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Abstract. Despite claims of “embarrassing parallelism” for many opti-
misation algorithms, there has been very little work on exploiting par-
allelism as a route for SBSE scalability. This is an important oversight
because scalability is so often a critical success factor for Software Engi-
neering work. This paper shows how relatively inexpensive General Pur-
pose computing on Graphical Processing Units (GPGPU) can be used to
run suitably adapted optimisation algorithms, opening up the possibility
of cheap scalability. The paper develops a search based optimisation ap-
proach for multi objective regression test optimisation, evaluating it on
benchmark problems as well as larger real world problems. The results
indicate that speed—ups of over 25x are possible using widely available
standard GPUs. It is also encouraging that the results reveal a statisti-
cally strong correlation between larger problem instances and the degree
of speed up achieved. This is the first time that GPGPU has been used
for SBSE scalability.

1 Introduction

There is a pressing need for scalable solutions to Software Engineering problems.
This applies to SBSE work just as much as it does to other aspects of Software
Engineering. Scalability is widely regarded as one of the key problems for Soft-
ware Engineering research and development [1,2]. Furthermore, throughout its
history, lack of scalability has been cited as an important barrier to wider uptake
of Software Engineering research [3-5]. Without scalable solutions, potentially
valuable Software Engineering innovations may not be fully exploited.

Many search based optimisation techniques, such as evolutionary algorithms
are classified as ‘embarrassingly parallel’ because of their potential for scalability
through parallel execution of fitness computations [6]. However, this possibility
for significant speed—up (and consequent scalability) has been largely overlooked
in the SBSE literature. The first authors to suggest the exploitation of parallel ex-
ecution were Mitchell et al. [7] who used a distributed architecture to parallelise
modularisation through the application of search-based clustering. Subsequently,
Mahdavi et al. [8] used a cluster of standard PCs to implement a parallel hill
climbing algorithm. More recently, Asadi et al. [9] used a distributed architecture
to parallelise a genetic algorithm for the concept location problem.

Of 763 papers on SBSE [10] only these three present results for parallel
execution of SBSE. Given the ‘embarrassingly parallel’ nature of the underlying



approach and the need for scalability, it is perhaps surprising that there has not
been more work on SBSE parallelisation. One possible historical barrier to wider
application of parallel execution has been the high cost of parallel execution
architectures and infrastructure. All three previous results cited in the previous
paragraph used a cluster of machines to achieve parallelism. While commodity
PCs have significantly reduced the cost of such clusters, their management can
still be a non-trivial task, restricting the potential availability for developers.

Fortunately, recent work [11] has shown how a newly emerging parallelism,
originally designed for graphics, can be exploited for non—graphical tasks using
General Purpose computing on Graphical Processing Unit (GPGPU) [12]. Mod-
ern graphics hardware provides an affordable means of parallelism: not only the
hardware is more affordable than multiple PCs but also the management cost
is much smaller than that required for a cluster of PCs because it depends on
a single hardware component. GPGPU has been successfully applied to various
scientific computations [13,14]. However, these techniques have never been ap-
plied to Search-Based Software Engineering problems and so it remains open as
to whether large-scale, affordable speed—up is possible for Software Engineering
optimisations using GPGPU to parallelise SBSE.

Fast regression test minimisation is an important problem for practical soft-
ware testers, particularly where large volumes of testing are required on a tight
build schedule. For instance, the IBM middleware product used as one of the
systems in the empirical study in this paper is a case in point. While it takes
over four hours to execute the entire test suite for this system, the typical smoke
test scenario performed after each code submit is assigned only an hour or less of
testing time, forcing the tester to select a subset of tests from the available pool.
If the computation involved in test suite minimisation requires more than one
hour itself, then the tester cannot benefit from such a technique; the smoke test
will be highly suboptimal as a result. Using the GPGPU approach introduced
in this paper, this time was reduced from over an hour to just under 3 minutes,
thereby allowing sophisticated minimisation to be used on standard machines
without compromising the overall build cycle.

The paper presents a modified evolutionary algorithm for the multi-objective
regression test minimisation problem. The algorithm is modified to support im-
plementation on a GPU by transforming the fitness evaluation of the population
of individual solutions into a matrix-multiplication problem, which is inherently
parallel and renders itself very favourably to the GPGPU approach. This trans-
formation to matrix-multiplication is entirely straightforward and may well be
applicable to other SBSE problems, allowing them to benefit from similar scale-
ups to those reported in this paper.

This algorithm has been implemented using OpenCL technology, a framework
for GPGPU. The paper reports the results of the application of the parallelised
GPGPU algorithm on 13 real world programs, including widely studied, but
relatively small examples from the Siemens’ suite [15], through larger more real-
istic real world examples from the Software-Infrastructure Repository (SIR) for
testing [16], and on a very large IBM middleware regression testing problem.



