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Abstract 1 

 2 

During regression testing, a modified system is often retested using an existing test suite. Since the size of the test suite 3 

may be very large, testers are interested in detecting faults in the modified system as early as possible during this retesting 4 

process. Test prioritization attempts to order tests for execution so that the chances of early detection of faults during retest-5 

ing are increased. The existing prioritization methods are based on the source code of the system under test. In this paper, we 6 

present and evaluate two model based selective methods and a dependence based method of test prioritization utilizing the 7 

state-based model of the system under test. These methods assume that the modifications are made both on the system under 8 

test and its model. The existing test suite is executed on the system model and information about this execution is used to pri-9 

oritize tests. Execution of the model is inexpensive as compared to execution of the system under test; therefore the overhead 10 

associated with test prioritization is relatively small. In addition, we present an analytical framework for evaluation of test 11 

prioritization methods. This framework may reduce the cost of evaluation as compared to the framework that is based on 12 

observation. We have performed an empirical study in which we compared different test prioritization methods. The results 13 

of the empirical study suggest that system models may improve the effectiveness of test prioritization with respect to early 14 

fault detection. 15 

1. Introduction 16 

During maintenance of evolving software systems, their specification and implementation are changed to fix faults, to add 17 

new functionality, and to change the existing functionality.  Regression testing is the process of validating that the changes 18 

introduced in a system do not adversely affect the unchanged parts of the modified system. There has been a significant 19 

amount of research on regression testing that resulted in a variety of regression testing methods. These methods are generally 20 

classified as code-based [e.g., 1-7] or specification-based regression testing methods [e.g., 8-13].    21 

Although new tests are generated and used to test the changed parts of a modified system, previously developed tests in an 22 

existing test suite are often employed to retest the modified system to ensure that unchanged parts of the system are not ad-23 

versely affected by the changes made to the system. Depending on the size of the existing test suite, this system retesting may 24 

be very expensive. Test prioritization orders tests from the existing test suite, for “execution” in such a way that faults in the 25 

modified system are uncovered early during the retesting process. Test prioritization methods [14-18, 53-55] order tests ac-26 

cording to some criterion, e.g., a code coverage is achieved at the fastest rate. Tests are then executed in this prioritized order: 27 

tests with higher priority, based on the prioritization criterion, are executed first, whereas tests with lower priority are ex-28 

ecuted later. The existing test prioritization techniques use the source code and information gathered during previous execu-29 

tions of the system to prioritize the test suite for system retesting. Notice that test prioritization is appropriate for software 30 

systems for which execution of a test suite is expensive in terms of time and resources. For systems for which execution of a 31 

test suite is very fast, test prioritization may have limited benefits. 32 

System models are often used during the development of a software system, e.g., in partial code generation and in test 33 

generation for model-based testing. Several modeling languages have been developed to model state-based software systems, 34 

e.g., State Charts [19], Extended Finite State Machines (EFSM) [20], and Specification Description Language (SDL) [21].  In 35 

recent years, several model-based test generation [20, 22, 23, 24-26] and test suite reduction [9, 13] techniques have been 36 

developed based on these modeling languages.  37 

In this paper, we present a model-based test prioritization approach. Our approach prioritizes tests using information from 38 

the original and modified system models together with information collected during the execution of the modified model on 39 

an existing test suite. Based on this approach, we present two model-based test prioritization methods: model-based selective 40 

test prioritization and model dependence-based test prioritization. We have performed an empirical study in which we com-41 

pared effectiveness of the presented test prioritization methods. In addition, we present an analytical framework for evalua-42 

tion of some test prioritization methods with respect to the effectiveness of early fault detection.   43 
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The rest of the paper is organized as follows: Section 2 provides an overview of the EFSM-based system modeling. Sec-1 

tion 3 gives the preliminaries on the problem of test prioritization and presents the model based test prioritization. Section 4 2 

presents the proposed model-based selective test prioritization method. Section 5 presents the proposed model dependence-3 

based test prioritization method. In Section 6, a framework for comparison of test prioritization methods is discussed. In Sec-4 

tion 7, the results of an empirical study are presented. Section 8 outlines the related work on test prioritization. In Section 9, 5 

conclusions and future research directions are discussed. 6 

2. EFSM-based System Modeling 7 

System models for state-based systems describe the system behavior by a set of states and transitions between these states. 8 

The most popular formal description techniques (languages) used for modeling of state-based systems are: Extended Finite 9 

State Machines (EFSMs), Specification Description Language (SDL), and State Charts. These languages are often graphical, 10 

which makes them easy to comprehend and utilize. They have received wide industry acceptance, especially in the fields of 11 

telecommunications, embedded systems, and computer networking, where state-based systems are prevalent.  12 

In this paper, we concentrate on system models given as EFSMs; the underlying model for other modeling languages for 13 

state based systems such as SDL. An EFSM consists of a set of states (including a start state and an exit state) and transitions 14 

between states. A transition is triggered at its originating state when an event occurs (i.e., an input is received) and an enabl-15 

ing condition (i.e., a Boolean expression) associated with the transition is satisfied. When the transition is triggered, a se-16 

quence of actions may be performed (which may manipulate variables and produce an output) and the system is transferred to 17 

the terminating state of the transition.  18 

An EFSM M is expressed formally as a 7 tuple: M = (Σ, Q, Start, Exit, V, O, R) where: 19 

 Σ is the set of events, 20 

 Q is the set of states, 21 

 Start ∈ Q is the start state, 22 

 Exit ∈ Q is the exit state, 23 

 V is a finite set of variables, 24 

 O is the set of actions, 25 

 R is the set of transitions, where each transition T is represented by the tuple: T = (E, C, A, Sb, Se) where: 26 

 E  ∈ Σ is an event, 27 

 C is an enabling condition defined over V, 28 

 A is a sequence of actions, A= <a1, a2,….., aj>,  where ai ∈ O, 29 

 Sb ∈ Q is the transition’s originating state, 30 

 Se ∈ Q is the transition’s terminating state. 31 

In addition, the following notation related to a transition T is introduced: 32 

Sb(T) is the originating state of  transition T, 33 

Se(T) is the terminating state of transition T, 34 

C(T) is the enabling condition (a Boolean expression) associated with transition T, 35 

E(T) is the event associated with transition T, 36 

A(T) is a sequence of actions associated with transition T. 37 

In M, Σ is a set of events, each of which is an external stimulus (input) that may be associated with a list of arguments; i.e., 38 

an event E ∈ Σ is represented by E(arg1, arg2, …, argk). States in Q are passive elements in the EFSM model.  States are just 39 

snapshots of the system and they are not involved in any kind of decision making or computation. The states Start and Exit 40 

are where the system starts and terminates, respectively. The variables in V provide storage for values that is accessible by 41 

enabling conditions and actions in transitions. An action ai ∈ O is one of the following types: assignment action, output ac-42 

tion, or function call. An assignment action assigns a value to a variable. An output action displays a variable or a constant to 43 

the external environment. A function call to some function f(v1, v 2, …, vk) returns the evaluated value. 44 

A transition T in R is triggered when the system is in the originating state Sb(T), the event E(T) occurs, and the enabling 45 

condition C(T) is evaluated to TRUE. When transition T is triggered, the A(T) sequence of actions is performed and the sys-46 

tem is transferred to the terminating state Se(T).  If a transition T is specified at a state with no enabling condition, no other 47 

transition from that state can be associated with E(T).  48 

EFSM models may be depicted as graphs where states are represented by nodes and transitions by directed edges between 49 

states.  A simplified EFSM model of an Automated Teller Machine (ATM) system is shown in Figure 1  [9, 17, 27].  This 50 
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ATM system supports three types of transactions: balance inquiry, withdrawal and deposit represented by transitions.  Before 1 

transactions can be performed, an ATM user must enter a valid PIN that is matched against the PIN stored in the ATM card.  2 

A user is allowed a maximum of four attempts to enter the valid PIN. For example, the transition labeled T2 is triggered when 3 

the system is in state S1, event PIN(p) is received, the value of parameter p does not equal to variable pin, and the value of 4 

variable attempts is less than 3.  When the transition is triggered, an error message is displayed, the value of variable attempts 5 

is incremented, and the user is prompted to enter another pin.  Notice that in this example, for transition T2, Sb(T2) = S1, Se(T2) 6 

= S1,  C(T2) = (p != pin) and (attempts < 3), E(T2) = PIN(p).  7 

Start S1

Card(x,y)/

Prompt for PIN; S2

PIN(p)

[p == pin]/
Display menu;

Deposit(d)/

b = b + d;

Balance/

Display b;

S3

PIN(p)

[(p != pin) and (attempts == 3)]/

Display error;

Eject card;

Exit/

Eject card

PIN(p)[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T1

T3

T4

T6

T8

Continue/Print b; Display menu;

T9

T7 Withdrawal(w)[w>b]/

b=b-1;Display error;

Withdrawal(w)[w<=b]/

b = b – w;

T10

T11

pin=x;b=y;

attempts = 0;

 8 

Figure 1. EFSM model of ATM system 9 

In this paper, we assume that the EFSM model is executable, i.e., enough detail is provided in the model so that the model 10 

executor can execute the model based on the model specification (or an executable program corresponding to the model can 11 

be generated from the model specification). In order to support model execution, some actions may not be implemented (they 12 

are represented by “empty” actions). However, all actions are implemented during the development of the system.  13 

A test is a sequence of events with values for arguments associated with the events. For example, consider the following 14 

sequence of events t with input values:  15 

t: Card (1234,100), PIN (1234), Continue, Withdrawal (20), Continue, Exit. 16 

When the model of Figure 1 is executed on the sequence of events t above, the following sequence of transitions is executed: 17 

