
AUSTIN: A tool for Search Based Software Testing for the C Language and its
Evaluation on Deployed Automotive Systems

Kiran Lakhotia
King’s College London, CREST,

Strand, London, WC2R 2LS, U.K.
kiran.lakhotia@kcl.ac.uk

Mark Harman
King’s College London, CREST,

Strand, London, WC2R 2LS, U.K.
mark.harman@kcl.ac.uk

Hamilton Gross
Berner & Mattner Systemtechnik GmbH,

Gutenbergstr. 15, D–10587 Berlin, Germany
hamilton.gross@berner-mattner.com

Abstract—Despite the large number of publications on
Search–Based Software Testing (SBST), there remain few pub-
licly available tools. This paper introduces AUSTIN, a publicly
available SBST tool for the C language. The paper validates the
tool with an empirical study of its effectiveness and efficiency
in achieving branch coverage compared to random testing and
the Evolutionary Testing Framework (ETF), which is used in-
house by Daimler and others for Evolutionary Testing. The
programs used in the study consist of eight non–trivial, real-
world C functions drawn from three embedded automotive
software modules. For the majority of the functions, AUSTIN
is at least as effective (in terms of achieved branch coverage)
as the ETF, and is considerably more efficient.

Keywords-Software Testing; SBSE; SBST

I. INTRODUCTION:

Search–Based Software Testing (SBST) was the first
Software Engineering problem to be attacked using opti-
mization [1] and also the first to which a search–based
optimization technique was applied [2]. Recent years have
witnessed a dramatic rise in the growth of work on SBST
and in particular on techniques for generating test data that
meets structural coverage criteria. Yet, despite an increasing
interest in SBST and, in particular, in structural coverage
using SBST, there remains a lack of publicly available tools
that provide researchers with facilities to perform search–
based structural testing.

This paper introduces such a tool, AUSTIN, and reports
our experience with it. AUSTIN uses a variant of Korel’s [3]
‘Alternating Variable Method’ (AVM) and augments it with
techniques adapted from recent work on directed adaptive
random testing and dynamic symbolic execution [4], [5],
[6], [7]. It can handle a large subset of C, though there
are some limitations. Most notably AUSTIN cannot generate
meaningful inputs for strings, void and function pointers, as
well as union constructs. Despite these limitations, AUSTIN
has been applied ‘out of the box’ to real industrial code from
the automotive industry (see Section V) as well as a number
of open source programs [8].

This paper presents an empirical study in which AUSTIN
has been compared to an Evolutionary Testing Frame-
work (ETF), which was developed as part of the EvoTest

project [9]. The Framework represents a state–of–the–art
evolutionary testing system and has been applied to case
studies from the automotive and communications industry.
Three case studies from the automotive industry, provided by
Berner & Mattner Systemtechnik GmbH, formed the bench-
mark which AUSTIN was compared against for effectiveness
and efficiency when generating branch adequate test data.

Automotive code was chosen as the benchmark because
the automotive industry is subject to testing standards that
mandate structural coverage criteria [10] and so the develop-
ers of production code for automotive systems are a natural
target for automated test data generation techniques, such as
those provided by AUSTIN.

The rest of the paper is organised as follows: Section II
provides background information on the field of search–
based testing and gives an overview of related work. Sec-
tion III introduces AUSTIN and describes the different
techniques implemented, whilst Section IV provides details
about the Evolutionary Testing Framework against which
AUSTIN has been compared. The empirical study used to
evaluate AUSTIN alongside the hypotheses tested, evalu-
ation and threats to validity are presented in Section V.
Section VI concludes.

II. BACKGROUND

Test data generation is a natural choice for Search–Based
Software Engineering (SBSE) researchers because the search
space is clearly defined (it is the space of inputs to the
program) and tools often provide existing infrastructures
for representing candidate inputs and for instrumenting and
recording their effect. Similarly, the test adequacy criterion
is usually well defined and is also widely accepted as a
metric worthy of study by the testing community, making it
an excellent candidate for a fitness function [11]. The role
of the fitness function is to return a value that indicates how
‘good’ a point in a search space (i.e. an input vector) is
compared to the best point (i.e. the required test data): the
global optimum. For example, if a condition a == b must
be executed as true, a possible objective function is |a− b|.
When this function is 0, the desired input values have been

found. Different branch functions exist for various relational
operators in predicates [3].

McMinn [12] provides a detailed survey of work on SBST
up to approximately 2004. It shows that the most popular
search technique applied to structural testing problems has
been the Genetic Algorithm. However, other search–based
algorithms have also been applied, including parallel Evolu-
tionary Algorithms [13], Evolution Strategies [14], Estima-
tion of Distribution Algorithms [15], Scatter Search [16],
[17], Particle Swarm Optimization [18], [19] and Tabu
Search [20].

Due to the large body of work on SBST, Ali et al. [21]
performed a systematic review of the literature in order to
asses the quality and adequacy of empirical studies used
in evaluating SBST techniques. One of their key findings
is that empirical studies in SBST need to include more
statistical analysis, in the form of hypothesis testing, in
order to account for the randomness in any meta–heuristic
algorithm.