The primary contributions of the paper are as follows:

1. The paper is the first to develop SBSE algorithms for GPGPU as a mecha-
nism for affordable massive parallelism.

2. The paper presents results for real world instances of the multi objective
test suite minimisation problem. The results indicate that dramatic speed—
up is achievable. For the systems used in the empirical study, speed—ups
over 20x were observed. The empirical evidence suggests that, for larger
problems where the scale up is the most needed, the degree of speed—up is
the most dramatic; a problem that takes over an hour using conventional
techniques, can be solved in minutes using the GPGPU approach. This has
important practical ramifications because regression testing cycles are often
compressed: overnight build cycles are not uncommon.

3. The paper studies multiple evolutionary algorithms and both GPU- and
CPU-based parallelisation methods in order to provide robust empirical ev-
idence for the scalability conferred by the use of GPGPU. The GPGPU
parallelisation technique maintained the same level of speed—up across all al-
gorithms studied. The empirical evidence highlights the limitations of CPU-
based parallelisation: with smaller problems, multi-threading overheads erode
the speed—up, whereas with larger problems it fails to scale as well as GPU-
based parallelisation.

4. The paper explores the factors that influence the degree of speed—up achieved,
revealing that both program size and test suite size are closely correlated to
the degree of speed—up achieved. The data have a good fit to a model for
which increases in the degree of scale up achieved are logarithmic in both
program and test suite size.

The rest of the paper is organised as follows. Section 2 presents background
and related work in test suite minimisation and GPGPU-based evolutionary
computation. Section 3 describes how the test suite minimisation problem is
re-formulated for a parallel algorithm, which is described in detail in Section 4.
Section 5 describes the details of the empirical study, the results of which are
analysed in Section 6. Section 7 discusses the related work and Section 8 con-
cludes.

2 Background

Multi-Objective Test Suite Minimisation: The need for test suite minimi-
sation arises when the regression test suite of an existing software system grows
to such an extent that it may no longer be feasible to execute the entire test
suite [17]. In order to reduce the size of the test suite, any redundant test cases
in the test suite need to be identified and removed. More formally, test suite
minimisation problem can be defined as follows [18]:

Test Suite Minimisation Problem

Given: A test suite of m tests, T, a set of [ test goals R = {rq,...,r}, that
must be satisfied to provide the desired ‘adequate’ testing of the program, and



subsets of T', T;s, one associated with each of the r;s such that any one of the
test cases t; belonging to T; can be used to achieve requirement r;.
Problem: Find a representative set, T”, of test cases from T that satisfies R.

The testing criterion is satisfied when every test-case requirement in R is
satisfied. A test-case requirement, r;, is satisfied by any test case, t;, that belongs
to T;, a subset of T'. Therefore, the representative set of test cases is the hitting
set of T;s. Furthermore, in order to maximise the effect of minimisation, 7" should
be the minimal hitting set of T;s. The minimal hitting-set problem is an NP-
complete problem as is the dual problem of the minimal set cover problem [19].

The NP-hardness of the problem encouraged the use of heuristics and meta-
heuristics. The greedy approach [20] as well as other heuristics for minimal hit-
ting set and set cover problem [21,22] have been applied to test suite minimisa-
tion but these approaches were not cost-cognisant and only dealt with a single
objective (test coverage). With the single-objective problem formulation, the so-
lution to the test suite minimisation problem is one subset of test cases that
maximises the test coverage with minimum redundancy.

Since the greedy algorithm does not cope with multiple objectives very

well, Multi-Objective Evolutionary Algorithms have been applied to the multi-
objective formulation of the test suite minimisation [23,24]. While this paper
studies three selected MOEAs, the principle of parallelising fitness evaluation
of multiple solutions in the population of an MOEA applies universally to any
MOEA.
GPGPU and Evolutionary Algorithms: Graphics cards have become a
compelling platform for intensive computation, with a set of resource-hungry
graphic manipulation problems that have driven the rapid advances in their per-
formance and programmability [12]. As a result, consumer-level graphics cards
boast tremendous memory bandwidth and computational power. For example,
ATI Radeon HD4850 (the graphics card used in the empirical study in the paper),
costing about $150 as of April 2010, provides 1000GFlops processing rate and
63.6GB/s memory bandwidth. Graphics cards are also becoming faster more
quickly compared to CPUs. In general, it has been reported that the compu-
tational capabilities of graphics cards, measured by metrics of graphics perfor-
mance, have compounded at the average yearly rate of 1.7x (rendered pixels/s) to
2.3x (rendered vertices/s) [12]. This significantly outperforms the growth in tra-
ditional microprocessors; using the SPEC benchmark, the yearly rate of growth
for CPU performance has been measured at 1.4x by a recent survey [25].

The disparity between two platforms is caused by the different architecture.
CPUs are optimised for executing sequential code, whereas GPUs are optimised
for executing the same instruction (the graphics shader) with data parallelism
(different objects on the screen). This Single-Instruction/Multiple-Data (SIMD)
architecture facilitates hardware-controlled massive data parallelism, which re-
sults in the higher performance.