ττττ(t) = <T1, T4, T11, T7, T8>. Notice that for event Continue in state S2, no transition is executed, thus, the number of transitions 18 

executed in ττττ(t) is 5, whereas the number of events in t is 6. Let ττττ(t) = <Ti
1
, Ti

2
, …, Ti

k
, Ti

k+1
, …, Ti

m
>, be a sequence of transi-19 

tions traversed (executed) during execution of the model M on t. Let ττττ(t)[k] be a transition in sequence ττττ(t) at position k, i.e., 20 

ττττ(t)[k] = Ti
k
. For example, for ττττ(t) = <T1, T4, T11, T7, T8>, ττττ(t)[3] = T11 , i.e., transition T11  is at  position 3 in ττττ(t).  21 

In  this paper, we assume that the EFSM model is deterministic, i.e., for every event Ei(xi) where xi = arg1, arg2, …, argk, 22 

in t  there is one and only one possible execution of model M (at most one transition is executed for a given event Ei(xi)). 23 

When model M is executed for a given sequence of events t = <E1(x1), E2(x2), …, En(xn)>, a sequence of transitions ττττ(t) = 24 

<Ti
1
, Ti

2
, …, Ti

m
> is executed. Notice that the number of events n in t is not necessarily equal to the number of executed tran-25 

sitions m in ττττ(t).  26 

3. Test Prioritization 27 

Test prioritization tries to order tests for execution, so the chances of early detection of faults during retesting of the mod-28 

ified system are increased. In this paper, we define the test prioritization problem with respect to early fault detection [14, 29 

17]. The goal is to increase the likelihood of revealing faults earlier during execution of the prioritized test suite. Let TS = {t1, 30 

…, tN} be a test suite of size N, where ti is a test. Let D(TS) = {d1, …, dL} be a set of L faults in the system that are detected 31 
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by test suite TS. Let TS(d) ⊆ TS be a set of tests that fail because of fault d. Let θ = <ti
1
, ti

2
, …, ti

N
>  be a prioritized sequence 1 

of tests of test suite TS, where the subscript indicates the position of a test in the sequence, e.g., test ti
1
 is in position 1, test ti

2
 2 

is in position 2. Let ti
k
 ∈ TS(d) be the first failed test in sequence θ caused by fault d, i.e., all tests ti

1
, ti

2
, …, ti

k-1
  in θ between 3 

position 1 and k-1 do not fail because of d. Let pθ (d) = k be the position of ti
k
, i.e., the first position of the failed test in θ 4 

caused by fault d. Let rpθ (d) be the first relative position of the failed test in θ caused by fault d, where rpθ (d) is computed as 5 

follows: 6 

( )
( )

p d
rp d

N

θ

θ
=  (3.1)  7 

Notice rpθ(d) represents the test suite fraction at which d is detected and its values range between 0 < rpθ(d) ≤ 1. 8 

The rate of fault detection [15, 17] is a measure of how rapidly a prioritized test sequence detects faults. This measure is a 9 

function of the percentage of faults detected in terms of the test suite fraction, i.e., the relative position in the test suite. More 10 

formally, let P(θ) = <rpθ(d1), …, rpθ(dL)> be a list of relative positions of first failed tests for all faults in D(TS)1. Let F(θ) = 11 

<rp1, …, rpq>, q ≤ L, be an ordered (in ascending order) sequence of all unique first relative positions from P(θ), where rpi 12 

represents the test suite fraction at which at least one fault is detected in θ. F(θ) represents an order in which faults are unco-13 

vered by test sequence θ. The rate of fault detection RFD(θ) for sequence θ can be defined as a sequence of pairs (rpi, fdi), 14 

RFD(θ) = <(rp1, fd1), …, (rpq, fdq)>, where rpi is an element of F(θ), and fdi is the cumulative fraction of faults detected at 15 

position rpi in F(θ) and is computed as follows: 16 

1

( )

( )

| |

i

j
j

i

nd rp

fd
D TS

θ
=
∑

=  (3.2)  17 

where, ndθ(rpj) is the number of faults detected at the relative position rpj in θ. 18 

For example, suppose the test suite TS={t1, t2, t3, t4, t5, t6, t7, t8, t9, t10} consists of 10 tests that detect four faults D(TS) = 19 

{d1, d2, d3, d4} in a system. The following tests fail because of individual faults: TS(d1) = {t5, t7}, TS(d2) = {t3, t7}, TS(d3) = 20 

{t5}, and TS(d4) = {t3, t9}. Let θ1 = <t1, t2, t3, t4, t5, t6, t7, t8, t9, t10> and θ2 = < t10, t6, t4, t1, t9, t2, t5, t7, t3, t8> be two prioritized 21 

test sequences. The rates of fault detection for θ1 and θ2 can be graphically represented as in Figure 2.  22 

Figure 2 shows that, after executing 30% (test suite fraction rp=0.3) of the tests in sequence θ1, 50% of the faults were de-23 

tected (fd=0.5), and after executing 50% of the tests (rp=0.5) in sequence θ1, all the faults were detected (fd=1.0). For se-24 

quence θ2, after executing 50% of the tests (rp=0.5), 25% of the faults were detected (fd=0.25), after executing 70% of the 25 

tests (rp=0.7), 75% of the faults were detected (0.75), and after executing 80% of the tests (rp=0.8), all the faults were de-26 

tected (fd=1.0).  Thus, sequence θ1 leads to a faster rate of fault detection.  27 

 28 

Rate of fault detection for θ1 and θ2 

θ1 fd: fraction of faults detected  0.5 1.0   

 rp: Test suite fraction 0.3 0.5   

θ2 fd: fraction of faults detected  0.25  0.75 1.0  

 rp: Test suite fraction 0.5 0.7 0.8  

Figure 2. Rate of fault detection for θθθθ1 and θθθθ2 29 

In order to measure how rapidly a prioritized test sequence detects faults during the execution of sequence θ, a weighted 30 

average of the percentage of faults detected, APFD(θ), was introduced [15]. For a given rate of fault detection RFD(θ) = 31 

<(rp1, fd1), …, (rpq, fdq)>, APFD(θ) is computed as: 32 

2

)2)((

)(
0

11∑
=

++ −−−

=

q

i
iiii rprpfdfd

APFD θ  (3.3)  33 

where (rp0, fd0) = (0,0) and (rpq+1,fdq+1) = (1, 1). 34 

                                                                 

1  At the same position in θ more than one fault may be detected, therefore, some positions in P(θ) may have the same value. 
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The values of APFD(θ) range from 0 to 1, 0 ≤ APFD(θ) < 1, where higher APFD(θ) value means a faster (better) fault detection rate. Note: 1 

APFD(θ) < 1, because we assume that fd0 < fd1, where fd0=0. For the two sequences θ1 and θ2 presented earlier, Figures 3.a and 3.b show 2 

the percentage of faults detected versus the fraction of the test suite used for these two sequences. The area under the curves represents the 3 

weighted average of the percentage of faults detected over the life of the test suite. The resulting APFDs for the two sequences θ1 and θ2 4 

are: APFD(θ1) = 0.725 and APFD(θ2) = 0.45. As a result, sequence θ1 leads to a higher rate of fault detection than θ2.  5 

 6 

0.00
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0.50
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1.00
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a) APFD for sequence θ1 b) APFD for sequence θ2 

Figure 3. APFD for θθθθ1 and θθθθ2 7 

The simplest test prioritization method is random test prioritization where tests are ordered randomly. For a test suite of 8 

size N, there are N ! possible test sequences. Random test prioritization selects randomly one of these sequences and thus may 9 

be viewed as a “no test prioritization” approach and, therefore, used as a base-line for comparison with other test prioritiza-10 

tion methods. 11 

The goal of model-based test prioritization is early fault detection in the modified system. This is achieved in our approach 12 

by using the original and modified system models, the difference between these two models, and the information collected 13 

during execution of the modified model on the test suite. The collected information is used to prioritize the test suite. The 14 

prioritized test suite is then used for retesting the modified system.  Notice that execution of the model is very fast compared 15 

to the execution of the actual system. Therefore, execution of the model for the whole test suite is relatively inexpensive, with 16 

the result that the overhead associated with test prioritization is relatively small. 17 

 18 

Changes in specifications frequently lead to changes in system models and system implementations. Model-based test pri-19 

oritization uses the original model Mo and the modified model Mm and automatically identifies the difference between these 20 

two models [17, 28], as a set of elementary model modifications. There are two types of elementary modifications: a transi-21 

tion addition and a transition deletion. As a result, the difference between Mo and Mm is represented by a set Ra of added tran-22 

sitions and a set Rd of deleted transitions. Any complex modification to the model can be expressed as sets Ra and Rd of these 23 

two types of elementary modifications.  24 

A straightforward algorithm for identifying model differences, hence modifications in terms of added and deleted transi-25 

tions can be devised as follows. Let Ro be a set of transitions of Mo and Rm be a set of transitions of Mm. The algorithm then 26 

amounts to taking two set differences between Ro and Rm provided that the state and transition names are preserved across 27 

versions of the models. That is, only previously unused state and transition names appear in the modified model Mm for the 28 

added states and transitions, Then, the algorithm becomes the following:  29 

Ra = Rm  – Ro               (3.4) 30 

Rd = Ro – Rm                 (3.5) 31 

The complexity of this algorithm is at most, 4*(| Ro |+ | Rm |)-1 comparisons provided that the sets Ro and Rm are sorted in the 32 

same order over the transition names.  33 
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Notice that the sequence in which these elementary modifications is applied to the original model is not relevant. A transi-1 

tion addition may occur between existing states or may involve an introduction of a new state when a transition is added to 2 

the model. Similarly, a transition deletion may, in some cases, result in the deletion of a state. Notice, however, that an addi-3 

tion of a new state and a deletion of a state are always associated with a transition addition and a transition deletion. There-4 

fore, addition of a new state or a deletion of a state is not considered to be an elementary modification. Note that the approach 5 

of identifying the differences between the modified model and the original model is straightforward. Even when the name of 6 

a state is changed, one can identify all incoming and outgoing transitions in the original model as deleted transitions and all 7 

incoming and outgoing transitions to the state with the new name in the modified model as added transitions.  8 