Outside the search–based testing community there has
been a growing number of publicly available tools for
structural testing problems, most notably from the field of
Dynamic Symbolic Execution (DSE) [4], [5], [6], [7]. DSE
combines symbolic [22] and concrete execution. Concrete
execution drives the symbolic exploration of a program, and
runtime values can be used to simplify path constraints pro-
duced by symbolic execution to make them more amenable
to constraint solving. For example, assume two inputs a and
b have the values 38 and 100 respectively, and that a path
condition of interest is of the form (int)log(a) == b.
Further assume that a particular constraint solver cannot
handle the call to the log function. Now suppose during
concrete execution, the expression (int)log(38) eval-
uated to 3. DSE can then simplify the path condition to
3 == b. The constraint solver can now be used to provide
a value for b which satisfies the constraint. A more detailed
treatment of this approach can be found in the work of
Godefroid et al. [4].

AUSTIN draws together strands of research on search–
based testing for structural coverage and DSE so that it can
generate branch adequate test data for integers, floating point
and pointer type inputs. Currently AUSTIN only addresses
one small, but important part of testing: it generates input
values that reach different parts of a program. Whether these
inputs reveal any faults is still left for the user to decide.

III. AUSTIN
AUgmented Search–based TestINg (AUSTIN) is a struc-

tural test data generation tool which combines a simple hill
climber for integer and floating point type inputs with a
set of constraint solving rules for pointer type inputs. It
has been designed as a unit testing tool for C programs.
AUSTIN considers a unit to be a function under test and all
the functions reachable from within that function.

Algorithm 1 High level description of the AUSTIN-AVM
currentSolution := random
bestSolution := currentSolution
doLocalRestart := true
while not reached stopping criterion do

if solve pointer constraint then
if solvePC(currentSolution) = NULL then

currentSolution := random
end if

else if trapped at local optimum then
if doLocalRestart then

for i := 0 to currentSolution.length do
localRestart(currentSolution[i])

end for
doLocalRestart := false

else
currentSolution := random
doLocalRestart := true

end if
else

improvement := exploratoryMove(currentSolution)
restartExploration := false
while improvement do

bestSolution := currentSolution
if reached stopping criterion then

return bestSolution
end if
improvement := patternMove(currentSolution)
restartExploration := true

end while
if restartExploration then

reset search parameters
end if

end if
end while
return bestSolution

AUSTIN can be used to generate a set of input data
for a given function which achieve (some level of) branch
coverage for that function. During the test data generation
process, AUSTIN does not attempt to execute specific paths
through a function in order to cover a target branch; the
path taken up to a branch is an emergent property of
the search process. The search is guided by an objective
function that was introduced by Wegener et al. [23] for
the Daimler Evolutionary Testing System. It evaluates an
input against a target branch using two metrics: the approach
level and the branch distance. The approach level records
how many of the target branch’s control dependent nodes
were not executed by a particular input. The fewer control
dependent nodes executed, the ‘further away’ the input is
from executing the branch in control flow terms. The branch

Algorithm 2 High level description of solvePC
Inputs: Equivalence graph of symbolic variables EG and
candidate solution currentSolution

Compute path condition pc for currentSolution
Compute the approximate path condition pc′ from pc by
dropping all constraints over arithmetic types from pc
Trim pc′ by removing all non critical branching nodes
Invert the binary operator (∈ {=, #=}) of the last constraint
in pc′

for all constraints ci in pc′ do
left := get lhs of ci
right := get rhs of ci
Get node nleft from EG which contains left or create
a new node nleft if no such node exists
Get node nright from EG which contains right or
create a new node nright if no such node exists
if operator opi in ci is = then

if nleft has an edge with nright in EG then
return NULL {infeasible}

else
Merge nodes nleft and nright

Update EG
end if

else if operator opi in ci is #= then
if nleft = nright then

return NULL {infeasible}
else

Add edge between nleft and nright

if nleft #= null node then
Add edge between nleft and null node

end if
if nright #= null node then

Add edge between nright and null node
end if
Update EG

end if
end if

end for
for all nodes ni in EG do

if ni has no edge to null node then
m := NULL

else
if ni represents the address A of a variable then
m := A

else
m := malloc

end if
end if
for all symbolic variables si in ni do

Update corresponding element for si in currentSolu-
tion with m

end for
end for
return currentSolution

distance is computed using the condition of the decision
statement at which the flow of control diverted away from
the current ‘target’ branch. Taking the true branch from
node (2) in Figure 1 as an example, if the false branch is
taken at node (2), the branch distance is computed using
|one->key - 10|. The branch distance is normalised and
added to the approach level.

Similar to DSE [4], [6], [7], AUSTIN also instruments
the program under test to symbolically execute the pro-
gram along the concrete path of execution for a particular
input vector. Collecting constraints over input variables
via symbolic execution serves to aid AUSTIN in solving
constraints over memory locations, denoted by pointer inputs
to a function. Consider the example given in Figure 1 and
suppose execution follows the false branch at node (1).
AUSTIN will use a custom procedure to solve the constraint
over the pointer input one. On the other hand, if the false
branch is taken at node (2), the AVM is used to satisfy the
condition at node (2).

A. AVM
The AVM used in AUSTIN works by continuously chang-

ing each arithmetic type input in isolation. First, a vector
is constructed containing the arithmetic type inputs (e.g.,
integers, floats) to the function under test. All variables in
this vector are initialised with random values. Then, so called
exploratory moves are made for each element in turn. These
consist of adding or subtracting a delta from the value of an
element. For integral types the delta starts off at 1, i.e., the
smallest increment (decrement). When a change leads to an
improved fitness value, the search tries to accelerate towards
an optimum by increasing the size of the neighbourhood
move with every step. These are known as pattern moves.
The formula used to calculate the delta added or subtracted
from an element is: δ = 2it ∗ dir ∗ 10−preci , where it is the
repeat iteration of the current move, dir either −1 or 1, and
preci the precision of the ith input variable. The precision
only applies to floating point variables, as will be described
in Section III-B (i.e., it is 0 for integral types).