It is precisely this massive data-parallelism of General-Purpose computing
on Graphics Processing Units (GPGPU) that presents GPGPU as an ideal plat-
form for parallel evolutionary algorithms. Many of these algorithms require the



calculation of fitness (single instruction) for multiple individual solutions in the
population pool (multiple data). Early work has exploited this potential for par-
allelism with both single- and multi-objective evolutionary algorithms [26—28].
However, most existing evaluation has been performed on benchmark problems
rather than practical applications.

3 Parallel Formulation of MOEA Test Suite Minimisation

Parallel Fitness Evaluation: The paper considers, for parallelisation, a multi
objective test suite minimisation problem from existing work [24]. In order to
parallelise test suite minimisation, the fitness evaluation of a generation of in-
dividual solutions for the test suite minimisation problem is re-formulated as a
matrix multiplication problem. Instead of computing the two objectives (i.e. cov-
erage of test goals and execution cost) for each individual solution, the solutions
in the entire population are represented as a matrix, which in turn is multi-
plied by another matrix that represents the trace data of the entire test suite.
The result is a matrix that contains information for both test goal coverage and
execution cost. While the paper considers structural coverage as test goal, the
proposed approach is equally applicable to other testing criteria, such as data-
flow coverage and functional coverage provided that there is a clear mapping
between tests and the test objectives they achieve.

More formally, let matrix A contain the trace data that capture the test goals
achieved by each test; the number of rows of A equals the number of test goals
to be covered, [, and the number of columns of A equals the number of test cases
in the test suite, m. Entry a; ; of A stores 1 if the test goal f; was executed (i.e.
covered) by test case t;, 0 otherwise.

The multiplier matrix, B, is a representation of the current population of
individual solutions that are being considered by a given MOEA. Let B be an
m-by-n matrix, where n is the size of population for the given MOEA. Entry
bji of B stores 1 if test case t; is selected by the individual py, 0 otherwise.

The fitness evaluation of the entire generation is performed by the matrix

multiplication of C' = A x B. Matrix C'is a [-by-n matrix; entry ¢; , of C' denotes
the number of times test goal f; was covered by different test cases that had been
selected by the individual py.
Cost and Coverage In order to incorporate the execution cost as an additional
objective to the MOEA, the basic reformulation is extended with an extra row
in matrix A. The new matrix, A’, is an [ + 1 by m matrix that contains the cost
of each individual test case in the last row. The extra row in A’ results in an
additional row in C” which equals to A’ x B as follows:

1.1 . a1,m C1,1 e Cln

@21 . a2,m C2.1 N Can
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By definition, an entry ¢;y1 4 in the last row in C” is defined as ¢j41% =
Doy i1y bjk = 300w cost(ty) - bjy. That is, cii1) equals the sum of costs
of all test cases selected by individual solution py, i.e. cost(py). Similarly, after
the multiplication, the k-th column of matrix C” contains the coverage of test
goals achieved by individual solution pg. However, this information needs to
be summarised into a percentage coverage, using a step function f as follows:
coverage(py) = W, f(z) =1 (z > 0) or 0 (otherwise).

While the cost objective is calculated as a part of the matrix multiplication,
the coverage of test goals requires a separate step to be performed. Each column
of C' contains the number of times individual testing goals were covered by the
corresponding solution; in order to calculate the coverage metric for a solution,
it is required to iterate over the corresponding column of C’. However, the cov-
erage calculation is also of highly parallel nature because each column can be
independently iterated over and, therefore, can take the advantage of GPGPU
architecture by running n threads.

4 Algorithms

This section presents the parallel fitness evaluation components for CPU and
GPU and introduces the MOEAs that are used in the paper.

Parallel Matrix Multiplication Algorithm: Matrix multiplication is inher-
ently parallelisable as the calculation for an individual entry of the product ma-
trix does not depend on the calculation of any other entry. Algorithm 1 shows
the pseudo-code of the parallel matrix multiplication algorithm using the matrix
notation in Section 3.

Algorithm 1 uses one thread per element of matrix C’, resulting in a total
of (I+1)-n threads. Each thread is identified with unique thread id, ¢id. Given
a thread id, Algorithm 1 calculates the corresponding element of the resulting
matrix, Czl/ﬁc given the width of matrix A, w4, i.e.,y = % and x = tid mod wy4.
Coverage Collection Algorithm: After matrix-multiplication using Algo-
rithm 1, coverage information is collected using a separate algorithm whose
pseudo-code is shown in Algorithm 2. Unlike Algorithm 1, the coverage col-
lection algorithm only requires n threads, i.e. one thread per column in C’.

The loop in Line (3) and (4) counts the number of structural elements that
have been executed by the individual solution p;;q. The coverage is calculated
by dividing this number by the total number of structural elements that need to
be covered.

