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Abstract This article introduces the application of Equivalence Hypothesis Test-
ing (EHT) into the Empirical Software Engineering field. Equivalence (also known
as bioequivalence in pharmacological studies) is a statistical approach that answers
the question ‘is product T equivalent to some other reference product R within
some range ∆?’. The approach of “null hypothesis significance test” used tradi-
tionally in Empirical Software Engineering seeks to assess evidence for differences
between T and R, not equivalence.

In this paper we explain how EHT can be applied in Software Engineering,
thereby extending it from its current application within pharmacological studies,
to Empirical Software Engineering. We illustrate the application of EHT to Empir-
ical Software Engineering, by re-examining the behaviour of experts and novices
when handling code with side effects compared to side effect free code; a study pre-
viously investigated using traditional statistical testing. We also review two other
previous published data of software engineering experiments: a dataset compared
the comprehension of UML and OML specifications and the last dataset studied
the differences between the specification methods UML-B and B.

The application of EHT allows us to extract additional conclusions to the
previous results. EHT has an important application in Empirical Software Engi-
neering, which motivate its wider adoption and use: EHT can be used to assess
the statistical confidence with which we can claim that two software engineering
methods, algorithms of techniques are equivalent.

The data, R scripts and other information is available at
http://www.sc.ehu.es/jiwdocoj/eht/eht.htm.
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1 Introduction

One of the main concerns in any experimental or empirical research work is to pro-
vide evidence that the conclusions we infer from the quantitative data obtained in
experimentation are valid and of practical use. The goal of any statistical proce-
dure in empirical research is to seek to exclude chance from the conclusions that
will be attributed to the substantial hypotheses on which we base our scientific
claims.

The approach that is usually followed in empirical software engineering exper-
iments takes the form of testing, by some statistical procedure, the null difference
between the means of two populations: µT , the mean of the new treatment, and µR,
the mean of reference. This is called “Null Hypothesis Significance Test” (NHST).

The goal is to be in a position to reject the hypothesis of no difference H0, in
order to accept the alternative hypothesis of difference, Ha, i.e.:

H0 : µT − µR = 0
Ha : µT − µR 6= 0 for the two-tailed test

(1)

The reasoning process is based on the standard theories of Fisher and Neyman-
Pearson. For accepting or rejecting H0, software engineers use the p-value of the
test and typically seek to reduce the chances of committing so-called Type I and
Type II errors. The original null hypotheses of Fisher and the two other authors
Neyman and Pearson have different interpretations concerning the burden of proof
relating to the p-value or the Type I or II errors. The general procedure (occasion-
ally mixing both approaches) has been followed with increasing frequency, and
perhaps with a certain degree of ritual, in the Empirical Software Engineering
literature.

In this paper we present the rationale for an alternative method to Null Hy-
pothesis Significance Test (NHST) called Equivalence Hypothesis Testing (EHT).
Our goal is not to replace the use of NHST. Rather, we wish to introduce to the
Empirical Software Engineering community the concepts and practice of EHT,
which is currently more widely seen in pharmacological studies (where it is often
referred to as the ‘bioequivalence testing’ since it assesses the evidence that one
drug treatment has equivalent biological effects to another). Our motivation for
introducing EHT is twofold:

1. To Complement NHST: Where we have evidence from NHST that two popu-
lations of results are different, we can use this to assert that we have statistical
evidence for scientific claims about the populations. However, EHT allows us
to explore the results in more detail. It gives us additional insights into the
effect size and the confidence with which we may assert differences over ranges
of effect size, by examining the equivalence intervals. This is often important
because knowing that two software engineering methods behave differently is
only a starting point for actionable results; we also need to know, for example,
how confident we can be that the effect size is worthy of action.
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2. To answer Equivalence questions NHST cannot address: In software engineer-
ing empirical studies, we often would like to explore the confidence with which
we can claim that two software engineering methods, algorithms or techniques
are equivalent. For example, suppose we have two test data generation tech-
niques (Lakhotia et al, 2009). We may believe that one achieves better test
effectiveness for the same effort. We therefore would like to provide evidence
to support our claim that the two techniques require equivalent effort. Alter-
natively, in source code analysis (Harman, 2010), we may have a performance
improvement for some algorithm and we wish to show that the performance
improvement does not affect the algorithm’s precision. That is we wish to
show that the two versions of the algorithms have ‘equivalent precision’. In
these situations authors are often tempted to use NHST to explore equiva-
lence. However, failing to reject the null hypothesis in NHST is most definitely
not the same as demonstrating equivalence; absence of proof (of difference) is
not proof of absence.