Whenever a delta is assigned to a variable, AUSTIN
checks for a possible over- or underflow. For integral types
this is done with a set of custom macros that use gcc’s
typeof operator [24]. For floating point operations on the
other hand, AUSTIN does not check for over- or underflow
errors per se. Instead, it watches for ± INF or ± NaN values.
Whenever a potential move leads to an overflow (underflow)
of integral types or results in an input taking on the value ±
INF or ± NaN, AUSTIN discards the move as invalid and
explores the next neighbour. As a consequence, code which
explicitly checks for ± INF or ± NaN cannot be covered by
AUSTIN. So far this has not been observed in practice. To
handle possible overflow (underflow) in bit fields, AUSTIN
sets a lower bound for signed bit fields at −(2l/2) (0 for
unsigned bit fields), and an upper bound at (2l/2)−1 (2l−1

Node id Example Function
typedef struct item {

int key;
};
void testme(item* one) {

(1) if (one != null) {
(2) if (one->key == 10)

// target
}

Figure 1. Example C code used for demonstrating how AUSTIN combines custom constraint solving rules for pointer inputs with an AVM for other
inputs to a function under test. The goal is to find an input which satisfies the condition at node (2).

for unsigned bit fields), where l is the length of the bit field.
A user can also specify custom bounds for every variable.
Again, updates to an input which violate these bounds are
discarded as infeasible, forcing the search to move on. The
main motivation for including such ‘bounds checking’ in
AUSTIN is to save wasteful moves.

Once no further improvements can be found for an input,
the search continues exploring the next element in the vector,
recommencing with the first element if necessary, until no
changes to an input lead to further improvements. At this
point the search restarts at another randomly chosen location
in the search space. This is known as a random restart
strategy and is designed to overcome local optima and enable
the search to explore a wider region of the input domain for
the function under test.

B. Floating Point Variables
As mentioned in the previous section, each floating point

variable has an associated precision. For example, setting
the precision preci of the ith input variable to 1 limits the
smallest possible move for that variable to ±0.1. Increasing
the precision to 2 limits the smallest possible move to ±0.01,
and so forth. In practice, the precision of floating point
numbers is limited. Double precision types have about 16
decimal digits, and single precision types about 7 decimal
digits of precision.

Initially, the precision variable preci of each input is set
to 0, and whenever the AVM is stuck at a local optimum
it tries to increase this value. To avoid redundant changes
to preci, the AVM checks if adding the delta 10−preci to
a variable changes its value, or, preci is less than 7, or 16
for single or double precision type inputs. If the precision
of floating point variables cannot be increased any further,
or, no exploratory move with an increased precision results
in an improved fitness value, the AVM resorts to a random
restart.

C. Random Restarts
The AVM performs two types of random restarts in order

to escape local optima. The first type is a global restart while
the second is a local restart (see Algorithm 1). In a global
restart, all input variables are assigned new random values.
This is likely to place the starting point for the next hill

climb far away from the local optimum where the search
got stuck. While this is desirable in many cases, it is not
an ideal strategy when a global optimum is surrounded by
many local optima. The chances are the search will just get
stuck at the same local optimum again. Therefore the AVM
also uses a local restart, which is designed to stay in the
vicinity of the current search space while still being able to
escape from a local optimum.

In a local restart, a random number r (between 0 and 1) is
created for each input variable. This number is then ‘scaled’
by the formula 10−preci ∗ r, where preci is the current
precision of the ith input variable. This ‘scaled’ random
number is then added to the existing value of the input
variable. If such a local restart does not enable the search to
make further progress, a global restart is performed. Thus,
the AVM alternates between local and global restarts.

D. Pointer Inputs
We will now describe how the AVM has been extended

to add automatic support for pointers and dynamic data
structures. The constraint solving procedure for pointer
inputs has been adapted from the DSE tool CUTE [6].

A high level description of the algorithm for solving
pointer constraints is shown in Algorithm 2. It is an im-
proved version of the approach introduced in our earlier
work [25], which did not include feasibility checks or use an
equivalence graph. Algorithm 2 first constructs a symbolic
path condition pc, describing the path taken by the concrete
execution. At this stage pc may contain constraints over both
arithmetic type, as well as pointer type inputs. AUSTIN thus
constructs a sub–path condition, pc′, in which all constraints
over arithmetic types are dropped. This includes constraints
which contain a pointer dereference to a primitive type.
pc′ is further simplified by removing all constraints which
originated from non–critical branching nodes with respect
to the current target branch. Furthermore, AUSTIN uses the
CIL [26] framework to ensure that the remaining constraints
over memory locations are of the form x = y and x #= y,
where both x or y may be the constant null or a symbolic
variable denoting a pointer input.

The path conditions pc and pc′ describe the flow of
execution taken by a concrete input vector, which took an
infeasible path with respect to the current target branch. To

generate input values which take the execution ‘closer’ to
the target branch in terms of the control flow graph, the
binary comparison operator (i.e. =, #=) of the last constraint
in pc′ must be inverted.

From this updated pc′ AUSTIN generates an equivalence
graph of symbolic variables, which is used to solve pointer
constraints. The equivalence relationship between symbolic
variables is defined by the ‘=’ operators in pc′. The nodes
of the graph represent abstract pointer locations, with node
labels representing the set of symbolic variables which
point to those locations. Edges between nodes represent
inequalities.