While coverage information requires a separate collection phase, the sum of
costs for each individual solution has been calculated by Algorithm 1 as a part
of the matrix multiplication following the extension in Section 3.

5 Experimental Setup

5.1 Research Questions

This section presents the research questions studied in the paper. RQ1 and RQ2
concern the scalability achieved by the speed-up through the use of GPGPU:



Algorithm 1: Matrix Multiplication
Input: The thread id, tid, arrays

containing [ + 1 by m and m by n

matrices, A and B, the width of ma-

trix A and B, w4 and wp

Output: An array to store an [ + 1

by n matrix, C'

MaTtMurT(tid, A, B, wa, wg)

Algorithm 2: Coverage Collection
Input: The thread id, tid, an ar-
ray containing the result of matrix-
multiplication, C’, the width of ma-
trix A, w4 and the height of matrix
A, hy

Output: An array containing the
coverage achieved by each individual

(1) x < tid mod wa solution, coverage

(2) y« ¢ CoLLECTCOVERAGE(tid, C', wa,
(3) v+ 0 hA)

(4) for k=0towy —1 (1) e+0

(5) vev+Aly-wa+k]-Blk- (2) fork=0tows—1

wp + 7] 3)
(6) C'ly*xwp+x] v

if C'[k-wa + tid] > 0 then
e+—e+1

(4) coverage[tid] < e/ha
RQ1. Speed—up: what is the speed—up factor of GPU- and CPU-based parallel
versions of MOEAs over the untreated CPU-based version of the same algorithms
for multi-objective test suite minimisation problem?
RQ2. Correlation: what are the factors that have the highest correlation to
the speed—up achieved, and what is the correlation between these factors and
the resulting speed—up?

RQ1 is answered by observing the dynamic execution time of the parallel
versions of the studied algorithms as well as the untreated single-threaded al-
gorithms. For RQ2, two factors constitute the size of test suite minimisation
problem: the number of test cases in the test suite and the number of test goals
in System Under Test (SUT) that need to be covered. The speed—up values mea-
sured for RQ1 are statistically analysed to investigate the correlation between
the speed—up and these two size factors.

RQ3. Insight: what are the realistic benefits of the scalability that is achieved
by the GPGPU approach to software engineers?

RQ3 concerns the practical implications of the speed-up and the consequent
scalability to the practitioners. This is answered by analysing the result of test
suite minimisation obtained for a real-world testing problem.

5.2 Subjects

Table 1 shows the subject programs for the empirical study. 12 of the programs
and test suites are from the Software Infrastructure Repository (SIR) [16]. In
order to obtain test suites with varying sizes ranging from a few hundred to a
few thousand test cases, the study includes multiple test suites for some subject
programs. For printtokens and schedule, smaller test suites are coverage-
adequate test suites, whereas larger test suites include all the available test
cases. To avoid selection bias, four small test suites were randomly selected



from the pool of available tests for each program. In the case of space, SIR
contains multiple coverage-adequate test suites of similar sizes; fout test suites
were selected randomly.

The subjects also include a large system-level test suite from IBM. For this
subject, the coverage information was maintained at the function level. The test
suite contains only 181 test cases, but these test cases are used to cover 61,770
functions in the system.

Each test suite has an associated execution cost dataset. For the subject
programs from SIR, the execution costs were measured by observing the number
of instructions required by the execution of tests. This was performed using a
well-known profiling tool, valgrind [29], which executes the given program on
a virtual processor. For ibm, physical wall-clock time data, measured in seconds,
were provided by IBM. The entire test suite for ibm takes more than 4 hours to
execute.

Table 1. Subject programs used for the empirical study.

Subject Description Program Size Test Suite Size
printtokens Lexical analyser 188 315-3192
4,130
printtokens2 Lexical analyser 199 4,115
schedule Priority scheduler 142 224-2272
2,650
schedule2 Priority scheduler 142 2,710
tcas Aircraft collision avoidance system 65 1,608
totinfo Statistics computation utility 124 1,052
replace Pattern matching & substitution tool 242 5,545
space Array Definition Language (ADL) interpreter 3,268 154-1603
flex Lexical analyser 3,965 103
gzip Compression utility 2,007 213
sed Stream text editor 1,789 370
bash Unix shell 6,167 1,061
ibm An IBM middleware system 61,770" 181

! For the IBM middleware system, the program size represents the number of functions
that need to be covered. Others are measured in LOC.

2 For schedule and printtokens, four randomly selected, coverage-adequate test suites
were used as well as the complete test suite in SIR.

