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ABSTRACT
Due to the frequent non-existence of an automated oracle,
test cases are often evaluated manually in practice. How-
ever, this fact is rarely taken into account by automatic test
data generators, which seek to maximise a program’s struc-
tural coverage only. The test data produced tends to be of a
poor fit with the program’s operational profile. As a result,
each test case takes longer for a human to check, because
the scenarios that arbitrary-looking data represent require
time and effort to understand. This short paper proposes
methods to extracting knowledge from programmers, source
code and documentation and its incorporation into the auto-
matic test data generation process so as to inject the realism
required to produce test cases that are quick and easy for a
human to comprehend and check. The aim is to reduce the
so-called qualitative human oracle costs associated with au-
tomatic test data generation. The potential benefits of such
an approach are demonstrated with a simple case study.

1. INTRODUCTION
The automatic generation of software test cases has been

a burgeoning research area of late. Several techniques for
achieving structural coverage have been proposed; includ-
ing symbolic execution [9], concolic execution [4, 17], and
search-based testing [14]. While each technique has demon-
strated moderate levels of success in generating test data
[12], for example for obtaining branch coverage, the actual
test data produced and their corresponding program out-
puts must usually be evaluated by a human tester. This is
because an automated oracle is frequently not in existence.
The effort expended by a human in this task is referred to
as the human oracle cost. Surprisingly, there has been little
work devoted to developing automatic test data generators
so that human oracle costs are reduced.

While techniques have been proposed to minimize the
sizes of generated test cases [13] and test suites [6], essentially
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tackling quantitative aspects of human oracle cost, there has
been no work addressing the qualitative costs associated with
generated test data. That is, the issue of how easily the
generated test data can be comprehended and the scenario
comprising a test case understood so that the corresponding
program output can be evaluated accordingly.

The test data produced by automatic test data generators
are not necessarily ‘realistic’ in the sense that they tend not
to closely match the operational input profile of the program
under test. Examples include strings that appear to be ran-
dom sequences of characters rather than easily discernible
pieces of data, such as a person’s name, a country or a URL;
or hard to interpret calendar dates that are several millen-
nia in the past or future. Such test data require effort to
understand, making the job of manually checking test cases
harder, more laborious and more time consuming.

This short paper is the first work to propose methods to
tackle the issue of qualitative human oracle cost, with the
aim of producing test data that provide a better ‘fit’ with
the operational input profile of a program; an issue not ac-
counted for by the current state of the art. Clearly, the eval-
uation of the techniques proposed techniques requires human
judgement, and so further work is required with real testers
in order to assess them. Nevertheless, the paper shows, by
means of a case study and an initial experiment, that the
incorporation of even a little knowledge about the type of
expected inputs into a search-based test data generator can
produce dramatically simplified and more recognisable test
data.

The contribution of this short paper is the proposal of
techniques that address the qualitative human oracle cost
problem in the following ways:

1. They aim to ascertain details about the operational
input profile of a program through provided test cases
and by reverse engineering knowledge from a program

2. They aim to incorporate this knowledge into search-
based optimisation methods to encourage the genera-
tion of more ‘realistic’ test data, guiding the genera-
tion of test cases through seeding the initial stage of
the search and through biasing search operators.

3. The paper also proposes techniques to identify oppor-
tunities for re-using input variable values for similar
units, since partial or even full re-use of test input vec-
tors across different units will avoiding the need for
testers to spend as much time acquainting themselves
with completely new test cases.



4. The techniques proposed may impact the fault-finding
capability of a test suite, suggesting that test cases that
of an ill-fit with the expected input profile should not
be ignored entirely. In this scenario, multi-objective
test data search approaches are proposed to balance
possible competing constraints.

These ideas are presented in Sections 3-6. Prior to this, a
motivating case study is introduced with the results of an
initial experiment with it in Section 2. Finally, Section 7
concludes with closing remarks and further comments re-
garding further work.

