et al. [158] 2008 80,400 912 •
Do et al. [178] 2008 80,400 912 •
Engström et al. [2] 2008 Systematic Review -
Fahad et al. [3] 2008 Survey -
Zhong et al. [6] 2008 26,824 N/A • •
Smith et al. [176] 2009 6,822 110 •

∗ Rosenblum et al. [169] evaluated their cost-effectiveness predictor using 31 versions of the KornShell and a single
version of the SFIO (Unix library), but exact versions, sizes of SUT and sizes of test suites were not specified.

Copyright c© 2007 Shin Yoo & Mark Harman Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