3 For space, four randomly selected, coverage-adequate test suites were used.

5.3 Implementation & Hardware

Implementation: The paper uses NSGA-II implementation from the open
source Java MOEA library, jMetal [30,31] as the untreated version of MOEA.
The GPGPU-based parallel version of NSGA-IT is implemented in the OpenCL
GPGPU framework using a Java wrapper called JavaCL [32]. The CPU-based
parallel version of NSGA-II uses a parallel programming library for Java called
JOMP [33]. JOMP allows parameterised configuration of the number of threads to
use. In both cases, the parallelisation is only applied to the fitness evaluation
step of the basic jMetal implementation of NSGA-II, because it is not clear



whether certain steps in NSGA-II, such as sorting, may yield sufficient efficiency
when performed in parallel.

NSGA-II is configured with population size of 256 following the standard
recommendation to set the number of threads to multiples of 32 or 64 [34]. The
stopping criterion is to reach the maximum number of fitness evaluations, which
is set to 64,000, allowing 250 generations to be evaluated. Individual solutions
are represented by binary strings that form columns in matrix B in Section 3.
The initial population is generated by randomly setting the individual bits of
these binary strings so that the initial solutions are randomly distributed in the
phenotype space.

NSGA-II uses the binary tournament selection operator and the single-point

crossover operator with probability of crossover set to 0.9 and the single bit-flip
mutation operator with the mutation rate of % where n is the length of the
bit-string (i.e. the number of test goals).
Hardware: All configurations of NSGA-II have been evaluated on a machine
with a quad-core Intel Core i7 CPU (2.8GHz clock speed) and 4GB memory,
running Mac OS X 10.6.5 with Darwin Kernel 10.6.0 for x86_64 architecture.
The Java Virtual Machine used to execute the algorithms is Java SE Runtime
with version 1.6.0.22. The GPGPU-based version of NSGA-II has been evaluated
on an ATI Radeon HD4850 graphics card with 800 stream processors running
at 625MHz clock speed and 512MB GDDR3 onboard memory.

5.4 Evaluation

The paper compares five different configurations of NSGA-II: the untreated
configuration (hereafter refered to CPU), the GPGPU configuration (GPU) and
the JOMP-based parallel configurations with 1, 2, and 4 threads (JOMP1/2/4).
The configuration with one thread (JOMP1) is included to observe the speed-up
achieved by evaluating the fitness of the entire population using matrix multipli-
cation, instead of evaluating the solutions one by one as in the untreated version.
Any speed—up achieved by JOMP1 over CPU is, therefore, primarily achieved by
the optimisation that removes the method invocation overheads. On the other
hand, JOMP1 does incur an additional thread management overhead.

For each subject test suite, the five configurations were executed 30 times
in order to cater for the inherent randomness in dynamic execution time. The
observation of algorithm execution time (Time;otq;) is composed of the following
three parts:

— Initialisation (Time;n;;): the time it takes for the algorithm to initialise the
test suite data in a usable form; for example, GPU configurations of MOEAs
need to transfer the test suite data onto the graphics card.

— Fitness Evaluation (Time fiiness): the time it takes for the algorithm to eval-
uate the fitness values of different generations during its runtime.

— Remaining (Timeremaining): the remaining parts of the execution time, most
of which is used for archive management, genetic operations, etc.

Execution time is measured using the system clock. The speed-up is calcu-
lated by dividing the amount of the time that the CPU configuration required by
the amount of the time parallel configurations required.



6 Results

Speed—up: Table 2 contains the speed—up data in more detail, whereas the
statistical analysis of the raw information can be obtained from the appendix.?
Overall, the observed paired mean speed—up ranges from 1.43x to 25.09x. The
speed—up values below 1.0 show that the overhead of thread management and the
additional data structure manipulation can be detrimental for the problems of
sufficiently small size. However, as the problem size grows, JOMP1 becomes faster
than CPU with all algorithms, indicating that the amount of reduced method call
overhead eventually becomes greater that the thread management overhead.
With the largest dataset, ibm, the GPU configuration of NSGA-II reduces the av-
erage execution time of CPU, 4,347 seconds (1 hour 12 minutes and 27 seconds),
into the average of 174 seconds (2 minutes and 54 seconds). The speed—up re-
mains consistently above 5.0x if the problem size is larger than that of flex, i.e.
about 400,000 (103 tests x 3,965 test goals).

To provide more detailed analysis, the observed execution time data have
been compared using The Mann-Whitney ‘U’ test. The Mann-Whitney ‘U’ test
is a non-parametric statistical hypothesis test, i.e. it allows the comparison of
two samples with unknown distributions. The execution time data observed with
JOMP1/2/4 and GPU configurations were compared to those from CPU configura-
tion. The null hypothesis is that there is no difference between the parallel config-
urations and CPU configuration; the alternative hypothesis is that the execution
time of the parallel configurations is smaller than that of CPU configuration.