For example, the difference between the original model of Figure 1 and the modified model of Figure  is: deletion of transi-9 

tion T11 and addition of transition T12, i.e., Ra ={T12} and Rd ={T11}. Transition T11 no longer exists in the modified model, 10 

and it is shown as a dashed line in Figure , merely to aid presentation.    11 

In this paper, based on the above approach, we propose two methods of model-based test prioritization: model-based se-12 

lective test prioritization and model dependence-based test prioritization in Sections 4 and 5, respectively.  13 

4. Model-based selective test prioritization 14 

Model-based selective test prioritization (henceforth called selective test prioritization) assigns a high priority to tests that 15 

execute the modified (added or deleted) transitions in the modified model. A low priority is assigned to tests that do not ex-16 

ecute any modified transition. Let TSH be a set of high priority tests in a test suite TS and TSL be a set of low priority tests. 17 

Sets TSH and TSL are disjoint and test suite TS = TSH ∪ TSL. Notice that information about executed added/deleted transitions 18 

may also be used in regression test selection [9, 13, 26, 27, 29]. However, in this paper, we concentrate only on using this 19 

information for test suite prioritization. We present two versions of the selective test prioritization and investigate their effec-20 

tiveness in early detection of faults.  21 

Start S1

Card(x,y)/

Prompt for PIN; S2

PIN(p)

[p == pin]/
Display menu;

Deposit(d)/

b = b + d;

Balance/
Display b;

S3

PIN(p)

[(p != pin) and (attempts == 3)]/

Display error;

Eject card;

Exit/

Eject card

PIN(p)[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T1

T3

T4
T12

T6

T8

Continue/Print b; Display menu;

T9

T7

Withdrawal(w)[w>b]/

b=b-1;Display error;

Withdrawal(w)[w<=b]/

b = b – w;

T10

T11

Withdrawal(w)[w<=b-1]/
b = b – w;

pin=x;b=y;

attempts = 0;

 22 
Figure 4. A modified model of Figure 1 23 

 24 

Version I: In this version, modified transitions of Mm are represented only by added transitions of Ra. Since deleted transi-25 

tions of Rd do not exist in the modified model Mm, they are ignored. Every transition T ∈ Ra is monitored during execution of 26 

Mm on test suite TS. Let t be a test and ττττ(t) =<Ti
1
, Ti

2
, …, Ti

m
>  be a sequence of transitions traversed during execution of Mm 27 

on t. If, during execution of Mm on test t, transition T ∈ Ra is executed, a high priority is assigned to t, i.e., t ∈ TSH.  Other-28 

wise, a low priority is assigned to t, i.e., t ∈ TSL.  29 

Example 1. Consider the following three tests and the corresponding sequences of transitions traversed during execution 30 

of the modified model of Figure : 31 
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 t1: Card(12,10), PIN(12), Withdrawal(5), Continue(), Exit() 1 

 t2: Card(12, 10), PIN(12), Withdraw(15), Continue(), Exit() 2 

 t3: Card(12, 10), PIN(12), Deposit(20), Continue(), Exit() 3 

              t4: Card(15, 10), PIN(15), Deposit(20), Continue(), Withdraw(10), Continue(), Exit() 4 

 5 

 ττττ(t1) = <T1, T4, T12, T7, T8> 6 

 ττττ(t2) = <T1, T4, T10, T7, T8>  7 

 ττττ(t3) = <T1, T4, T6, T7, T8> 8 

        ττττ(t4) = <T1, T4, T6, T7, T12, T7, T 8> 9 

 10 

A set of added transitions for the modified model of Figure 4 is Ra = {T12}. Based on the execution of these tests, the fol-11 

lowing high and low priority tests are identified: TSH = {t1, t4} and TSL = {t2, t3}. Notice that since T12 is executed on test t1 12 

and t4, a high priority is assigned to these tests. 13 

Version II: In this version, the modified transitions of Mm are represented by added and deleted transitions, i.e., transitions of 14 

set Ra and set Rd. These transitions are monitored during execution of the modified model Mm on test t. In Version II addi-15 

tional instrumentation of Mm is required to capture the execution of deleted transitions because deleted transitions no longer 16 

exist in Mm. When Mm, during its execution, is in a state from which the deleted transition was outgoing, it is possible to cap-17 

ture traversal of a deleted transition (imitation of execution of a deleted transition) when the event associated with the deleted 18 

transition is received and the enabling condition of the deleted transition evaluates to TRUE. This is considered as “execu-19 

tion” of the deleted transition.    20 

The following governs the execution of the EFSM model M on a sequence of events t = <E1(x1), E2(x2), …, En(xn)> that 21 

may capture traversal of a deleted transition (imitation of  execution of a deleted transition): suppose a modified model Mm is 22 

in some state S and event Ei(xi) occurs. If there exists a deleted transition Td ∈ Rd such that: 23 

a. E(Td) = Ei   24 

b. C(Td) evaluates to TRUE  25 

c. Sb(Td) = S 26 

then,  we say that the deleted transition Td is “executed”. 27 

Notice that “execution” of a deleted transition means that the modified model Mm remains in the state S, no action is per-28 

formed, and it does not consume the event.  When Mm is executed for a given sequence of events t = < E1(x1), E2(x2), …, 29 

En(xn)>, a sequence of transitions ττττ(t) = < Ti
1
, Ti

2
, …, Ti

m
> is executed, where some of the executed transitions in the se-30 

quence may be “deleted” transitions of set Rd. Notice that ττττ(t) may or may not contain “executed” deleted transitions.  31 

Example 2. Consider the following three tests and the corresponding sequences of transitions traversed during execution 32 

of the modified model of Figure 4 on these tests, in which transition T11 is deleted and transition T12 is added: 33 

t1: Card(12,10), PIN(12), Withdrawal(15), Continue(), Exit() 34 

t2: Card(12, 10), PIN(12), Withdraw(10), Continue(), Deposit(10), Continue() Exit()  35 

t3: Card(12, 10), PIN(12), Withdraw(5), Continue(), Exit() 36 

 ττττ(t1) = <T1, T4, T10, T7, T8>  37 

 ττττ(t2) = <T1, T4, (T11), T6, T7, T8> 38 

 ττττ(t3) = <T1, T4, (T11), T12, T 7, T8> 39 

Notice that, in sequence ττττ(t2), transition T4 is executed followed by deleted transition (T11) (indicated in parentheses). The 40 

deleted transition T11 is executed because after executing the two events: Card(12, 10) and PIN(12), the model moves to state 41 

S2, event Withdrawal(10) occurs, and an enabling condition associated with transition  T11 (i.e., “w  <=  b”) evaluates to 42 

TRUE.   Note that in sequence ττττ(t3), T12 and T11 are "executed". However, only T12 is actually executed whereas we only 43 

capture a potential execution of deleted transition T11. 44 

If a transition T in Ra or Rd is executed during execution of modified model Mm on test t, a high priority is assigned to test 45 

t, i.e., t ∈ TSH.  Otherwise, a low priority is assigned to test t, i.e., t ∈ TSL. For example, the set of added transitions for the 46 

modified model of Figure  is Ra={T12} and the set of deleted transitions is Rd = {T11}. Based on the execution of the three 47 

tests discussed in Example 2, the following high and low priority tests are identified: TSH = {t2, t3} and TSL = {t1}. Notice that 48 

since T11 is executed on test t2 and T12 is executed on test t3, a high priority is assigned to these two tests. 49 

During system retesting based on Version I or Version II, tests with high priority are executed first followed by execution 50 

of low priority tests. High priority tests and low priority tests are ordered using random ordering. The algorithm for selective 51 
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test prioritization is shown in Figure . In the first step, high priority tests are ordered randomly (lines 1-4), then low priority 1 

tests are ordered randomly (lines 5-8) in the prioritized test sequence θ. 2 

Input: A set of high priority tests: TSH 3 

A set of low priority tests: TSL 4 

Output: Prioritized test sequence: θ 5 

 6 

1. for p=1 to |TSH| do 7 

2.  select randomly and remove test t from TSH 8 

3.  insert t into θ at position p 9 

4. endfor 10 

5. for p=1 to |TSL| do 11 

6.  select randomly and remove test t from TSL 12 

7.  insert t into θ at position p + |TSH| 13 

8. endfor 14 

9. output θ 15 

 16 

Figure 5. Selective test prioritization algorithm 17 

In the next section, we present our model dependence-based test prioritization method in which high priority tests TSH are 18 

prioritized using model dependence analysis. 19 

5. Model dependence-based test prioritization 20 

The selective test prioritization method presented in the previous section may improve the effectiveness of test prioritiza-21 

tion with respect to the fault detection capability when compared to random test prioritization. In this section, we propose 22 

model dependence-based test prioritization to further improve the effectiveness of test prioritization with respect to fault de-23 

tection capability. This dependence based approach uses model dependence analysis [9, 12, 13, 17, 26, 28] to prioritize high 24 

priority tests TSH identified by Version II of selective test prioritization. This improvement is achieved by identifying differ-25 

ent ways in which added and deleted transitions interact with the remaining parts of the model and using this information to 26 

prioritize high priority tests. The model dependence analysis is based on two types of dependences that may exist in the mod-27 

el: data dependence and control dependence. These model dependences are between transitions and they are used to identify 28 

potential “interactions” between transitions. The goal of model dependence-based test prioritization is to identify unique pat-29 

terns of interactions between model transitions and added/deleted transitions that are present during execution of the modified 30 

model on tests in a given test suite. The interaction pattern and the test suite are used to prioritize the test suite for retesting 31 

the modified system.  32 

5.1. Model Dependence Analysis  33 

Before we present the model dependence-based test prioritization technique, we introduce dependences that may exist in 34 

the EFSM model.  We extend the existing code-based dependence analysis, which is commonly used for white box testing 35 