The graph is built up incrementally as the search proceeds
(i.e. with every invocation of the solvePC procedure), and
always contains a special node to represent the constant null.
For each constraint ci in pc′, the symbolic variables involved
in ci are extracted. Note that because every symbolic variable
is also mapped to a concrete variable, runtime information
from concrete executions can be used to resolve aliases
between symbolic variables. AUSTIN then checks if the
symbolic variables are already contained within the nodes
of the equivalence graph. If they are not, a new node for
each ‘missing’ symbolic variable is added to the graph.

Given the node(s) representing the symbolic variables in
ci, AUSTIN checks for satisfiability of ci. If the symbolic
variables in ci all belong to the same node, and the binary
operator in ci denotes an inequality, the constraint is infea-
sible. Similarly, if the symbolic variables belong to different
nodes connected by an edge, and the binary operator in ci
denotes an equality, the constraint is also infeasible. Given
an infeasible constraint, AUSTIN is forced to perform a
global random restart, with the hope of traversing a different
path through the program. The expectation is that a new path
will result in a solvable pc′.

For each feasible constraint in pc′, AUSTIN updates the
equivalence graph by either adding nodes, adding edges, or
merging (unconnected) nodes. Whenever an edge is added
between two nodes where neither node labels contain the
constant null, for example to capture the constraint x #= y,
an edge is added from each of the nodes to the node for
null.

The final step of the algorithm is to derive concrete pointer
inputs from the equivalence graph. For every node n in
the graph AUSTIN checks if it has an edge to the node
for the constant null. If no edge exists, all concrete inputs
represented by the symbolic variables in n are assigned
null. Otherwise AUSTIN does the following: if a node n
represents the address of another symbolic variable s, all
concrete pointer inputs represented by the labels of n are
assigned the address of the concrete variable represented
by s. Otherwise, a new memory location is created via
malloc, and each concrete pointer input represented by
the labels of n are assigned that memory location.

IV. ETF
The ETF was developed as part of the multidisciplinary

European Union–funded research project EvoTest [9] (IST-
33472), applying evolutionary algorithms to the problem of
testing software systems. It supports both black–box and
white–box testing and represents the state–of–the–art for
automated evolutionary structural testing. The framework
is specifically targeted for use within industry, with much
effort spent on scalability, usability and interface design.
It is provided as an Eclipse plug-in, and its white–box
testing component is capable of generating test cases for
single ANSI C functions. A full description of the system
is beyond the scope of this document and the interested
reader is directed towards the EvoTest web page located at
www.evotest.eu.

At its core, the ETF contains a user configurable evo-
lutionary engine, which has been integrated from the
GUIDE [27] project. The framework also implements
a subset of the approach introduced by Prutkina and
Windisch [28] to handle pointers and data structures. It
maintains different pools of variables, which are used as the
target of pointers and whose values are optimized by the
evolutionary search. Each pool contains a subset of global
variables and formal parameters of the function under test,
and all variables in a given pool are of the same type. In
addition, for parameters denoting a pointer to a primitive
type or data structure, the ETF creates a temporary variable
whose type matches the target type of the pointer. These
temporary variables are also added to the pools.

Each variable in a pool is assigned an index in the range
0, ..., n− 1, where n is the size of its pool (i.e., the number
of variables in that pool). The individual (chromosome)
describing a pointer input to the function under test contains
two fields; one denoting an index and the other a value. The
index is used to select a variable from the (correct) pool
whose address is used as the target for the pointer input. Note
that an index may be negative to denote the constant null. If
the index corresponds to one of the temporary variables, the
value field is used to instantiate that variable. In this way the
ETF is able to generate pointers initialised to null, pointers
to primitive types and pointers to simple data structures (i.e.
not containing any pointer members). However the approach
does not extend to pointers to recursive types, such as lists,
trees and graphs.

V. EMPIRICAL STUDY
The objective of the empirical study was to investigate

the effectiveness and efficiency of AUSTIN when compared
to a state–of–the art evolutionary testing system (the ETF).
The study consisted of 8 C functions that are summarised
in Table I. They were taken from three embedded software
modules and had been selected by Berner & Mattner Sys-
temtechnik GmbH to form part of the evaluation of the
ETF within the EvoTest [9] project. The functions had been

Table I
CASE STUDIES. LOC REFERS TO THE TOTAL PREPROCESSED LINES OF
C SOURCE CODE CONTAINED WITHIN THE CASE STUDIES. THE LOC

HAVE BEEN CALCULATED USING THE CCCC TOOL [29] IN ITS DEFAULT
SETTING.

Case LOC Functions Software
Study Tested Module

B 18, 200 02, 03, 06 Adaptive headlight control
C 7, 449 07, 08, 11 Door lock control
D 8, 811 12, 15 Electric window control

Table II
TEST SUBJECTS. THE LOC HAVE BEEN CALCULATED USING THE CCCC

TOOL [29] IN ITS DEFAULT SETTING. THE NUMBER OF INPUT
VARIABLES COUNTS THE NUMBER OF INDEPENDENT INPUT VARIABLES
TO THE FUNCTION, i.e., THE MEMBER VARIABLES OF DATA STRUCTURES

ARE ALL COUNTED INDIVIDUALLY.