Table 3 contains the resulting p-values. With JOMP1 configuration, the alter-
native hypothesis is rejected for 15 cases at the confidence level of 95%, providing
evidence that the parallel configurations required more time than the untreated
configuration(CPU). With all other configurations, the null hypothesis is univer-
sally rejected for all subjects, providing strong evidence that the parallel configu-
rations required less time than the untreated configuration(CPU). The particular
results are naturally dependent on the choice of the graphics card that has been
used for the experiment. However, these results, taken together, provide strong
evidence that, for test suite minimisation problems of realistic sizes, the GPGPU
approach can provide a speed—up of at least 5.0x. This finding answers RQ1.
Correlation: Regarding RQ2, one important factor that contributes to the level
of speed—up is the speed of each individual computational unit in the graphics
card. The HD4850 graphics card used in the experiment contains 800 stream
processor units that are normally used for the computation of geometric shading.
Each of these stream processors execute a single thread of Algorithm 1, of which
there exist more than 800. Therefore, if the individual stream processor is as
powerful as a single core of the CPU, the absolute upper bound of speed—up
would be 800. In practice, the individual stream processors run with the clock
speed of 625MHz, which makes them much slower and, therefore, less powerful
than a CPU core. This results in speed—up values lower than 800.

3 The detailed statistical data can be viewed at
http://www.cs.ucl.ac.uk/staff/s.yoo/gpgpu.



Table 2. Speed—up results Table 3. Mann-Whitney U test

Subject Sjomp1 Sjomp2 Sjompa Scru Subject PJOMP1 PJOMP2 PJOMPA  PGPU

printtokens-1 0.83 1.21 1.54 2.14 printtokens-1 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-2 0.83 1.23 1.56 2.20 printtokens-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-3 0.82 1.21 1.53 213 printtokens-3 1.00e+00 1.51e-11 8.46e-18 8.46e-18
printtokens-4 0.84 1.22 1.54 2.19 printtokens-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11

schedule-1 0.97 1.22 1.40 1.56 schedule-1 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-2 0.96 1.22 1.41 1.46 schedule-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule-3 0.96 1.22 1.39 1.45 schedule-3 1.00e4-00 1.51e-11 1.51e-11 1.51e-11
schedule-4 0.95 1.20 1.37 1.43 schedule-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11
printtokens 0.76 1.24 1.44 4.52 printtokens  1.00e+00 8.46e-18 8.46e-18 8.46e-18
schedule 0.69 1.08 1.26 3.38 schedule 1.00e4-00 1.51e-11 1.51e-11 8.46e-18
printtokens2 0.72 1.18 1.37 4.38 printtokens2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule2 0.71 1.09 1.27  3.09 schedule2 1.00e+00 1.51e-11 8.46e-18 8.46e-18
tcas 0.84 1.10 1.30 1.94 tcas 1.00e4-00 8.46e-18 8.46e-18 8.46e-18
totinfo 0.90 1.28 1.61 2.50 totinfo 1.00e+00 1.51e-11 8.46¢-18 8.46¢-18
flex 1.58 2.76 419 6.82 flex 8.46e-18 8.46e-18 1.51e-11 1.51e-11
gzip 1.19 2.15 3.31 8.00 gzip 1.51e-11 1.51e-11 1.51e-11 1.51e-11
sed 1.02 1.87 3.04 10.28 sed 2.56e-07 8.46e-18 8.46e-18 1.51e-11
space-1 1.77 3.22 5.10 10.51 space-1 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-2 1.86 3.34 5.19 10.88 space-2 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-3 1.80 3.27 5.16 10.63 space-3 8.46e-18 8.46e-18 8.46e-18 1.51e-11
space-4 1.76 3.25 5.12 10.54 space-4 8.46e-18 8.46e-18 8.46e-18 1.51e-11
replace 0.73 1.23 1.44 5.26 replace 1.00e+4-00 8.46¢-18 1.51e-11 8.46¢-18
bash 1.54 2.90 4.87 25.09 bash 8.46e-18 8.46e-18 8.46e-18 8.46e-18
ibm 3.01 5.55 9.04 24.85 ibm 1.51e-11 8.46e-18 8.46e-18 1.51e-11

In order to answer RQ2, statistical regression analysis was performed on the
correlation between the observed speed—up and the factors that characterise the
size of problems.

Three size factors have been analysed for the statistical regression: the num-
ber of test goals and the number of test cases are denoted by [ and m respectively,
following the matrix notation in Section 3: I denotes the number of threads the
GPGPU-version of the algorithm has to execute (as the size of the matrix C’ is
[-by-n and n is fixed); m denotes the amount of computation that needs to be
performed by a single thread (as each matrix-multiplication kernel computes a
loop with m iterations). In addition to these measurement, another size factor
z =1 -m is considered to represent the perceived size of the minimisation prob-
lem. Table 4 shows the results of Spearman’s rank correlation analysis between
size factors and observed speed—ups.

Spearman’s rank correlation is a non-parametric measure of how well the
relationship between two variables can be described using a monotonic function.
As one variable increases, the other variable will tend to increase monotonically
if the coefficient is close to 1, whereas it would decrease monotonically if the
coefficient is close to -1.