2. BACKGROUND AND CASE STUDY
The human oracle cost associated with automatically gen-

erated test data can be demonstrated with the C function
shown in Figure 1. The function returns the number of days
between two dates, each represented by three integers cor-
responding to the month, day of the month, and the year.

In a simple initial experiment, the alternating variable
method (due to Korel [11], implemented as detailed by Har-
man and McMinn [8]) was used to generate a test suite for
branch coverage of the program. The alternating variable
method is a meta-heuristic local search method that modi-
fies a single input vector in accordance with a fitness function
until the current branch of interest is executed (or resources
are exhausted). The initial input vector is usually chosen
at uniform random from the program’s input domain, thus,
the value of each input variable for the program is drawn
from the range of the C int type, i.e. −32, 768 to 32, 767.

While successfully covering all branches, the test data gen-
erated correspond to rather obscure dates, as can be seen in
Table 1. In the first column of test data, a different random
seed is used to generate the starting point (the initial input
vector) for the test data search for each branch, producing
dates such as ‘-5455/23195/-30879’ (the program sanitizes
month and day inputs that are out of range). Using the
same random seed for each search leads to the same starting
point being selected for each branch, leading to a higher de-
gree of similarity amongst generated inputs (second column
of test data). While this similarity arguably contributes to a
reduced oracle cost, the data still require additional effort to
comprehend when contrasted with the third column of test
data. Here, test data are generated using a human-supplied
test case (1/1/2010, 1/1/2010) as the starting point of the
search. The impact of introducing this small piece of do-
main knowledge has a dramatic effect. The test data found
to cover each branch is based around the supplied dates, and
as such represent more eaily-recognizable test cases.

The question posed by this paper is, in what ways can
input domain knowledge about a program be retrieved and
used to guide the test data generation process? Test data
generated in this fashion may have a reduced fault-finding
capability. If so, how might these two potentially competing
constraints be managed in the test data generation process?

3. GATHERING KNOWLEDGE ABOUT
EXPECTED INPUT PROFILES

The case study demonstrates that information regarding
the program’s expected input profile is required to produce
more ‘realistic’ test data that is easier for a human oracle
to evaluate. A programmer or tester may in the position
to provide a limited amount of knowledge in the form of

a few test cases. This would not need to be a lengthly or
onerous process, since a programmer is likely to have run
their program at least once with a ‘sanity check’ to ensure
it is working more or less as intended. A tester may even
desire to bias the generation of test cases so as to incorpo-
rate their own knowledge into the process, including their
own favourite ‘corner’ cases, and so on. Having being con-
structed by hand, such checks are likely to represent useful,
realistic scenarios that can be used as the starting point
from which to base the generation of further test cases. Yoo
and Harman [18] have already demonstrated the possibility
of generating test data from existing test data, but in the
context of automating regression testing.

The program under test may itself be used to build up
knowledge about its likely input profile. Many programs
contain input sanitisation routines or defensive program-
ming constructs, and these often contain explicit checks for
set membership, boundaries, special cases, exclusions and
other properties of inputs; all of which may be extracted
from the program through static or dynamic program anal-
ysis. One such sanitization routine is present in the program
of Figure 1. When a month integer or day of the month in-
teger is out of range, the program corrects the input. Where
the sanitization code is itself not being tested, such routines
could be used to ‘correct’ automatically generated inputs,
presenting more recognisable information to the human or-
acle. For example, the second and third columns of Table
1 show automatically generated test data containing values
considered as ‘out of range’ by the program, which may be
corrected to recognisably in-range values for the purposes of
covering certain branches in the program. The sanitization
performed in one function may be further used to sanitize
inputs of another. For example, day and month inputs are
sanitized in days_between and then used later in the body
of the function when calling month_days and is_leap_year.