Obfuscated LOC Branches Nesting # Inputs Pointer
Function Level Inputs

Name
02 919 420 14 80 no
03 259 142 12 38 no
06 58 36 6 14 no
07 85 110 11 27 yes
08 99 76 7 29 yes
11 199 129 4 15 yes
12 67 32 9 3 no
15 272 216 4 28 yes

chosen to provide a representative sample of real world
automotive code, with particular attention paid to the number
of branches and nesting level. Table II gives a breakdown
of relevant metrics for the selected functions.
Effectiveness of AUSTIN
In order to investigate the effectiveness of AUSTIN com-
pared to the ETF we formulated the following null and
alternate hypotheses:

H0 : AUSTIN is as effective as the ETF in achieving
branch coverage.
HA : AUSTIN is more effective than the ETF in achieving
branch coverage.

Efficiency of AUSTIN
Alongside coverage, efficiency is also of paramount impor-
tance especially in an industrial setting. To compare the
efficiency of AUSTIN (in terms of fitness evaluations) to the
ETF, we formulated these null and alternative hypotheses:

H0 : AUSTIN is equally as efficient as the ETF in achieving
branch coverage of a function.
HA : AUSTIN is more efficient than the ETF in achieving
branch coverage of a function.

A. Experimental Setup
The data for the experiments with the ETF on the func-

tions listed in Table II had already been collected for the

evaluation phase of the EvoTest project [9]. This section
serves to describe how the ETF had been configured and
how AUSTIN was adapted to ensure as fair a comparison
as possible between AUSTIN and the ETF.

Every branch in the function under test was treated
as a goal for both the ETF and AUSTIN. The order in
which branches are attempted differs between the two tools.
AUSTIN attempts to cover branches in level-order of the
Control Flow Graph (CFG), starting from the exit node,
while the ETF attempts branches in level-order of the CFG
starting from the entry node. In both tools, branches that are
covered serendipitously while attempting a goal are removed
from the list of goals. The fitness budget for each tool was
set to 10, 000 evaluations per branch.

The ETF supports a variety of search algorithms. For the
purpose of this study, the ETF was configured to use a
Genetic Algorithm (GA) whose parameters were manually
tuned to provide a good set which was used for all eight
functions. The GA was set up to use a population size of
200, deploy strong elitism as its selection strategy, use a
mutation rate of 1% and a crossover rate of 100%.

The ETF also provides the option to reduce the size of
the search space for the GA by restricting the bounds of
each input variable, or even completely excluding variables
from the search. Reducing the size of the input domain will
improve the efficiency of search–based testing [30]. The
input domain reduction in the ETF is a manual process
and was carried out by members of the EvoTest project
for each of the eight functions. AUSTIN was configured
to apply the same input domain reduction in order to ensure
a fair comparison. Finally, due to the stochastic nature of
the algorithms used in both tools, each tool was applied 30
times to each function.

B. Evaluation
Effectiveness of AUSTIN. Figure 2 shows the level of

coverage achieved by both the ETF and AUSTIN with error
bars in each column indicating the standard error of the
mean. The results provide evidence to support the claim
that AUSTIN can be equally effective in achieving branch
coverage than the more complex search algorithm used as
part of the ETF. In order to test the first hypothesis, a test for
statistical significance was performed to compare the cover-
age achieved by each tool for each function. A two–tailed
test was chosen such that reductions in the branch coverage
achieved by AUSTIN compared with the ETF could also be
tested. Since the samples were often distinctly un–normally
distributed and possessed heterogeneous variances and skew,
the samples were first rank–transformed as recommended by
Ruxton [31]. Then a two–tailed t–test for unequal variances
with (p ≤ 0.05) was carried out on the ranked samples. The
two–tailed t-test was used instead of the Wilcoxon–Mann–
Whitney test because the latter is sensitive to differences in
the shape and variance of the distributions.

Figure 2. Average branch coverage of the ETF versus AUSTIN. The
y − axis shows the coverage achieved by each tool in percent, for each
of the functions shown on the x− axis. The error bars show the standard
error of the mean. Bars with a ∗ on top denote a statistically significant
difference in the mean coverage (p ≤ 0.05).

As shown in Figure 2 and detailed in Table III, AUSTIN
delivered a statistically significant increase in coverage for
functions 02 and 12. For function 08 AUSTIN achieved
a statistically significant lower branch coverage than ETF
(82.9% vs. 85.5%, t(58) = Inf). For all other functions, the
null–hypothesis that the coverage achieved by the two tools
comes from the same population was not rejected.

Function 08 is interesting because it is the only function
for which AUSTIN performs significantly worse than the
ETF. Therefore the results were analysed in more detail.
The first point of interest was the constant number of
fitness evaluations AUSTIN used during the 30 runs of
this function. This can only occur in one of two cases: 1)
AUSTIN is able to find a solution for each target branch
from its initial starting point, and the starting points are all
equidistant from the global optima; 2) for all targets which
require AUSTIN to perform a random restart, it fails to find a
solution, i.e., the random restart has no effect on the success
of AUSTIN. In this case it will continue until its fixed limit
of fitness evaluations has been reached. For function 08 the
latter case was true.