Size factor | shows the strongest overall positive correlation with speed—ups
in all configurations. The correlation coeflicients for z are weaker than those for [,
whereas correlation for m remains negative for all algorithms and configurations.

To gain further insights into the correlation between size factors and speed—
ups, a regression analysis was performed. Factor z is considered in isolation,
whereas [ and m are considered together; each variable has been considered in



Table 4. Spearman’s rank correlation co- Table 5. Regression Analysis for NSGA-II
efficients between three size factors and

speed—ups Config Model a 8 vy R?
Sy~ z 156e07  N/A 1.00e+00 0.4894

S, ~ log 2 201e01  N/A -1.34e-+00 0.3423

Config  p- pr__ Pm soupy Sp LA™ 3.270-05 -1.13¢-04 1.17c-+00 0.7060

JOMP1 0.2257 0.6399 -0.8338 Sp ~ logl+m 2.69¢-01 -4.83e-05 -4.79e-01 0.8487

Sp ~ 1 +logm 3.12e-05 -1.78e-01 2.15e+00 0.7600

JOMP2 0.4908 0.7800 -0.6423 Sp ~logl+logm 2.62e-01 -6.83e-02 -6.15e-02 0.8509

JOMP4 0.4788 0.8227 -0.6378

Sy~ 2 3.24e07  N/A 1.58e-00 0.5009
GPGPU 0.8760 0.8617 -0.2299 S, ~log 4.78¢-01  N/A -4.05e+00 0.4606
Joupy S~ 1T 6.64¢-05 -1.826-04 1.87e+-00 0.6367

Sp ~logl+m 6.00e-01 -2.84¢-05 -1.83e+00 0.9084
Sp ~ 1 +logm 6.35e-05 -3.07e-01 3.58e+00 0.6836
Sp ~logl+1logm 5.96e-01 -4.04e-02 -1.59e+4-00 0.9086

Sp~z 5.80e-07 N/A 2.15e+00 0.5045
Sp ~logz 8.72e-01 N/A -8.13e+00 0.4814
JOMP4 Sp~Il+m 1.16e-04 -3.42e-04 2.70e+-00 0.6199

Sp ~logl+m  1.08e+00 -5.93¢-05 -4.00e+00 0.9322
Sp ~ 1 +logm 1.11e-04 -5.49¢-01 5.74e+00 0.6611
Sy ~logl + logm 1.08e400 -5.50e-02 -3.72e4-00 0.9313

Sp~z 2.25e-06 N/A 4.13e+00 0.7261
Sp ~logz 3.45e+00 N/A -3.66e+01 0.7178
Sp~Il+m 3.62e-04 -1.63e-04 5.33e+00 0.4685

GPU g ~logl+m  3.53e+00 7.79-04 -1.66c+01 0.8219

Sp ~ 1 +logm 3.62e-04 -1.34e-01 5.98e+-00 0.4676
Sy ~ logl + logm 3.85e400 1.69e+00 -2.82e4-01 0.8713

its linear form (z,! and m) and logarithmic form (log z,log! and logm). This
results in 6 different combinations of regression models. Table 5 presents the
results of regression analysis for four configurations respectively.

With a few exceptions of very small margins (JOMP4), the model with the
highest 72 correlation for all configurations is Sp = alogl+ flogm+ . Figure 1
shows the 3D plot of this model for the GPU and JOMP4 configurations.

The observed trend is that the inclusion of log{ results in higher correlation,
whereas models that use [ in its linear form tend to result in lowest correlation.
This confirms the results of Spearman’s rank correlation analysis in Table 4. The
coefficients for the best-fit regression model for GPU, S, = alogl + Blogm + 7,
can explain why the speed—up results for space test suites are higher than those
for test suites with similar z values such as tcas, gzip and replace. Apart from
bash and ibm, space has the highest [ value. Since « is more than twice larger
than 3, a higher value of [ has more impact to S, than m.

Based on the analysis, RQ2 is answered as follows: the observed speed—up
shows a strong linear correlation to the log of the number of test goals to cover
and the log of the number of test cases in the test suite. The positive correlation
provides a strong evidence that GPU-based parallelisation scales up.

Furthermore, within the observed data, the speed—up continues to increase
as the problem size grows, which suggests that the graphics card did not reach
its full computational capacity. It may be that for larger problems, if studied,
the speed—up would be even greater than those observed in this paper; certainly
the correlation observed indicates that this can be expected. The finding that
the scalability factor increases with overall problem size is a very encouraging
finding; as the problem gets harder, the solutions are obtained faster.
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of CPU. The grey area shows the interesting
trade-off that the CPU configuration fails to
exploit within 60 minutes.

Insights: This section discusses a possible real-world scenario in which the par-
allelisation of multi-objective test suite minimisation can have a high impact. A
smoke test is a testing activity that is usually performed in a very short window
of time to detect the most obvious faults, such as system crashes. IBM’s smoke
test practice is to allow from 30 to 60 minutes of time to execute a subset of
tests from a large test suite that would require more than 4 hours to execute in
its entirity.