In this paper we introduce EHT for empirical software engineers and explain
how it can be used in Experimental Software Engineering work. As with NHST,
the application of EHT to human-based empirical studies requires more care and
attention because of the learning effects and other confounding factors that can
affect the results of human studies. Fortunately, EHT is well-understood from its
application to biological (pharmacological) studies where these issues are unavoid-
able. Therefore, there is a wealth of accumulated knowledge on which we can draw
when extending EHT testing to empirical software engineering.

In order to illustrate the application of EHT in Experimental Software En-
gineering, we chose a study of a software engineering problem that involved the
performance of human subjects in cognitive tasks, since this exposes more of these
issues. We also chose to study a problem for which EHT is used as a complement
to NHST, since this will be the starting point for many software engineers who
are already familiar with NHST.

Thus, our illustration of EHT represents the more demanding case; the one
that requires most additional statistical care and attention and ‘due diligence’
requirements on the experimentors. For those software engineers interested in using
EHT to test equivalence of algorithms (where no humans involved), the techniques
can be used with fewer additional requirements, making it simpler and easier to
use EHT for Experimental Software Engineering.

The rest of this paper is organised as follows. Section 2 introduces EHT for
software engineers. Section 3 shows how to apply the EHT methods to software
engineering problems. Section 4 details the type of experimental designs that can
be used for EHT where human subjects are involved. Section 5 discusses the is-
sue of sample size. Section 6 presents the analysis of the program comprehension
experiment as an illustration of EHT for Empirical Software Engineering. Section
7 shows the application of EHT to two additional research problems and Section
8 discusses related work on the use of NHST and EHT. Finally, the Conclusions
state the benefits obtained through the analysis of the data by EHT.
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2 Equivalence Hypothesis Testing

Different terms are used for ‘equivalence’ in statistical procedures, such as bioe-
quivalence, parity, equality and similarity. They are used for describing a situation
in which two variables differ by less than a predetermined range (Ennis and Ennis,
2010). When comparing experimental data of two samples T and R, we may per-
form statistical tests for differences (NHST), for equivalence and for non-inferiority.
In NHST, when we perform a difference test on a data set the result can be that
we do not reject the null hypothesis of ‘no difference’ or that the H0 is rejected.
In the last situation the new treatment T can be better or worse than R.

Equivalence analysis differs from the classic t-test, partly because the goal is to
establish whether the two treatments are the same. The null hypothesis is therefore
that the mean responses are different and the alternative hypothesis is that the
mean responses are equivalent. This way of proceeding is the opposite of the more
usually applied null hypothesis of NHST. In EHT the parameters α (the Type I
error), β (the Type II error) and the statistical power of NHST are also used, but
with different meaning.

Bioequivalence is the application of EHT ideas in the pharmaceutical field,
where the usual aim is to compare the effect of two drugs, one being a generic
product considered for introduction as a cheaper replacement for another, more
expensive, proprietary drug. The goal of bioequivalence testing is to determine
whether the new generic drug, T , can replace the existing drug R. It is advisable,
therefore, to administer either the product or the treatment to the same subjects.

The literature in bioequivalence speaks about superiority trials when the aim
is to check whether a new treatment is better than the reference treatment, by
using the NHST superiority tests, which correspond to equations (1) in Section 1.
In a noninferiority trial (NIHT), the research question is whether T is no worse
than a reference treatment R (Piaggio et al, 2006). Usually, a value ∆ is set for
allowing small differences to the reference treatment. In a non-inferiority test the
null and alternative hypotheses are

H0 : µT − µR ≤ ∆
Ha : µT − µR > ∆

(2)

where ∆ determines the range within which we consider that treatment of
method T is noninferior to R.

Equivalence trials are similar to noninferiority but the equivalence is defined
between an interval +∆ and −∆ (Wellek, 2010). The null and alternative hypothe-
ses are expressed as

H0 : |µT − µR| ≥ ∆
Ha : |µT − µR| < ∆

(3)

where ∆ determines the range within which we consider that treatment of
method T is equivalent to R.1

Figure 1 shows the results that can be observed after the comparison of meth-
ods T and R, plotting the possible situations of the confidence intervals with

1 Although it is a rare situation, it is feasible to test for equivalence with the null hypothesis
as H0 : |µT − µR| ≤ ∆. However, this procedure is rarely used in practice, since it does not
allow to control for the “risk of the consumer” (Hauschke et al, 2007, pp. 45-46) therefore
rendering the testing for equivalence useless. See (McBride, 2005, section 5.3) and (Cole and
McBride, 2004) for the practical consequences of this approach.
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Fig. 1 Forest plot of the possible confidence intervals (CIs) A to J , with reference to the
interval equivalence ±∆. The intervals A to J can be computed also for noninferior analysis.
The dotted intervals K to M are the possible CIs in NHST.

respect to ∆. For illustration, the value of the interval ∆ is set between ±20% and
±50% around the null difference of the means, µT −µR, but its actual value must
be set by the experimentor.