The names given to input variable identifiers give rise to
further clues with respect to a program’s input profile, par-
ticularly when identifier names contain a string that indi-
cates a pre-defined class of values, for example ‘dayOfTheWeek’,
‘country’ or ‘url’. The common practice of CamelCasing
and under_scoring variable names makes splitting identi-
fiers into words and removing stop words such as ‘the’ and
‘of’ is a trivial task [1]. The extracted words and their vari-
able type information could then be analysed in conjunction
large-scale natural language lexicons such as WordNet [3]
and type information to suggest appropriate input values.
In general, however, domain-specific lexicons are likely to
be required to cope with specific types of program.

4. DOMAIN-AWARE TEST DATA
GENERATION

Assuming the existence of domain knowledge; in the form
of example test cases, sets of appropriate values or con-
straints; several possibilities are available for using the in-
formation in a search-based test data generator to aid the
production of more ‘realistic’ test data.

The simplest approach to incorporating knowledge into a
search-based optimisation algorithm is to simply ‘seed’ the
initial stage of the search with inputs that are already known
to represent appropriate values, as with the experiment per-
formed in the case study. The presence of several example
inputs would help seed the initial stage of a global search,



int days_between(int start_month, int start_day, int start_year,
int end_month, int end_day, int end_year)

{
int days = 0;

// sanitize month inputs
(1) if (start_month < 1) start_month = 1;
(2) if (end_month < 1) end_month = 1;
(3) if (start_month > 12) start_month = 12;
(4) if (end_month > 12) end_month = 12;

// sanitize day inputs
(5) if (start_day < 1) start_day = 1;
(6) if (end_day < 1) end_day = 1;
(7) if (start_day > month_days(start_month, start_year))

start_day = month_days(start_month, start_year);
(8) if (end_day > month_days(end_month, end_year))

end_day = month_days(end_month, end_year);

// swap dates if start date before end date
(9) if ((end_year < start_year) ||

(end_year == start_year && end_month < start_month) ||
(end_year == start_year && end_month == start_month &&

end_day < start_day)) {
int t = end_month; end_month = start_month; start_month = t;
t = end_day; end_day = start_day; start_day = t;
t = end_year; end_year = start_year; start_year = t;

}

// calculate days
(10) if (start_month == end_month && start_year == end_year) {

days = end_day - start_day;
} else {
days += month_days(start_month, start_year) - start_day;
days += end_day;

(11) if (start_year == end_year) {
int month = start_month + 1;

(12) while (month < end_month) {
days += month_days(month, start_year); month ++;

}
} else {
int year; int month = start_month + 1;

(13) while (month <= 12) {
days += month_days(month, start_year); month ++;

}
month = 1;

(14) while (month < end_month) {
days += month_days(month, end_year); month ++;

}
year = start_year + 1;

(15) while (year < end_year) {
days += 365;

(16) if (is_leap_year(year)) days ++;
year ++;

} } }
return days;

}

Figure 1: Case study code: a simple C function that takes two dates and returns the number of days
between them. Branch IDs appear in brackets next to left of the decision statement concerned. Due to space
constraints, the referenced functions month_days and is_leap_year are not listed but return the number of
dates in a month and whether a year is a leap year respectively

Branch Different random seed used to Same random seed used to Supplied test case
generate the starting point for the generate the starting point for the (1/1/2010, 1/1/2010)
test data search for each branch test data search for each branch used as the starting point