Figure 2 shows two possible smoke test scenarios based on the results of CPU
and GPU configurations of NSGA-II. The solid line represents the scenario based
on the GPU configuration of the algorithm, whereas the dotted line represents the
scenario based on the CPU configuration. The flat segment shows the time each
configuration spends on the optimisation process; the curved segment shows the
trade-off between time and test coverage achieved by the optimised test suite.
Since the CPU configuration of NSGA-IT takes longer than 60 minutes to termi-
nate, it cannot contribute to any smoke test scenario that must be completed
within 60 minutes. On the other hand, the GPU configuration allows the tester
to consider a subset of tests that can be executed under 30 minutes. If the grey
region was wider than Figure 2, the difference between two configurations would
have been even more dramatic.

This answers RQ3 as follows: a faster execution of optimisation algorithms
enables the tester not only to use the algorithms but also to exploit their results



more effectively. This real world smoke test example from IBM demonstrates
that scale—ups accrued from the use of GPU are not only sources of efficiency
improvement, they can also make possible test activities that are simply impos-
sible without this scalability.

The ability to execute a sophisticated optimisation algorithm within a rel-
atively short time also allows the tester to consider state-of-the-art regression
testing techniques with greater flexibility. The greater flexibility is obtained be-
cause the cost of the optimisation does not have to be amortised across multiple
iterations. Many state-of-the-art regression testing techniques require the use of
continuously changing sets of testing data, such as recent fault history [24] or
the last time a specific test case has been executed [35,36]. In addition to the use
of dynamic testing data, the previous work also showed that repeatedly using
the same subset of a large test suite may impair the fault detection capability
of the regression testing [37].

7 Related Work

Test suite minimisation aims to reduce the number of tests to be executed by
calculating the minimum set of tests that are required to satisfy the given test
requirements. The problem has been formulated as the minimal hitting set prob-
lem [21], which is NP-hard [19].

Various heuristics for the minimal hitting set problem, or the minimal set
cover problem (the duality of the former), have been suggested for the test suite
minimisation [20, 38]. However, empirical evaluations of these techniques have
reported conflicting views on the impact on fault detection capability: some
reported no impact [39,40] while others reported compromised fault detection
capability [17,41].

One potential reason why test suite minimisation has negative impact on
the fault detection capability is the fact that the criterion for minimisation is
structural coverage; achieving coverage alone may not be sufficient for revealing
faults. This paper uses the multi-objective approach based on Multi-Objective
Evolutionary Algorithm (MOEA) introduced by Yoo and Harman [24]; the pa-
per also presents the first attempt to parallelise test suite minimisation with
sophisticated criteria for scalability.

Population-based evolutionary algorithms are ideal candidates for paralleli-
sation on graphics cards [12] and existing work has shown successful implementa-
tions for classical problems. Tsutsui and Fujimoto implemented a single-objective
parallel Genetic Algorithm (GA) using GPU for the Quadratic Assignment Prob-
lem (QAP) [26]. Wilson and Banzaf implemented a linear Genetic Programming
(GP) algorithm on XBox360 game consoles [27]. Langdon and Banzaf imple-
mented GP for GPU using an SIMD interpreter for fitness evaluation [11]. Wong
implemented an MOEA on GPU and evaluated the implementation using a suite
of benchmark problems [28]. Wong’s implementation parallelised not only the fit-
ness evaluation step but also the parent selection, crossover & mutation operator
as well as the dominance checking.

Despite the highly parallelisable nature of many techniques used in SBSE, few
parallel algorithms have been used. Mitchell et al. used a distributed architecture



for their clustering tool Bunch [7]. Asadi et al. also used a distributed Server-
Client architecture for Concept Location problem [9]. However, both approaches
use a distributed architecture that requires multiple machines; this paper is the
first work on SBSE that presents highly affordable parallelism based on GPGPU.
8 Conclusion

This paper presents the first use of GPGPU-based massive parallelism for im-
proving scalability of regression testing, based on Search-Based Software En-
gineering (SBSE). The advances in GPGPU architecture and the consequent
availability of parallelism provides an ideal platform for improving SBSE scala-
bility.

The paper presents an evaluation of the GPGPU-based test suite minimi-
sation for real-world examples that include an industry-scale test suite. The
results show that the GPGPU-based optimisation can achieve a speed—up of up
to 25.09x compared to a single-threaded version of the same algorithm executed
on a CPU. The highest speed—up achieved by the CPU-based parallel optimi-
sation was 9.04x. Statistical analysis shows that the speed—up correlates to the
logarithmic of the problem size, i.e. the size of the program under test and the
size of the test suite. This finding indicates that as the problem becomes larger,
the scalability of the proposed approach increases; a very attractive finding.
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