When applied to pharmacological studies, the Type I error (falsely rejecting
H0 when it is, in fact true, P (reject H0|H0)) is controlled by α and is referred
to as the “risk of the consumer”, since it represents the risk of taking a drug
or undergoing a treatment believed to be equivalent, when in fact it is not. The
Type II error (falsely accepting H0) is controlled by β, P (not reject H0|Ha), and
is referred to as the “risk of the producer” since the commercial firm may fail to
recoup investment by deciding not to produce a drug, despite it actually being
equivalent to the reference; Power is P (accept Ha|Ha). The values of α and β
represent the risks that the consumer and producer, respectively, are willing to
take. For instance, should we decide to set α to be 0.1 then we assume that we
may be using a method or product that we believe to be equivalent, when in fact
it is not equivalent 1 in 10 times. If we set β at 0.2 we assume that we may be
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using a method or product that we believe it is inequivalent, when in fact it is
equivalent 2 in 10 times.

In EHT the goal is to check whether a method T is equivalent to R within
a range ∆. Similarly to NHST, confidence intervals can be computed for testing
equivalence or, alternatively, two simultaneous one-side tests can be used. The im-
plications of these tests are presented in Table 1, which considers both NHST and
EHT. Figure 1 shows the different possibilities and decisions based on our equiv-
alence hypotheses. For example, segment C in the figure represents a confidence
interval for the mean differences between T and R which is within the equivalence
interval ∆ and which is also within the range of noninferiority to the reference
R. The same segment C is classified in Table 1 as statistically different since it
does not include the value 0. When using NHST we may obtain the CI L which
does not reject the null hypothesis of non difference, but that would be classified
as “equivalent” since it lies within the limits of the equivalence interval. Figure
1 and Table 1 help to make a decision about the treatment method T versus the
reference method R.

Table 1 Classification of the CIs of Figure 1.

XXXXXXXXEHT
NHST

Statistically Different Statist. Nonsignificant

Statistically Equivalent C, E, K D, L

Statistically Not Equivalent A, B, F, G, M H, I, J

3 Basic Procedures in EHT

There are different methods for testing average equivalence between the difference
of a mean of reference, µR, and a mean of a treatment, µT (Rani and Pargal,
2004) (Ennis and Ennis, 2009) (Chow and Liu, 2009) (Wellek, 2010) (Chen and
Peace, 2011). Most statistical software packages have implementations of these
methods. In the simplest approach they can be categorized as those based on
testing a null hypothesis around an equivalence region and those based on using
confidence intervals. Compared to NHST, the EHT null hypotheses are reversed
and, correspondingly, the burden of the proof, the interpretation of the types of
errors and the parameters (see Table 2).

3.1 Procedures based on Hypothesis testing

The null hypothesis for EHT stated in equation 3 can be made operational in an
interval hypothesis as follows (Chow and Liu, 2009)

H0 : µT − µR ≤ −∆ or µT − µR ≥ +∆
versus
Ha : −∆ < µT − µR < +∆

(4)
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Table 2 Comparison of Type I and II errors in classical NHST, Equivalence (EHT) and
Non-inferiority (NIHT).

Type I error or False
Positive. Reject H0

(α)

Type II error or False
Negative. Not Reject
H0 (β)

Burden of Proof

NHST Concluding that R and
T are different, when in
fact they are not.

Concluding that R and
T are equal when in fact
they are not. The alter-
native hypothesis Ha is
rejected.

The alternative hypoth-
esis of difference of R
and T.

EHT Concluding that R and
T differ by less than ∆
when in fact they differ
by ∆ or more.

Concluding that R and
T are inequivalent in
the interval −∆ and+∆
when in fact they are
equivalent.

The alternative hypoth-
esis of equality by less
than ±∆.

NIHT Concluding that T is
non-inferior to R when
in fact it is inferior.

Concluding that T is in-
ferior to R when in fact
it is non-inferior.

The alternative hypoth-
esis of non-inferiority of
T respect to R by ∆.