[30] to model dependence analysis [9, 17]. We define two types of dependences between transitions: data dependence and 36 

control dependence.  Data dependence captures the notion that one transition defines a value of a variable and another transi-37 

tion may potentially use this value. Control dependence captures the notion that one transition may affect traversal of another 38 

transition. These dependences capture the notion of potential “interactions” between transitions in the model.  39 

5.1.1. Data Dependence 40 

Model dependence analysis with respect to data dependence focuses on occurrences of variables within the system model.  41 

Each variable occurrence is classified as being a variable definition or a variable use.  We refer to these as definition and use, 42 

respectively. A definition of a variable v in a transition is any occurrence of v at which v is assigned a value.  A transition can 43 

define a variable v by defining v as a part of the action(s) (e.g., v = x + 5).  A use of a variable v in a transition is any occur-44 

rence of v that references the value of v.  A transition can reference a variable v in a Boolean expression associated with the 45 

transition (e.g., [v < 0]) or by using v in action(s) associated with the transition (e.g., x = v + 5).  46 

Let T be a transition.  The following concept related to transition T is introduced: 47 

� D(T) is a set of variables defined by transition T, i.e., variables defined by an action(s) of T.  48 

� U(T) is a set of variables used in transition T, i.e., variables used in a condition and an action(s) of T. 49 

For example, in the EFSM model of Figure 1, for transition T1, D(T1) = {pin, b, attempts}and U(T1) = {x, y}. 50 
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Data dependence captures the notion that one transition defines a value of a variable and another transition may potentially 1 

use this value. There exists a data dependence between transitions Ti and Tk if transition Ti modifies the value of variable v, 2 

transition Tk uses v, and there exists a path (transition sequence) in the model from Ti to Tk along which v is not modified [9]. 3 

More formally, there exists data dependence between transitions Ti and Tk if there exists a variable v such that: (1) v ∈ D(Ti), 4 

(2) v ∈ U(Tk), and (3) there exists a path (transition sequence) in the EFSM model from Ti to Tk along which v is not mod-5 

ified; such a path is referred to as a definition-clear path. For example, there exists a data dependence between transitions T6 6 

and T11 in the model of Figure 1 because transition T6 assigns a value to variable b in the action “b = b + d”, transition T11 7 

uses variable b in condition “[w <= b]”, and there exists a path (sequence of transitions (T6, T7, T11)) from T6 to T11 along 8 

which b is not modified. 9 

5.1.2. Control Dependence 10 

Control dependence was originally defined for a program’s Control Flow Graph (CFG) [31].  Control dependence cap-11 

tures the notion that one node in the control graph may affect the execution of another node.  In this paper, we extend the 12 

concept of program control dependence to the EFSM model [9]. Control dependence in an EFSM exists between transitions 13 

and it captures the notion that one transition may affect traversal of another transition.  Control dependence between transi-14 

tions is defined similarly to control dependence between nodes of a CFG [31], i.e., in terms of the concept of post-15 

dominance. Let Y and Z be two states (nodes) and T be an outgoing transition (edge) from Y. State Z post-dominates state Y 16 

iff Z is on every path from Y to the exit state of the EFSM.  State Z post-dominates transition T iff Z is on every path from Y 17 

to the exit state of the EFSM through transition T. Transition Tk is control dependent on transition Ti iff: (1) Sb(Tk) does not 18 

post-dominate Sb(Ti) and (2) Sb(Tk) post-dominates transition Ti. Less formally, transition Tk is control dependent on Ti if (1) 19 

there exists another transition T that if executed instead of Ti prevents Tk from being executed, and (2) Tk cannot be executed 20 

without execution of Ti, i.e., in every path in which Ti is executed Tk is also executed. Notice that the definition of control 21 

dependence presented in this paper captures the same view as the definition of control dependence between nodes in a CFG 22 

[31]. For example, transition T11 is control dependent on T4 in the model of Figure 1 because (1) Sb(T4) does not post domi-23 

nate Sb(T11) (condition 1 of control dependence definition is true) and (2) state Sb(T11) post dominates transition T4 (condition 24 

2  is TRUE ). Note that Sb(T4) is S1 and Sb(T11) is S2. The issue of control dependence in EFSMs is discussed in more detail 25 

elsewhere [37, 38].  26 

  27 

Figure 6.  Static EFSM dependence graph of the model in Figure 1 28 

 29 
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5.1.3. Static EFSM Dependence Graph 1 

Static data and control dependences in an EFSM model can be depicted by a graph referred to as a static dependence 2 

graph, where nodes represent transitions and directed edges represent data and control dependences. More formally, let M = 3 

(Σ, Q, Start, Exit, V, O, R) be an EFSM model and let G= (R, E) be a model dependence graph of model M where: 4 

R is a set of nodes (set of transitions) 5 

E is a binary relation on R, E ⊆  R ×  R, representing data and control dependences by a set of directed edges where: 6 

(Ti, Tk) ∈ E, if there exists a data or control dependence from transition Ti to transition Tk.                        7 

Figure 6 shows a dependence graph of the model of Figure 1. Note that data dependences are shown as solid edges and 8 

control dependences are shown as dashed edges.  9 

5.1.4. Dynamic Dependence 10 

In order to prioritize tests, we are interested in data and control dependences that are present during execution of the mod-11 

ified model Mm on each test t in test suite TS. We refer to these dependences as dynamic data and control dependences. Let t 12 

be a test and ττττ(t) = < Ti
1
, Ti

2
, …, Ti

m
 
> be a sequence of transitions traversed during execution of the modified model Mm on test 13 

t of a test suite TS. Notice that some of the executed transitions in sequence ττττ(t) may be "deleted" transitions of set Rd.  14 

There exists a dynamic data dependence between transitions Ti and Tk in ττττ(t) if transition Ti modifies the value of variable 15 

v, transition Tk uses v, and for all transitions Tj in the modified model Mm, i < j < k, v is not modified. More formally, there 16 

exists a dynamic data dependence between transitions ττττ(t)[i] and ττττ(t)[k] in ττττ(t), i < k, if there exists a variable v such that: (1) 17 

v ∈ D(ττττ(t)[i]), (2) v ∈ U(ττττ(t)[k]), and (3) and for all j, i < j < k,  v ∉ D(ττττ(t)[j]) such that ττττ(t)[j] ∈ Rm where Rm is the set of 18 

transitions in Mm. 19 

There exists a dynamic control dependence in ττττ(t) between transitions ττττ(t)[i] and ττττ(t)[k], i < k, if there exists a control de-20 

pendence between ττττ(t)[i] and ττττ(t)[k], and for all j, i < j < k, there is no control dependence between ττττ(t)[j] and ττττ(t)[k] such that 21 

ττττ(t)[j] ∈ Rm.  22 

For example, consider the following test t for the modified model of Figure :  23 

t: Card(5,6), PIN(5), Deposit(1), Continue(), Withdrawal(2), Continue(), Withdrawal(90), Continue(), Exit().  24 

On test t, the following transitions are executed in sequence ττττ(t) = <T1, T4, T6, T7, (T11) T12, T7, T10, T7, T8>. There exists a 25 

dynamic data dependence between T6 and T12 with respect to variable b and a dynamic control dependence between T4 and T6 26 

in ττττ(t).  27 

5.1.5. Dynamic Dependence Graph 28 

Dynamic data and control dependences in ττττ(t) can be depicted by a graph, referred to as a dynamic dependence graph, 29 

where nodes represent transitions and directed edges represent dynamic data and control dependences in ττττ(t). Formally, let t 30 

be a test and ττττ(t) = < Ti
1
, Ti

2
, …, Ti

m
 
> be a sequence of transitions traversed during execution of the modified model Mm on test 31 

t. Let G′(ττττ(t)) = (Rm, Em) be a dynamic model dependence graph of ττττ(t) where: 32 

Rm is a set of transitions in Mm   33 

Em is a binary relation on Rm, Em ⊆ Rm ×  Rm, representing data and control dependences where (ττττ(t)[i], ττττ(t)[k]) ∈ Em,  34 

if there exists a dynamic data or control dependence from transition ττττ(t)[i] to transition ττττ(t)[k] in ττττ(t).     35 
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1 
 2 

 Figure 7. Dynamic dependence graph of ττττ(t) 3 

 4 

For example, consider the following test t for the modified model of Figure :  5 

t: Card(5,6), PIN(5), Deposit(1), Continue(), Deposit (6), Exit().  6 

On test t, the sequence of transitions ττττ(t) = <T1, T4, T6, T7, T6, T7, T8> is executed. Figure shows the dynamic dependence 7 

graph of ττττ(t) where data dependences are shown as solid edges and control dependences are shown as dashed edges.  8 

5.2. Interaction patterns 9 

In order to prioritize high priority tests TSH identified by Version II of the selective test prioritization method, the depen-10 

dence analysis is used to identify different ways added and deleted transitions interact with the remaining parts of the model.  11 