1T -4048/-10854/-29141 3308/-25426/-11998 -1247/-17004/9006 3305/6393/-10930 0/1/2010 1/1/2010
1F 4091/-31366/-23576 -9671/1283/-29866 15136/-17004/9006 3305/6393/-10930 1/1/2010 1/1/2010
2T 10430/3140/6733 -14884/-8416/-18743 15136/-17004/9006 -790/6393/-10930 1/1/2010 0/1/2010
2F -31846/-3340/4891 7021/-24358/13435 15136/-17004/9006 3305/6393/-10930 1/1/2010 1/1/2010
3T 3063/31358/8201 9560/32094/-23160 15136/-17004/9006 3305/6393/-10930 16/1/2010 1/1/2010
3F -2459/13917/984 6289/31510/-21766 -1247/-17004/9006 3305/6393/-10930 1/1/2010 1/1/2010
4T 9581/-9706/-310 12557/-4068/28941 15136/-17004/9006 3305/6393/-10930 1/1/2010 16/1/2010
4F 28420/31728/-12768 -1091/32060/-28710 15136/-17004/9006 -790/6393/-10930 1/1/2010 1/1/2010
5T -32246/-6571/-25398 -12031/-25636/5098 15136/-17004/9006 3305/6393/-10930 1/0/2010 1/1/2010
5F -6344/2436/16612 -28416/6792/30588 15136/15763/9006 3305/6393/-10930 1/1/2010 1/1/2010
6T -11506/30843/-23045 -16620/-141/-3609 15136/-17004/9006 3305/-1798/-10930 1/1/2010 1/0/2010
6F -25410/604/24374 -18405/1156/20386 15136/-17004/9006 3305/6393/-10930 1/1/2010 1/1/2010
7T -23522/26246/8293 16112/18444/32681 13175/13978/22957 -12590/9615/12387 2/32/2010 1/1/2010
7F -28918/-18094/4121 -5455/23195/-30879 15136/-17004/9006 3305/6393/-10930 1/1/2010 1/1/2010
8T 6986/24411/27186 -27238/10414/-26385 15136/-17004/9006 3305/6393/-10930 1/1/2010 2/32/2010
8F 17014/-25186/11482 -8643/-10992/9497 15136/-17004/9006 3305/-1798/-10930 1/1/2010 1/1/2010
9T 22499/16890/32767 -27155/28640/14378 15136/-17004/9006 3305/6393/-10930 2/1/2010 1/1/2010
9F 30047/-8218/-21009 25985/25832/-8283 15136/-17004/-23761 3305/6393/-10930 1/1/2010 1/1/2010
10T -11755/-32245/-17139 -15931/-792/-17139 15136/-17004/-6866 3305/6393/-6866 1/1/2010 1/1/2010
10F -27408/-22701/-8570 -5726/-22240/7212 15136/-17004/9006 3305/6393/-10930 2/1/2010 1/1/2010
11T -28081/-27324/-1948 18799/15668/-1948 -28081/-27324/-6523 3305/6393/-6523 2/1/2010 1/1/2010
11F 24451/-28781/-16101 21202/-16138/26431 15136/-17004/9006 3305/6393/-10930 2/1/2009 1/1/2010
12T 21693/-14199/28802 -25586/-20457/28802 -28081/-27324/-6523 3305/6393/-6523 4/1/2010 1/1/2010
12F -24836/-19878/20875 30494/9192/20875 -28081/-27324/-6523 3305/6393/-6523 2/1/2010 1/1/2010
13T -4260/11218/18103 -12655/11307/-4945 -28081/-27324/8201 -28073/-1070/-2428 2/1/2009 1/1/2010
13F -12813/6164/8579 9148/-18272/-29747 15136/-17004/9006 3305/6393/-10930 2/1/2009 1/1/2010
14T 13175/-15807/22957 -12590/9615/-21770 15136/-17004/9006 3305/6393/-10930 2/1/2009 2/1/2010
14F -18841/23081/1943 24695/8345/-7519 15136/-17004/9006 3305/6393/-10930 2/1/2009 1/1/2010
15T 21370/-23147/27879 -1540/-7439/30075 15136/-17004/9006 3305/6393/-10930 2/1/2007 1/1/2010
15F -13081/3756/-14974 -29578/6978/28020 15136/-17004/9006 3305/6393/-10930 2/1/2009 1/1/2010
16T 18475/6506/-20585 7605/26536/15658 15136/-17004/9006 3305/6393/-10930 2/1/2007 1/1/2010
16F -17048/-32204/-13540 26210/20124/-12635 15136/-17004/9006 3305/6393/-10930 2/1/2007 1/1/2010