Analysing AUSTIN’s coverage for function 08 revealed
that it was unable to cover thirteen branches. These branches
were guarded by a ‘hard to cover’ condition. Manual anal-
ysis showed that the difficult condition becomes feasible
when traversing only two out of 63 branches prior to it.
The other 61 branches lead to a ‘killing’ assignment to
the input variable, whose value is checked in the difficult
guarding condition. The paths which contain one of the two
branches, which make the difficult condition feasible, are
themselves hard to cover. To check if AUSTIN’s failure was
due to the inherent difficulty of the problem or, because
not enough resources had been allocated, we repeated 30

Figure 3. Average branch coverage of random search versus AUSTIN. The
y − axis shows the coverage achieved by each tool in percent, for each
of the functions shown on the x− axis. The error bars show the standard
error of the mean. Bars with a ∗ on top denote a statistically significant
difference in the mean coverage (p ≤ 0.05).

runs for AUSTIN for function 08, this time without any
input domain reduction, and a fitness budget of 100, 000
evaluations per branch. The results show that, given this
larger fitness budget, AUSTIN is on average able to cover
97.60% of the branches. This is a marked increase from
the average coverage of 82.89% shown in Figure 2. We
could not repeat the experiments for the ETF with the
extended fitness budget of 100, 000 evaluations per branch,
because the fitness budget of 10, 000 evaluations per branch
is currently hard coded in the ETF, and we do not have
access to its source code. Therefore it is not possible to say
how the ETF would have performed given a larger fitness
budget.
Efficiency of AUSTIN. Figure 4 shows the average number
of fitness evaluations used by both ETF and AUSTIN when
trying to achieve coverage of each function. In order to
test the second hypothesis, a two–tailed test for statistical
significance was performed to compare the mean number of
fitness evaluations used by each tool to cover each function.
Since the difference in achieved coverage between the two
tools was generally very small, it was neglected when
comparing their efficiency. A two–tailed test was carried out
to also test for functions in which AUSTIN’s efficiency was
worse than that of the ETF. The distributions of the samples
were sufficiently normal (as determined by bootstrap re–
sampling each sample–pair over 1000 iterations and visual
inspection of the resulting distribution of mean values) to
proceed with a two–tailed t–test for unequal variances on
the raw un–ranked samples (p ≤ 0.05).

As shown in Figure 4, AUSTIN delivered a statistically
significant increase in efficiency compared with the ETF
for functions 03, 06, 07, 11, 12, 15. For functions 02 and
08, AUSTIN used a statistically significant larger number of

Table III
SUMMARY OF FUNCTIONS WITH A STATISTICALLY SIGNIFICANT DIFFERENCE IN THE BRANCH COVERAGE ACHIEVED BY AUSTIN AND THE ETF.

THE COLUMNS STDDEV INDICATE THE STANDARD DEVIATION FROM THE MEAN FOR ETF AND AUSTIN. THE T VALUE COLUMN SHOWS THE
DEGREES OF FREEDOM (VALUE IN BRACKETS) AND THE RESULT OF THE T–TEST. A P VALUE OF LESS THAN 0.05 MEANS THERE IS A STATISTICALLY

SIGNIFICANT DIFFERENCE IN THE MEAN COVERAGE BETWEEN ETF AND AUSTIN.

Function Coverage StdDev (%) Coverage StdDev (%) t value p
ETF (%) AUSTIN (%)

02 91.15 0.09 91.81 0.42 t(58) = 7.15 1.6 · 10−9

08 85.53 0.00 82.89 0.00 t(58) = Inf 0
12 98.48 1.76 100.0 0.00 t(63) = 4.93 6.3 · 10−6

Figure 4. Average number of fitness evaluations (normalised) for ETF
versus AUSTIN. The y − axis shows the normalised average number of
fitness evaluations for each tool relative to the ETF (shown as 100%) for
each of the functions shown on the x − axis. The error bars show the
standard error of the mean. Bars with a ∗ on top denote a statistically
significant difference in the mean number of fitness evaluations (p ≤ 0.05).

evaluations to achieve its respective level of branch coverage.
The results are summarised in Table IV.
Comparison with random search. As a sanity check, the
efficiency and effectiveness of AUSTIN was also compared
with a random search. Since the random search was per-
formed using the ETF, the same pointer handling technique
and input domain reduction were applied as described in
Sections IV and V-A respectively. For each branch the
random search was allowed at most 10, 000 evaluations. Any
branches covered serendipitously by random during the test
testing process were counted as covered and removed from
the pool of target branches.

The coverage data is presented in Figure 3 and effi-
ciency in Figure 5. Results show that, using the same
tests for statistical significance as described in the previous
paragraphs, AUSTIN covers statistically significantly more
branches than random for functions 02, 03, 07, 11 and 12.
For functions 06 and 15 there is no statistically significant
difference in coverage, while for function 08, AUSTIN per-
forms statistically significantly worse than random. Recall
though, that given a larger fitness budget as mentioned

Figure 5. Average number of fitness evaluations (normalised) for random
versus AUSTIN. The y − axis shows the normalised average number of
fitness evaluations for each tool relative to the random search (shown as
100%) for each of the functions shown on the x−axis. The error bars show
the standard error of the mean. Bars with a ∗ on top denote a statistically
significant difference in the mean number of fitness evaluations (p ≤ 0.05).

above, AUSTIN is able to achieve a higher coverage for
function 08 than the one shown in Figures 2 and 3.

Comparing AUSTIN’s efficiency with that of a random
search, AUSTIN is statistically significantly more efficient
than random for functions 02, 03, 07, 11, 12 and 15. For
function 06 we cannot say that either random or AUSTIN is
more efficient, while for function 08 random is statistically
significantly more efficient than AUSTIN.