The principle of model dependence-based test prioritization is to identify unique patterns of interactions between the model 12 

and the added/deleted transitions that are present during execution of the modified model on tests in TSH. This information 13 

can be used to guide the choice of priorities. During execution of the modified model Mm on a test t, we identify three types 14 

of interactions between a modified part of the model and the remaining parts of the model: (1) the effect of the model on the 15 

modification (affecting transitions), (2) the affect of the modification on the remaining part of the model (affected transi-16 

tions), and (3) the side effects of transitions caused by the modification. These interactions may be viewed as computing a 17 

model slice [28].  18 

Since there are three types of interactions between a modified part of the model and the remaining parts of the model, in 19 

this paper, we introduce three types of interaction patterns related to each modification (i.e., an added or deleted transition) as 20 

shown in Figure : (1) an affecting interaction pattern, (2) an affected interaction pattern, and (3) a side-effect interaction 21 

pattern. The affecting interaction pattern captures interactions between model transitions that affect the modification. The 22 

affected interaction pattern captures transitions that are affected by the modification. Finally, the side-effect interaction 23 

pattern captures interactions that occur because of side effects introduced by the modification. In this context, we consider a 24 

side-effect to be an introduction of a new dependence or a removal of an existing dependence between other transitions.  25 
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 1 

Figure 8. Interaction patterns  2 

Interactions between model transitions are represented as model dependences between transitions. Consequently, the 3 

affecting interaction pattern, affected interaction pattern, and side-effect interaction pattern are represented as model 4 

dependence subgraphs (derived from a model dependence graph) with respect to added and deleted transitions.  5 

5.2.1. Affecting Interaction Pattern 6 

An affecting interaction pattern  is formed by identifying transitions that affect an added or deleted transition T during 7 

execution of the modified model on a test t of test suite TS. These transitions are identified by traversing backwards within 8 

G′(ττττ(t)) = (Rm, Em), dynamic model dependence graph of ττττ(t) of test t, starting from the added or deleted transition T and by 9 

marking all transitions that affect T. Then, an affecting interaction pattern, IP(t, T), is formed as a subgraph of  G′(ττττ(t)) by 10 

keeping only those edges of G′(ττττ(t)) that are within paths starting at marked transitions and terminating at T. 11 

Example 3. Consider the following tests for the modified model of Figure  in which transition T12 is added to the model 12 

and transition T11 is deleted: 13 

t1: Card(5,6), PIN(5), Deposit(1), Continue(), Withdrawal(2), Continue(), Withdrawal(90), Continue(), Exit() 14 

t2: Card(5,6), PIN(5), Deposit(11), Continue(), Withdrawal(17), Continue(), Withdrawal(19), Continue(), Exit() 15 

On these tests the following sequences of transitions are executed in the model of Figure 4:  16 

ττττ(t1) = <T1, T4, T6, T7, (T11), T12, T7, T10, T7, T8> 17 

ττττ(t2 ) = <T1, T4, T6, T7, (T11), T10, T7, T8>  18 

where added transition T12 and deleted transition T11 are executed in ττττ(t1) and deleted transition T11 is executed in ττττ(t2). The 19 

affecting interaction pattern with respect to added transition T12 for test t1 and deleted transition T11 for test t2 is shown in  20 

Figure .  21 

 22 

 23 

 24 

 25 
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Affecting interaction pattern for T12 for test t1 

 

Affecting interaction pattern for T11 for test t2 

Figure 9. Affecting interaction pattern for tests t1 and t2  2 

5.2.2. Affected Interaction Pattern 3 

An affected interaction pattern is formed by identifying transitions that are affected by an added or deleted transition T 4 

during execution of the modified model on a test t of test suite TS. These transitions are identified by traversing forwards 5 

within G′(ττττ(t)) = (Rm, Em), dynamic model dependence graph of ττττ(t) of test t, starting from the added or deleted transition T 6 

and by marking all transitions that are affected T. Then, an affected interaction pattern, IP(t, T), is formed as a subgraph of  7 

G′(ττττ(t)) by keeping only those edges of G′(ττττ(t)) that are within paths starting at T and terminating at marked transitions. 8 

For example, the affected interaction pattern for the two tests discussed in Example 3 is shown in Figure . 9 

 

 

 

T11

T7

 

Affected interaction pattern for T12 for test t1 

 

Affected interaction pattern for T11 for test t2 

Figure 10. Affected interaction pattern for test t1 and t2 10 

5.2.3. Side-Effect Interaction Pattern 11 

A side-effect interaction pattern captures interactions between transitions that occur because of side effects introduced by 12 

a transition of interest (an added or deleted transition). An addition or deletion of a transition may introduce in the modified 13 

model new dependences that do not exist in the original model or it may cause the removal of some dependences that do exist 14 

in the original model [9, 17, 12, 13]. During execution of the modified model on a test, new or removed data and control de-15 

pendences that are present during model execution are identified. These dependences are referred to as a Side-Effect Interac-16 

tion Pattern.  For example, deleting transition T9 from the ATM model of Figure 1 eliminates the existing data dependence 17 

between transitions T1 and T7 with respect to variable b in the modified model because there is no definition-clear path with 18 

respect to variable b from T1 to T7 in the modified model.  19 

5.3. Model Dependence-Based Test Prioritization Algorithm 20 

Given a set TSH of high priority tests determined in Version II of the selective test prioritization algorithm, during the ex-21 

ecution of the modified model Mm on a test t in TSH, a set of interaction patterns is computed for each added or deleted transi-22 

tion T, i.e.,  {IP1(t, T), …, IPq(t, T)}. Let TS(IPi(t, T)) ⊆ TSH be a set of tests where for a test t in TSH and for an added or de-23 

leted transition T,  the following holds: (1) an added or deleted transition T is executed in Mm on test t, and (2) interaction 24 
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pattern IPi(t, T) is computed with respect to T in ττττ(t). We refer to IPS = {TS(IP1(t, T)),…,TS(IPq(t, T))} as an interaction pat-1 

tern test distribution set. Notice that each test t ∈ TSH belongs to at least one TS(IPi(t, T)), and the same test may belong to 2 

different TS(IPi(t, T)) sets. 3 

The algorithm that computes a prioritized test sequence using the interaction patterns is shown in Figure 11. The input to 4 

the algorithm is a set of interaction patterns test distribution IPS = {TS(IP1(t, T)), …, TS(IPq(t, T))}, a set of high priority tests 5 

TSH, and a set of low priority tests TSL. The output of the algorithm is the prioritized sequence of tests θ.  6 

The algorithm in the first step (lines 1-13) prioritizes tests that are associated with interaction patterns, by iteratively se-7 

lecting (lines 3-12) one test from each interaction pattern TS(IPi(t, T)) and inserting them into the prioritized sequence. After 8 

selecting one test from each interaction pattern, the algorithm repeats this process (lines 2-13) until all tests in IPS are se-9 

lected. In the next step (lines 14-17), the algorithm continues with the prioritization with low priority tests by ordering them 10 

randomly. Notice that the algorithm also selects TS(IP(t, T)) from IPS and tests from TS(IP(t, T)) randomly. In addition, no 11 

assumption is made about the order in which interaction patterns are processed, i.e., interaction patterns are randomly ordered 12 

for test prioritization. 13 

 14 

Input: a set of interaction pattern test distribution IPS = {TS(IP1(t, T)),…,TS(IPq(t, T))}          15 

a set of high priority tests: TSH 16 

a set of low priority tests: TSL 17 

 18 

Output: Prioritized test sequence: θ 19 

1    p=0 20 

2  while true do 21 

3     for every TS(IP(t, T)) ∈ IPS do //select randomly TS(IP(t, T)) from IPS 22 

4         if TS(IP(t, T)) ≠ ∅  then 23 

5            p=p+1 24 

6            select randomly test t from TS(IP(t, T)) 25 

7            remove t from every TS(IP(t, T)) to which t belongs 26 

8            insert t into θ at position p 27 

9             if p=|TSH| then exit while loop 28 

10        endif 29 

11             if TS(IP(t, T)) = ∅  then IPS = IPS - {TS(IP1(t, T))} 30 

12     endfor 31 

13  endwhile 32 

14  for p=1 to |TSL| do 33 

15      select randomly and remove test t from TSL 34 

16      insert t into θ at position p + |TSH| 35 

17  endfor 36 

18  output θ 37 

 38 

Figure 11. Model dependence-based test prioritization algorithm 39 

Example 4. Consider the test suite TS consisting of seven tests, TS = {t1, t2, t3, t4, t5, t6, t7}, that detect two faults D(TS) = 40 

{d1, d2} in a system and the following tests fail because of individual faults: TS(d1) = {t5} and TS(d2) = {t5, t7}. Suppose that 41 

the following high and low priority tests are determined: TSH = {t1, t4, t5, t7} and TSL = {t2, t3, t6}, and three interaction pat-42 

terns are computed with the following distribution of tests among them:  43 

TS(IP1(t, T)) = {t4, t5}  44 

TS(IP2(t, T)) = {t1, t4, t7}  45 

TS(IP3(t, T)) = {t5, t7} 46 

The algorithm in Figure 11 may output the following sequences out of many possible sequences: θ = {t
4
, t

1
, t

5
, t

7
, t

3
, t

2
, t

6
}.  47 

6. Measuring effectiveness of early fault detection 48 

In order to compare different test prioritization methods an empirical study may be performed with different systems that 49 

contain known faults. In this paper, the rate of fault detection [15] is used as a measure of the effectiveness of early fault de-50 

tection to evaluate the effectiveness of test prioritization methods for a given system(s) with known fault(s). Notice that the 51 



15 

 

rate of fault detection is not used during the process of prioritizing tests by test prioritization methods, but it is used only dur-1 

ing an empirical study to measure the effectiveness of individual test prioritization methods.  2 

Test prioritization methods may generate many different solutions (prioritized test sequences) for a given test suite. For 3 

example, for test suite TS of size N, random test prioritization generates a prioritized test sequence out of N! possible test se-4 

quences (all possible permutations of tests in TS). A factor that may influence the resulting prioritized test sequence is, for 5 

example, an order in which tests are processed during the prioritization process. As a result, a test prioritization method under 6 

study may generate different prioritized test sequences with different rates of fault detection. 7 