Table 1: Automatically generated test data using search-based optimisation for each branch (‘T’ and ‘F’ refer
to the respective true and false branches). The search-based method used is the alternating variable method.
In the first column of test data, inputs are generated for each branch using a random starting point decided
using a different random seed for each branch. When the same random seed is used to begin the test data
search for each branch, similar test data emerge, as seen in the subsequent column. In the final column, a
human supplied test case (1/1/2010, 1/1/2010) was used as the starting point for the search, resulting in the
generation of more recognisable dates for each branch



such as a Genetic Algorithm, which relies on several starting
points; as well as helping to increase the variance of inputs,
which may impact the fault-finding capability of the gener-
ated test suite (see Section 6).

Another approach to incorporating information into the
search may be to simply influence the search towards ex-
isting points in the input domain, yet still with the target
of covering a branch, by biasing search operators such as
crossover and mutation in a Genetic Algorithm. The biased
operators would essentially favour searching around values
identified to be part of the program’s expected input profile.
Estimation of Distribution Algorithms [16] may represent an
appropriate meta-heuristic approach in this regard, as these
algorithms are based around the sampling of a probabil-
ity distribution, which could be generated from knowledge
gathered about the program’s operational profile. Such a
distribution may be a useful way to solve the problem in the
presence of only incomplete or partial information.

5. TEST DATA RE-USE
Another means of reducing human oracle costs associ-

ated with test data comprehension is to re-use input val-
ues across related program units, as the tester may already
be familiar with these inputs from testing other parts of
the system. For example, month and year inputs from the
days_between function in Figure 1 could be usefully re-used
for the days_in_month or is_leap_year functions that it
calls. In the case of object-oriented systems, lengthy se-
quences of pre-scripted method calls may be required to
achieve a necessary test objective pre-condition. This pre-
condition may correspond to a common state of an object
or sub-system, for which the same sequence may be re-used.

The main obstacle to automating test data re-use is iden-
tifying related units and harvesting existing test suites for
which inputs and test sequences can be re-applied. Call
graph analysis is an obvious way of finding links from one
unit to another. Algorithms such as Google’s PageRank [15]
may then help in analyzing links to decide which is the most
‘important’ unit for which test data should be initially gen-
erated and then re-used in another.

Techniques from Information Retrieval [1] have been shown
to be useful for software quality analysis by comparing com-
ments and identifier names in and across program units.
Such methods could also be applied to this problem. For
example, they could be applied to compare units using the
names of identifiers and units as well as documentation in
the form of comments in program code. String comparison
techniques such as Levenstein distance [5] to include infor-
mation about similar identifier names in the search. Com-
parison of program structures is another means of identifying
similar units, and therefore clone detection [10] and methods
developed to detect plagiarism within answers submitted for
programming exercises [2] may also be useful.

6. FAULT-FINDING CAPABILITY OF THE
GENERATED TEST SUITES

There is a danger that biasing test data generation toward
specific values in a program’s input domain will reduce the
fault-finding capability of the test suites produced, and that
more diverse or randomly generated test cases are not with-
out purpose. Empirical studies involving Mutation Analy-
sis need to be performed to confirm whether these effects

occur in practice. If they do, it would be possible to miti-
gate against the problem using multi-objective search-based
processes to find the optimal trade-off between reduced hu-
man oracle costs and increased fault-finding ability. Multi-
objective search has already been applied in search-based
test data generation, for example, to find test suites that
cover as many branches as possible while also attempting to
maximise memory usage for memory leak detection [7].

7. CONCLUSIONS AND FUTURE WORK
This short paper has raised the issue of human oracle costs

associated with automatically generated test data. A simple
case study has shown how even very simple techniques may
help alleviate the problem. The paper also presented sev-
eral other techniques that may be further applied to allow
automated test data generation to take account of human
oracle cost and minimize it, while also maintaining the fault-
finding capability of test suites. Further work is required to
implement and evaluate these ideas. Since test data compre-
hension is a human task, qualitative evaluation is required
with real human testers.
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