C. Threats to Validity
Naturally there are threats to validity in any empirical

study such as this. This section provides a brief overview of
the threats to validity and how they have been addressed.
The paper studied two hypotheses; 1) that AUSTIN is
more effective than the ETF in achieving branch coverage
of the functions under test and 2) that AUSTIN is more
efficient than the ETF. Whenever comparing two different
techniques, it is important to ensure that the comparison is
as reliable as possible. Any bias in the experimental design
that could affect the obtained results poses a threat to the
internal validity of the experiments. One potential source
of bias comes from the settings used for each tool in the

Table IV
SUMMARY OF FUNCTIONS WITH STATISTICALLY SIGNIFICANT DIFFERENCES IN THE NUMBER OF FITNESS EVALUATIONS USED. THE COLUMNS

STDDEV INDICATE THE STANDARD DEVIATION FROM THE MEAN FOR ETF AND AUSTIN. THE T VALUE COLUMN SHOWS THE DEGREES OF FREEDOM
(VALUE IN BRACKETS) AND THE RESULT OF THE T–TEST. A P VALUE OF LESS THAN 0.05 MEANS THERE IS A STATISTICALLY SIGNIFICANT

DIFFERENCE IN THE MEAN NUMBER OF FITNESS EVALUATIONS BETWEEN ETF AND AUSTIN.

Function Evals StdDev (%) Evals StdDev (%) t value p
ETF (%) AUSTIN (%)

02 100 1.90 108.78 0.08 t(58) = 7.67 2.20 · 10−10

03 100 11.14 84.23 6.18 t(58) = 7.00 2.00 · 10−9

06 100 24.76 86.94 23.42 t(58) = 2.10 0.04
07 100 52.40 54.09 6.04 t(63) = 4.79 1.00 · 10−5

08 100 5.97 113.10 0.00 t(58) = 9.11 8.70 · 10−13

11 100 6.90 85.58 15.79 t(58) = 4.41 4.49 · 10−5

12 100 78.33 25.25 19.48 t(63) = 5.13 3.02 · 10−6

15 100 3.03 93.55 0.90 t(58) = 9.22 5.80 · 10−13

experiments, and the possibility that the setup could have
favoured or harmed the performance of one or both tools.

The experiments with the ETF had already been com-
pleted as part of the EvoTest project, thus it was not possible
to influence the ETF’s setup. It had been manually tuned
to provide the best consistent performance across the eight
functions. Therefore, care was taken to ensure AUSTIN was
adjusted as best as possible to use the same settings as the
ETF.

Another potential source of bias comes from the inherent
stochastic behaviour of the meta–heuristic search algorithms
used in AUSTIN and the ETF. The most reliable (and widely
used) technique for overcoming this source of variability is
to perform tests using a sufficiently large sample of result
data. In order to ensure a large sample size, experiments
were repeated at least 30 times. To check if one technique
is superior to the other a test for a statistically significant
difference in the mean of the samples was performed. Care
was taken to examine the distribution of the data first, in
order to ensure the most robust statistical test was chosen to
analyse the data.

A further source of bias includes the selection of the
functions used in the empirical study, which could poten-
tially affect its external validity, i.e. the extent to which
it is possible to generalise from the results obtained. The
functions used in the study had been selected by Berner
& Mattner Systemtechnik GmbH on the basis that they
provided interesting and worthwhile candidates for auto-
mated test data generation. Particular attention was paid to
the number of branches each function contained, as well
as the maximum nesting level of if statements within a
function. Finally, all the functions from the study contain
machine generated code only. While the overall number of
branches provides a large pool of results from which to make
observations, the number of functions itself is relatively
small. Therefore, caution is required before making any
claims as to whether these results would be observed on
other functions, in particular hand written code.

VI. CONCLUSION

This paper has introduced and evaluated the AUSTIN
tool for search–based software testing. AUSTIN is a free,
publicly available tool for search–based test data generation.
It uses an alternating variable method, augmented with a
set of simple constraint solving rules for pointer inputs to
a function. Test data is generated by AUSTIN to achieve
branch coverage for large C functions. In a comparison with
the ETF, a state–of–the–art evolutionary testing framework,
AUSTIN performed as effectively and considerably more
efficiently than the ETF for 7 out of 8 non–trivial C
functions, which were implemented using code–generation
tools.

ACKNOWLEDGMENT

We would like to thank Bill Langdon for his helpful
comments and Arthur Baars for his advice on the Evolu-
tionary Testing Framework. Kiran Lakhotia is funded by
EPSRC grant EP/G060525/1. Mark Harman is supported by
EPSRC Grants EP/G060525/1, EP/D050863, GR/S93684 &
GR/T22872 and also by the kind support of Daimler Berlin,
BMS and Vizuri Ltd., London.

REFERENCES

[1] W. Miller and D. L. Spooner, “Automatic Generation of
Floating-Point Test Data,” IEEE Transactions on Software
Engineering, vol. 2, no. 3, pp. 223–226, September 1976.

[2] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas,
and K. Karapoulios, “Application of Genetic Algorithms
to Software Testing,” in Proceedings of the 5th Interna-
tional Conference on Software Engineering and Applications,
Toulouse, France, 7-11 December 1992, pp. 625–636.

[3] B. Korel, “Automated software test data generation,” IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp.
870–879, 1990.

[4] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed
automated random testing,” ACM SIGPLAN Notices, vol. 40,
no. 6, pp. 213–223, Jun. 2005.

[5] C. Cadar and D. R. Engler, “Execution generated test cases:
How to make systems code crash itself,” in Model Checking
Software, 12th International SPIN Workshop, San Francisco,
CA, USA, August 22-24, 2005, Proceedings, vol. 3639.
Springer, 2005, pp. 2–23.