To compare test prioritization methods under study, we need to determine an average rate of fault detection for each test 8 

prioritization method for a given system, known faults, and a test suite. Notice that the major assumptions for the empirical 9 

study are that (1) all system faults that are used in the empirical study are known, e.g., by seeding faults into the system, and 10 

(2) one is able to identify the mapping between faults and failed tests, i.e., for each failed test it is possible to determine 11 

which fault(s) caused the failure.  12 

Let TS = {t1, …, tN} be a test suite of size N and let D(TS) = {d1, …, dL} be a set of L known faults in the system that are 13 

detected by TS. Let TS(d) be a set of failed tests caused by fault d ∈ D(TS). Let θ = <ti
1
, ti

2
, …, ti

N
>  be a prioritized sequence 14 

of tests of test suite TS, and let P(θ) = <rpθ(d1),…, rpθ(dL)> be a list of relative positions of the first failed tests for all faults in 15 

D(TS) for test sequence θ. The rate of fault detection for θ can be determined based on P(θ) as discussed in Section 3. Since 16 

the rate of fault detection is based on the concept of a relative position of the first failed test, we introduce the concept of the 17 

average relative position, RP(d), of the first failed test that detects fault d. Notice that rpθ(d) represents a relative position of 18 

the first failed test that detects fault d in test sequence θ, whereas RP(d) represents an average relative position of the first 19 

failed test that detects d for a test prioritization method.  20 

Let AP(d) be the average (expected) position of the first failed test that detects fault d for a test prioritization method under 21 

study. The following formula is used to compute AP(d): 22 

∑
=

⋅=
N

i

dipridAP
1

),()(  (6.1)  23 

where pr(i,d) is a probability that a test prioritization method under study selects the first failed test caused by fault d at 24 

position i, i.e., the first failed test t ∈ TS(d) caused by fault d is in the i
th

 position. 25 

RP(d), the average relative position of the first failed test that detects d, is computed from AP(d) as follows: 26 

N

dAP
dRP

)(
)( =  (6.2)

 

 27 

For a test prioritization method under study, RP(d) can be determined analytically or it can be estimated by sampling. In 28 

this paper, we discuss how RP(d) can be determined analytically for some simple test prioritization methods discussed in this 29 

paper. The analytical approach may reduce the cost of evaluation of test prioritization methods as opposed to evaluation by 30 

sampling. However, for many test prioritization methods, determining RP(d) analytically may be very difficult. Therefore, 31 

estimation by sampling is used. In order to estimate RP(d) by sampling, one needs to develop a simulator for a test prioritiza-32 

tion method under study. The simulator generates prioritized test sequences according to the test prioritization method. For 33 

each test sequence, the position of the first failed test for each fault is determined. After a large number of test sequences are 34 

generated, RP(d) for each fault is computed using formula 6.3: 35 

 36 

NW

diRi

dRP

N

i

⋅

⋅

=

∑
=

),(

)(
1

 (6.3)

 

 37 

where  38 

W is the number of prioritized test sequences generated by a simulator during sampling, 39 

R(i,d) is a number of prioritized test sequences that are generated by a simulator for which pθ(d) = i, i.e., the first failed test 40 

t ∈ TS(d) caused by fault d is in the i
th

 position. 41 

In order to have a precise estimation of RP(d), a large number of prioritized test sequences, W, needs to be generated by 42 

the simulator. The simulator needs to take into account the randomness factors that affect test prioritization for each test pri-43 

oritization method under study. 44 
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6.1. Random prioritization 1 

In random test prioritization, tests are ordered in random order. For a test suite of size N, there are N! possible test se-2 

quences. APR(d), the average position of the first failed test that detects d, for random test prioritization can be precisely 3 

computed by the following formula where µ= |TS(d)| : 4 
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  6 

The expression inside of the summation, except i, represents the number of random test sequences for which the first 7 

failed test caused by d is in position i. RPR(d), the average relative position of the first failed test that detects d, is computed 8 

from APR(d) by Formula 6.2. For example, suppose that test suite TS = {t1, t2, t3, t4, t5, t6, t7} detects two faults D(TS) = {d1, 9 

d2} in a system and the following tests fail because of individual faults: TS(d1) = {t5} and TS(d2) = {t5, t7}. RPR(d1) = 0.57 and 10 

RPR(d2) = 0.38 are the average relative positions for random test  prioritization for faults d1 and d2. 11 

6.2. Selective prioritization 12 

In selective test prioritization tests are divided into two categories: high priority tests and low priority tests. During priori-13 

tization, first all high priority tests are selected for execution and then low priority tests are selected. High priority tests are 14 

ordered randomly. Similarly, low priority tests are ordered randomly. The effectiveness of selective test prioritization de-15 

pends on whether failed tests are high priority tests or not. More formally, let TSH be a set of high priority tests and TSL be a 16 

set of low priority tests. Let p, p ≤ µ, be a number of failed tests in TSH caused by fault d, where µ = |TS(d)|. Let APR(d, N, q) 17 

be the average position of the first failed test that detects fault d for random test prioritization for a test suite TS of size N 18 

where the test suite contains q failed tests caused by fault d (Formula 6.4).  19 

The average position APs(d) for the selective test prioritization is computed as follows:  20 

Case I:   p ≥ 1  APs(d) = APR(d, K, p) 21 

Case II: p = 0  APs(d) = K + APR(d, N-K, µ) 22 

where K = |TSH| and N = |TS|. 23 

In Case I, it is assumed that TSH contains at least one failed test caused by fault d. The average position for the selective 24 

test prioritization method is equivalent to the average position of random test prioritization for test suite TSH with p failed 25 

tests, i.e., APR(d, K, p). In Case II, it is assumed that TSH does not contain any failed test caused by fault d, i.e., TSL contains 26 

all µ failed tests. Executing all high priority tests (K tests) does not uncover fault d. Only when low priority tests are ex-27 

ecuted, fault d is detected. The average position in Case II is equivalent to the average position of random test prioritization 28 

for test suite TSL with µ failed tests after all K high priority tests are executed, i.e., K+ APR(d, N-K, µ). RPs(d), the average 29 

relative position of the first failed test that detects d, is computed from APs(d) by Formula 6.2.  30 

For example, suppose the following high and low priority tests are determined for test suite TS of Example 4: TSH = {t1, t4, 31 

t5, t7} and TSL = {t2, t3, t6}. RPs(d1) = 0.36 and RPs(d2) = 0.24 are the average relative positions for the selective test prioritiza-32 

tion for faults d1 and d2.  33 

6.3. Model dependence-based prioritization 34 

For model dependence-based test prioritization, RP(d), the average relative position of the first failed test that detects fault 35 

d, is determined by sampling. This sampling works as follows: During execution of the modified model on the test suite as 36 

presented in Section 4.2, we identify a set of tests associated with each interaction pattern and a set of failed tests. Then we 37 

randomly generate prioritized test sequences according to the model dependence-based test prioritization technique of Figure 38 

11. For each prioritized test sequence, the position of the first failed test for each fault is determined. After a large number of 39 

prioritized test sequences, W, are generated, RP(d) for each fault is computed using Formula 6.3.  40 

Consider Example 4. Suppose that the following high priority selective tests are identified TSH = {t1, t4, t5, t7}, and three 41 

interaction patterns are computed with the following distribution of tests among them: TS(IP1) = {t4, t5}, TS(IP2) = {t1, t4, t7}, 42 

TS(IP3) = {t5, t7}. RPs(d1) = 0.31 and RPs(d2) = 0.21 are the average relative positions for the model dependence-based test 43 

prioritization technique computed by the randomized estimation we outlined above. 44 
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6.4. Average rate of fault detection 1 

In Section 3, the rate of fault detection RFD(θ) was discussed for a prioritized test sequence θ. Computation of RFD(θ) 2 

depends on a list P(θ) = <rpθ(d1),…, rpθ(dL)> of positions of first failed tests in θ for all L faults in D(TS). In this section, we 3 

introduce the average rate of fault detection ARFD for a test prioritization method. The average rate of fault detection is 4 

based on the average relative positions RP(d). More formally, let P = <RP(d1),…, RP(dL)> be a list of the average relative 5 

positions of first failed tests determined for a test prioritization method for all faults in D(TS). Let F = <RP1,…,RPq> be an 6 

ordered (in ascending order) sequence of all unique average relative positions from P, where q ≤ L. The average rate of fault 7 

detection ARFD for the test prioritization method is defined as a sequence of pairs (RPi,fdi), ARFD = <(RP1,fd1), 8 

…,(RPq,fdq)>, where RPi is an element of F, and fdi represents the cumulative percentage of faults detected at position RPi as 9 

discussed in Section 3 (Formula 3.2). 10 

For example, suppose test suite TS = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10} consists of 10 tests that detect four faults D(TS) = {d1, d2, 11 

d3, d4} in a system. The following tests fail because of individual faults: TS(d1) = {t5, t7}, TS(d2) = {t3, t7, t9}, TS(d3) = {t6} 12 

and TS(d4) = {t3, t9}. RPR(d1) = 0.37, RPR(d2) = 0.28, RPR(d3) = 0.55 and RPR(d4) = 0.37 are the average relative positions for 13 

random test prioritization. Suppose that during the execution of the model on TS, the following high priority tests are identi-14 

fied for the selective test prioritization: TSH = {t1, t3, t4, t6, t7, t9}. RPs(d1) = 0.35, RPs(d2) = 0.18, RPs(d3) = 0.35 and RPs(d4) = 15 

0.23 are the average relative positions for the selective test prioritization. The average rates of fault detection for random test 16 

prioritization and the selective test prioritization are shown in Table 1 below: 17 

Table 1. Average rates of fault detection 18 

Random fd: fraction of faults 

detected 

0.25 0.75 1.0 

RP: Test suite fraction 0.28 0.37 0.55 

Selective fd: fraction of faults 

detected 

0.25 0.5 1.0 

RP: Test suite fraction 0.18 0.23 0.35 

In order to compare average rates of fault detection for different test prioritization methods, we may use a weighted aver-19 

age of the percentage of faults detected, APFD, as discussed in Section 3 (Formula 3.3). For two average rates of fault detec-20 

tion shown in Table 1, APFDR = 0.688 and APFDs = 0.781. In this example, selective test prioritization leads to a higher av-21 

erage rate of fault detection than random test prioritization. 22 

7. Empirical Study 23 

The goal of the empirical study is to compare the effectiveness of early fault detection of test prioritization methods pre-24 

sented in this paper: random test prioritization, selective test prioritization (Version I and II), and model dependence-based 25 

test prioritization. We used RP(d), the average relative position of the first failed test that detects fault d, as the measure of the 26 

effectiveness of early fault detection. In the empirical study we concentrate on model faults. 27 

Due to the unavailability of system models for real world commercial software, we used EFSM system models that are in the 28 

public domain for the empirical study. These EFSM models are: an ATM model [9, 17], a cruise control model [32], a fuel 29 

pump model [33], the Transfer Control Protocol-communication dialer (TCP) [12], and the Integrated Service Digital Net-30 

work (ISDN) protocol [34]. The size of these system models ranges from 5 to 20 states and 20 to 87 transitions. Table 2 31 

presents a summary of the models used in our study. 32 

Table 2. System models used in the empirical study 

Model Name # of Transi-

tions 

# of 

States 

# of 

Events 

# of Variables Size of LOC 

Implementation 

Size of TS 

ATM 25 8 10 8 609 834 

Cruise Control 20 5 8 18 633 1000 

Fuel Pumps 28 13 16 12 795 922 

TCP-Dialer 49 17 10 30 1025 1000 

ISDN 87 20 37 1 1416 900 

   LOC: Lines of code 
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For each model under study, we implemented the corresponding prototype system in the C language. The sizes of these 

implementations ranged from 609 to 1416 lines of source code. For each implementation, we created test suites using specifi-

cation-based testing methods, i.e., equivalence class partitioning and boundary-value analysis. In addition, tests were derived 

based on model-based testing [12, 26, 27], i.e., transition coverage, and constrained-path coverage. The sizes of test suites 

range from 800 to 1000 tests. Each implementation was tested and debugged for its test suite until all tests are passed. As a 

result, these implementations were considered to be correct implementations in this empirical study. 

In order to measure the effectiveness of early fault detection of different test prioritization methods, we created incorrect 

models (faulty models). We seeded one fault into a model at a time and then made appropriate changes to the corresponding 

system (implementation). Note that for this study, the oracle is the correct system implementation not the model. In this 

study, we used the mutation testing techniques to manually seed faults in system models. This approach is the one that is used 

to evaluate the adequacy of a test suite of a program [35], but we adapt it to seed faults in the model. Mutation testing tech-

niques [56] introduce faults by inserting simple syntactic code changes into the program and check whether the test suite can 

detect these changes. In general, mutants represent likely faults the programmer could have made.  

In a model, a fault may be seeded in E(T), C(T), and A(T) of a transition T. For the purpose of this study, we considered 

seeding faults in an enabling condition and an action(s) only. We did not consider seeding faults in events, since faults of this 

type do not occur often. Notice that a fault seeded in a transition does not change the beginning and terminating states of a 

transition. A fault in an action associated with a transition is manually injected in assignment statements, output actions, and 

constants (operators used: +, -, changing a variable/constant, etc.).  For a fault injected in the enabling condition associated 

with a transition, we assume the condition in the model is represented in the form of an expression followed by a relational 

operator followed by an expression i.e. exp1 op exp2. We injected faults in an expression or in a relational operator (some 

operators used: +, -, <, >, <=, >=, etc.). This type of fault seeding is similar to source-code based fault seeding. In addition, 

we used fault seeding that is specific only to models (model-specific fault seeding), e.g., addition/deletion a transition, split-

ting a transition into two or more transitions, or merging two or more transitions into one transition.  

As mentioned, we seeded only one fault into the model at a time. For each model, we randomly selected a transition into 

which the faults are seeded. Transitions that are executed by each test are not selected for seeding faults. We manually 

created a set of faults (mutants) for each model. Some faults caused a large number of tests to fail. Such faults were rejected 

because there will not be a significant difference in the effectiveness of test prioritization methods when a large number of 

tests fail. We were interested in faults that cause a small number of tests to fail. Therefore, we selected only those faults for 

which the number of failed tests ranges from 1 to 10 tests. As a result, for each model, we have identified 10-12 seeded 

faults, i.e., for each model 10-12 incorrect model versions have been created. Table 3 shows a summary of selected faults 

seeded in each model, where the model name is in column 1 and the number of seeded faults in the model is in column 2. 

Column 3 shows the number of faults selected for which the number of failed tests ranges from 1 to 10. Column 4 shows the 

number of transitions in the model where the seeded fault causes 1-10 tests to fail.  

For every fault seeded in the model, we executed the test suite TS on the corresponding system implementation to identify 

which tests passed and which tests failed. In addition, for each seeded fault in the model, the test suite TS is executed on the 

model to collect the execution traces ETS(TS). For each model with a seeded fault and corresponding implementation, we 

measured the average relative position (RP) of the first failed test for each test prioritization method under study. 

Table 3. Summary of seeded faults in each model 

Model name # of Faults seeded # of Faults 

selected 

# of transitions 

involved in seeding faults  

ATM 19 12 7 

Cruise Control 17 10 6 

Fuel Pumps 15 10 7 

TCP 20 11 8 

ISDN 18 11 8 

The results of the empirical study are shown in Figure 12, which present the boxplots of the RP values for the four test 

prioritization methods, the five models, and all models in total. The presented results indicate that our model-based test pri-

oritization approach may improve the effectiveness of test prioritization for Version II of selective test prioritization and the 

model dependence-based test prioritization. However, the results for Version I of selective test prioritization are mixed. In 

several cases, this test prioritization method performs much worse than random test prioritization. This is caused by the fact 

that monitoring only “added” transitions in the modified model may not be sufficient for effective test prioritization. On the 

other hand, Version II of selective test prioritization monitors also execution of “deleted” transitions that results in a signifi-
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cant improvement in effectiveness of test prioritization. Although the model dependence-based test prioritization technique 

has a little more overhead compared to Version II of selective test prioritization, it may lead to further improvement in the 

effectiveness of test prioritization. This may be attributed to the fact that more information about the model behavior is col-

lected that may improve the effectiveness of test prioritization.  

Another goal of the empirical study is to compare the cost of each test prioritization method presented in this paper. We 

determined the cost of each model-based test prioritization method by measuring the time required to prioritize a test suite TS 

for each model under study. For random test prioritization, which is used as a baseline, this includes only the time required to 

prioritize a test suite TS for each model. For selective test prioritization (Versions I and II), this includes the time required to 

execute the test suite on the model and to prioritize a test suite TS. For model dependence-based test prioritization, this in-

cludes the time required to: (1) execute a test suite TS on the model, (2) compute interaction patterns test distribution (interac-

tion patterns analysis), and (3) prioritize a test suite TS for each model.   

Table 4 shows the time required to prioritize the test suite for each model and the average for all models for each test pri-

oritization method. The experiment was performed on a PC workstation with Intel® Core™ Due CPU-2.00GHz processor 

running under Windows XP professional. 

Table 4. The time required to prioritize a test suite by test prioritization methods in mseconds 

  R             S1 & S2 IP 

Model Name  P1  ESa  P2 Total 1 

 

  ESb P3 Total 2 

ATM  15  328 31 359   391 1,893 2,266 

Cruise Control  16  468 32 500   578 3,506 4,084 

Fuel Pump  15  297 31 328   343 1,781 2,124 

TCP  15  453 31 484   578 3,422 4,000 

ISDN  15  500 31 531   625 265,016 265,641 

            

Average for all 

Models 
 15  409 31 440   503 55,123 55,623 

 

R:   Random prioritization.                                          

 

P1:        The time required to prioritize TS for Random prioritization  

S1: Selective prioritization – Ver. I.              P2:        The time required to prioritize TS  for S1 &  S2 

S2:  Selective prioritization – Ver. II P3:        The time required to prioritize TS  for IP 

IP:   Model dependence prioritization      ESa:      Time of model execution for all tests in TS for  S1& S2  

 ESb:      Time of model execution for all tests in TS for  IP 

 Total 1: Total time required to prioritize  TS for S1&S2 

 Total 2: Total time required to prioritize TS for IP  

 

We observed that the model dependence-based test prioritization method on average is more expensive than selective test 

prioritization (Versions I & II) and random prioritization. This is because model dependence-based test prioritization requires 

more analysis and collects more information from the model to prioritize a test suite TS. In addition, the model dependence-

based test prioritization method computes the interaction pattern test distribution (interaction pattern analysis) to prioritize a 

test suite TS for each model. Notice that execution of models for all test suites is very fast, and it is comparable for both the 

selective and model dependence-based test prioritization methods. The selective prioritization is faster than the model depen-

dence-based prioritization because the latter needs to compute the interaction pattern test distribution. However, for four 

models (and their test suites) the model dependence-based prioritization was able to prioritize tests within 4 seconds. For one 

model (ISDN) it took over 4 minutes to prioritize tests because this model is the largest among all models that were investi-

gated in this study, but we believe that this time is still very reasonable as far as test prioritization is concerned.      
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(a) ATM (b) Cruise Control 

  

(c) Fuel Pump 

 

(d) TCP 

 

(e) ISDN 

 

(f) All Model 
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S1:   Selective prioritization – Version I 

S2:   Selective prioritization – Version II. 
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Figure 12. Data ranges of RPs for (a) the ATM model, (b) the cruise control model, (c) the fuel pump model, (d) the 