[6] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for C,” in ESEC/SIGSOFT FSE. ACM, 2005.

[7] N. Tillmann and J. de Halleux, “Pex-white box test generation
for.NET,” in TAP, B. Beckert and R. Hähnle, Eds., vol. 4966.
Springer, 2008, pp. 134–153.

[8] K. Lakhotia, P. McMinn, and M. Harman, “Automated Test
Data Generation for Coverage: Haven’t We Solved This Prob-
lem Yet?” in 4th Testing Academia and Industry Conference
- Practice and Research Techniques, 2009, pp. 95–104.

[9] H. Gross, P. M. Kruse, J. Wegener, and T. Vos, “Evolution-
ary white-box software test with the evotest framework: A
progress report,” in ICSTW ’09, Washington, DC, USA, 2009,
pp. 111–120.

[10] Radio Technical Commission for Aeronautics, “RTCA
DO178-B Software considerations in airborne systems and
equipment certification,” 1992.

[11] M. Harman and J. Clark, “Metrics are fitness functions too,”
in 10th International Software Metrics Symposium (MET-
RICS 2004). Los Alamitos, California, USA: IEEE Computer
Society Press, Sep. 2004, pp. 58–69.

[12] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, Jun. 2004.

[13] E. Alba and F. Chicano, “Observations in using Parallel and
Sequential Evolutionary Algorithms for Automatic Software
Testing,” Computers & Operations Research, vol. 35, no. 10,
pp. 3161–3183, October 2008.

[14] ——, “Software Testing with Evolutionary Strategies,” in
Proceedings of the 2nd Workshop on Rapid Integration of
Software Engineering Techniques (RISE ’05), vol. 3943. Her-
aklion, Crete, Greece: Springer, September 2005, pp. 50–65.

[15] R. Sagarna, A. Arcuri, and X. Yao, “Estimation of Distri-
bution Algorithms for Testing Object Oriented Software,” in
Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC ’07). Singapore: IEEE, 25-28 September 2007,
pp. 438–444.

[16] R. Blanco, J. Tuya, E. Daz, and B. A. Daz, “A Scatter Search
Approach for Automated Branch Coverage in Software Test-
ing,” International Journal of Engineering Intelligent Systems
(EIS), vol. 15, no. 3, pp. 135–142, September 2007.

[17] R. Sagarna, “An Optimization Approach for Software Test
Data Generation: Applications of Estimation of Distribution
Algorithms and Scatter Search,” Ph.D. dissertation, University
of the Basque Country, San Sebastian, Spain, January 2007.

[18] R. Lefticaru and F. Ipate, “Functional Search-based Testing
from State Machines,” in Proceedings of the First Interna-
tional Conference on Software Testing, Verfication and Vali-
dation (ICST 2008). Lillehammer, Norway: IEEE Computer
Society, 9-11 April 2008, pp. 525–528.

[19] A. Windisch, S. Wappler, and J. Wegener, “Applying Particle
Swarm Optimization to Software Testing,” in Proceedings
of the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO ’07). London, England: ACM, 7-11
July 2007, pp. 1121–1128.

[20] E. Dı́az, J. Tuya, R. Blanco, and J. J. Dolado, “A Tabu Search
Algorithm for Structural Software Testing,” Computers &
Operations Research, vol. 35, no. 10, pp. 3052–3072, October
2008.

[21] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-
Walawege, “A systematic review of the application and empir-
ical investigation of search-based test-case generation,” IEEE
Transactions on Software Engineering, To appear.

[22] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, vol. 19, no. 7, pp. 385–394, Jul.
1976.

[23] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, vol. 43, no. 14, pp. 841–854, 2001.

[24] Free Software Foundation, “Gcc, the gnu compiler
collection,” 2009. [Online]. Available: http://gcc.gnu.org/

[25] K. Lakhotia, M. Harman, and P. McMinn, “Handling dynamic
data structures in search based testing,” in GECCO ’08:
Proceedings of the 10th annual conference on Genetic and
evolutionary computation. Atlanta, GA, USA: ACM, 12-16
Jul. 2008, pp. 1759–1766.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs,” Lecture Notes in Computer Science, vol.
2304, pp. 213–228, 2002.

[27] L. D. Costa and M. Schoenauer, “Bringing evolutionary
computation to industrial applications with GUIDE,” 2009.

[28] M. Prutkina and A. Windisch, “Evolutionary Structural Test-
ing of Software with Pointers,” in Proceedings of 1st Interna-
tional Workshop on Search-Based Software Testing (SBST) in
conjunction with ICST 2008. Lillehammer, Norway: IEEE,
9-11 April 2008, pp. 231–231.

[29] T. Littlefair, “An Investigation Into The Use Of Software
Code Metrics In The Industrial Software Development En-
vironment,” Ph.D. dissertation, Faculty of computing, health
and science, Edith Cowan University, Australia, 2001.

[30] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. We-
gener, “The impact of input domain reduction on search-based
test data generation,” in ESEC/SIGSOFT FSE, I. Crnkovic and
A. Bertolino, Eds. ACM, 2007, pp. 155–164.

[31] G. D. Ruxton, “The unequal variance t-test is an underused
alternative to Student’s t-test and the Mann-Whitney U test,”
Behavioral Ecology, vol. 17, no. 4, pp. 1045–2249;1465–
7279, Jul 2006.