TCP model, (e) the ISDN, and (f) for all models in total 
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Threats to validity are concerned with issues that affect the ability to draw the correct conclusion about relations between 

the treatment and the outcome of an empirical study. We have identified the following threats to validity: In our empirical 

study, threats to validity could be due to low statistical power, resulting from the relatively small number of seeded faults per 

model. To limit the impact of this threat to validity, in Section 6 we introduced a concept of an average relative position of 

the first failed test, RP(d), to compare different test prioritization methods. In addition, in our study we concentrated on types 

of faults for which only a small number of tests fail. We believe that these types of faults are very difficult to detect early. We 

were only interested in seeded faults that caused 1-10 tests to fail. Notice that when the number of failed tests is relatively 

large then there is no significant difference between prioritization methods. For example, when 20 tests fail because of defect 

d, in a test suite of 1,000 tests, RP(d)=0.04 for random prioritization. This clearly indicates that random approach can on av-

erage uncover fault d early when many tests fail. Therefore, we believe that using the concept of an average relative position 

of the first failed test and “hard to detect” faults to compare different prioritization methods should limit the impact of this 

threat. Another threat to validity is related to the use of mutation analysis in an empirical study, i.e., the types of faults seeded 

may not be representative of real faults. However, the existing literature suggests that faults seeded using mutation operators 

can be representative of real faults [57]. The fact that we seeded faults in different models (and in different transitions) with 

different characteristics leading to different types of faults should limit the impact of this threat. Moreover, for each EFSM 

model under study, we implemented the corresponding prototype system. This may be considered to be a potential threat to 

validity. However, this is due to the unavailability of the real commercial implementations. In addition, notice that EFSM 

models used in this study have been taken from independent sources and our implementations represent possible implementa-

tions of these systems (notice that, in total, five different implementations were developed). Therefore, we believe that this 

should limit the impact of this threat. 

8. Related Work 

Approaches to the optimization and efficient management of regression testing can be divided into three distinct activi-

ties: Selection, Minimization, and Prioritization of tests in a test suite. The goal of Test Suite Minimization is to identify tests 

that are redundant for a particular test adequacy criterion. These redundant tests may be avoided, thereby reducing the overall 

cost of regression testing activity.  

In selection, the goal is to identify those tests that are redundant with respect to a particular set of changes made since the 

previous version of the system was tested. Minimization can be thought of as selection with an arbitrary set of changes. That 

is, a test can be removed by a minimization algorithm which deems it redundant if it is already covered by some other test. A 

test that is removed by selection is only redundant for the particular set of recent changes in question and, therefore, the re-

moval is only safe with respect to these changes. Regression Test Selection seeks to identify that subset of tests that are rele-

vant to the changes; their execution is required for safe regression testing.  

Finally, Regression Test Prioritization seeks to order tests so that the maximum benefit is achieved from regression test-

ing should it be stopped at some arbitrary point. The goal is to order the tests in rank order so that progress towards test goal 

fulfilment is achieved at the highest rate. In Regression Test Prioritization no test is ever removed completely from consid-

eration. Rather, the tests are ordered so that, resources permitting, all will be executed, but when resources do not permit, 

there is minimal loss arising from the forced decision to ignore those that remain unexecuted. 

At the implementation level, there has been much work on all three regression test optimization problems, leading to sev-

eral recent surveys [51, 52]. However, there has been comparatively little attention paid to the problems of regression testing 

at the model level, which is surprising considering the widespread interest in Model Driven Development.  

This paper concerns the problem of Regression Test Prioritization at the model level, guided by dependence analysis. 

There is evidence to suggest that interest in regression test prioritization is increasing more rapidly than interest in selection 

and minimization [51]. However, this growing interest remains largely confined to the implementation level. By contrast, of 

the small fraction of the literature that concerns model based regression testing, only a further small fraction addresses model 

based regression test prioritization. Most work on regression testing at the model level is concerned with the problem of test 

selection. 

Briand et al. [47] introduce RTST, a Regression Test Selection Tool. More recently, this work has been developed and ex-

tended into a comprehensive study of the regression test selection problem for the UML [46]. This work can be viewed as 

complementary to ours in two ways. First, it focuses on aspects of the UML other than state based models, whereas we are 

concerned with state based modeling notations. Second, Briand et al. are concerned with Regression Test Selection, whereas 

our work is concerned with prioritization. 
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Orso et al. [39] present two regression test selection techniques for component based systems, using component metadata 

to support the identification of selective subsets of tests to be used in efficient re-testing strategies. Their approach is illu-

strated in terms of component based systems specified as UML statecharts and is evaluated using two real world java sys-

tems. Their approach is applied to state based models, like ours. However, Orso et al. focus on the use of component metada-

ta for selection, whereas our approach is based on a dependence analysis for prioritization. 

Farooq et al. [44] also recently presented a regression test selection approach based on changes identified in both the sta-

techarts and class diagrams of the UML, classifying tests into the three classes: obsolete, re-usable and re-testable. They illu-

strate the application of their approach with a student enrolment state machine. Like other work on model level regression 

testing, this work is concerned with selection rather than prioritization. 

Several authors have considered the application of regression testing to entire UML models, rather than to statecharts, 

which merely denote a single submodel within the overall UML system. This work has focused on all aspects of the UML 

and therefore, like our work, this previous work involves state based models (since these are part of the UML). However, 

once again, the focus of this work is on the problem of test selection rather than test prioritization. 

Wu and Offutt [41] present retesting strategies for UML, based on a differencing approach that identifies the modified 

parts of the new model. Similar to our work, Wu and Offutt also incorporate the tracing of data dependence based changes in 

their work. 

Pilskalns et al. [40] present a safe and efficient re-test strategy based on UML model level changes, illustrating their ap-

proach with a case study of an open source system called Batik. Their work is concerned with regression testing the model 

itself, rather than to using the model to select tests to be applied to the implementation. 

Other authors have also considered regression testing for non-state-based UML models (such as Activity diagrams [48] 

and Class diagrams [49]) and have considered regression testing for other non-UML modeling approaches [50]. Deng et al. 

[45] present an overview of an approach to whole life-cycle model based testing and maintenance, briefly mentioning the 

issues of selective regression testing of models.  

Fraser and Wotawa [42] adapt Rothermel et al’s APFD metric for use with tests generated from model checkers, illustrat-

ing with the well-known cruise control case study [43]. Unlike the previously mentioned work, this work is concerned with 

prioritization. 

Korel et al. presented methods of test prioritization based on the state-based model of the system under test [17]. These 

methods assume that the modifications are made both on the system under test and its model. The existing test suite is ex-

ecuted on the system model and information about this execution is used to prioritize tests. This paper is an extension to Ko-

rel et al’s work on the model-based test prioritization method [17].  In this paper we have extended the empirical study and 

introduced formal definitions of test prioritization methods. In addition, we presented an analytical framework for evaluation 

of test prioritization methods. This framework may reduce the cost of evaluation as compared to the framework that is based 

on observation. 

Korel et al. extended their research on model-based prioritization for a class of modifications for which models are not 

modified (only the source code is modified) [29, 36]. Several model-based test prioritization heuristics were introduced. 

Their major motivations for these heuristics were simplicity and effectiveness in early fault detection. The results of their 

study suggest that system models may improve the effectiveness of test prioritization with respect to early fault detection. 

This extension is semi-automated as opposed to the fully automated model-based prioritization presented in this paper be-

cause of a difficulty in automated identification of a mapping between source-code changes to the corresponding model ele-

ments. 

Korel et al. [18] proposed simple model-based test prioritization heuristics. The major stress was on simplicity. These 

simple heuristics have shown promise when a large number of transitions is modified. However, for small modifications the 

performance of these heuristics can be equivalent to the selective prioritization -Version II. 

It should be noted that code-based test prioritization methods [15, 16, 51, 53] are dependent on information  relating the 

tests of the test suite to various elements of a system's  code of the original system (before modification). For example, a par-

ticular code-based technique can utilize information about the number of statements executed by a test. The system code then 

executes the test suite and information about executed code elements is collected for each test. Different types of test prioriti-

zation heuristics can then be applied to analyze the information collected and prioritize the tests accordingly. The major 

weakness of code-based prioritization is that only the original code is used, not the modified version. In addition, the instru-

mented original system needs to be executed in order to collect information for prioritization. As mentioned earlier, this 

process may be very expensive for many types of systems. On the other hand, model-based prioritization presented in this 
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paper uses the modified model of the system for prioritization. In addition, execution of the modified model for the whole test 

suite is very fast as compared to execution of the whole system. 

9. Conclusions 

In this paper, we have presented model-based test prioritization methods in which the information about the system model 

and its behavior is used to prioritize the test suite for system retesting. In addition, we presented an analytical framework for 

comparison of test prioritization methods with respect to the effectiveness of early fault detection. In an empirical study, we 

investigated the test prioritization methods we introduced with respect to their effectiveness of early fault detection. The re-

sults from the empirical study are promising and suggest that using system models may improve the effectiveness of test pri-

oritization.  

In future research, we plan to perform an experimental study on larger models and systems to have better understanding of 

the advantages and limitations of model-based test prioritization. In addition, we plan to perform an experimental study in 

which we will investigate the effectiveness of model-based test prioritization for faults in implementations of model changes 

in the system (these are code-based faults related to implementation of model changes). An initial study [36] comparing the 

model-based and source-code based prioritization indicates that model-based prioritization may be an attractive alternative to 

the source-code based prioritization.  

The model-based test prioritization method we introduced in this paper is only one way that tests can be prioritized based 

on interaction patterns. One may develop other algorithms to prioritize tests based on interaction patterns, e.g., tests that 

“cover” larger numbers of IPs are assigned a higher priority.  
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