The best known procedure for hypothesis testing is known as TOST (two one-
sided t-tests) and is Schuirmann’s proposal (Schuirmann, 1987). It consists of
decomposing H0 into two separate hypothesis and applying t-tests as follows

H01 : µT − µR ≤ −∆ or H02 : µT − µR ≥ +∆
versus
Ha1 : µT − µR > −∆ and Ha2 : µT − µR < +∆

(5)

The procedure tries to reject both H01 and H02 for infering equivalence. Also, as
shown by (Ennis and Ennis, 2009), there is a possibility of directly testing equiv-
alence with only one null hypothesis and other alternative hypothesis. There are
different critics and variations on this type of hypothesis testing and to the differ-
ent methods used (Ennis and Ennis, 2010), but it has been used extensively in the
pharmacological area. Figure 2 shows graphically the two alternative hypothesis
H01 and H02 in TOST versus the alternative Ha (Ha1 and Ha2). The graphs show
the areas corresponding to the parameters α and β/2 used in the significance tests.

3.2 Procedures based on Confidence Intervals

Confidence Intervals (CIs) can also be used for EHT and is the preferred method.
The underlying idea in this procedure is to compute a (1 − 2α)100% statistical
confidence interval around the sample mean differences, µ̄T − µ̄R, and to observe
if it lies within the equivalence region previously defined. One of the basic criteria
for setting the equivalence region is to use 20% around the known reference mean,
µ̄R, implying that the confidence interval for the difference must lie be between
−0.2µ̄R and 0.2µ̄R (see subsection 3.4).

From the practical viewpoint, the use of TOST with an α significance level
is equivalent to using a CI of 1 − 2α (Chow and Liu, 2009). As the CI of the
difference test is (1 − α), it contains the CI of the equivalence (1 − 2α). We can
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Fig. 2 Plot of the TOST and the confidence intervals CI1 and CI2 for the difference of means.

summarize that whilst in NHST the CIs are computed with (1−α), in EHT they
are computed with (1− 2α) and in NIHT they are computed with (1− α/2).

In Figure 2 we see above the TOST two potential CIs and their relationship
to the interval equivalence. Visually, it is easy to spot that, in this case, CI1 is
equivalent and CI2 is not. The CI expresses the confidence level, at a chosen %,
that the computed interval will contain the true value of the difference of the
parameter µT − µR, in the long run. As larger is the confidence level as larger
will be the width of the CI since it has to include a larger set of plausible values.
The most common method used for computing the CIs is the so called “Shortest
Interval”. The limits for the Shortest interval (L, U) for the differences of the
means are computed as

(L,U) = (µT − µR)± t(α, n1 + n2 − 2)σ̂d

√
1

n1
+

1

n2
(6)

where µT and µR are the sample means, σ̂d is an estimation of the intra-subject
variance, n1 and n2 are the number of experimental units in the two groups and
t(α, n1 + n2 − 2) is the percentile of the t-distribution (Chen and Peace, 2011, pp.
263-265). Other usual alternative is to use Westlake intervals, that are symmetric
(Westlake, 1976) but wider than the corresponding Shortest. A recent review of
the different types of equivalence tests can be found in (Meyners, 2012).
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3.3 Meta-analysis and EHT

Meta-analysis is a statistical procedure that allows to integrate the results of a
set of studies related to the matter of interest. This means that, given a series of
experiments related to a subject of interest but separated in space and in time,
such as the effect of a drug in the body, meta-analysis tries to reach a conclusion
about the parameters of interest used in the studies. The goal is to combine the
information for estimating the main values of the measures of effect, called effect
sizes. There are different variables that reflect the effect sizes depending if they
are based on means, proportions or correlation between measures.

In traditional hypothesis testing one of the most common approaches to meta-
analysis uses the means: the inferences are made for the absolute difference of the
means and standardized mean difference and the confidence intervals around the
mean of the whole set of studies are generated.

Similarly to what is done in difference testing, meta-analysis can also be per-
formed with EHT, but there are few works in the literature that deal with the issue.
The known approaches are described in Chapter 16 of (Chow and Liu, 2009). We
use Chow and Liu’s approach by computing the limits of the confidence interval
(1− 2α)100% for equivalence with meta-analysis as follows

(L,U) = d̄∓ t(α,
H∑
h=1

(nh1 + nh2 − 2))

√
V̂ar(d̄) (7)

where d̄ is the combined estimate for µT − µR, and

√
V̂ar(d̄) is an estimate

for the weighted intra-subject variance, being H the number of studies involved in
the computations.

3.4 Limits for Equivalence or Practical Significance

A key element in the application of EHT is the setting of the intervals of equiva-
lence. These levels depend on the field of application and on the type of intervals
that are being computed. Establishing these levels forces the analyst to set the
ranges of practical importance of the differences in their respective field. The de-
cision rule is thus simply to check whether the computed CI is included in the
equivalence range.

The pharmaceutical and medical fields have agreed on different levels that
drugs have to fulfill to be considered equivalent. One of the earliest criterion used
by the FDA, that has already been replaced by the ratio on different measures of
the reference and the treatment, was to use the 20% of the reference means (Chow
and Liu, 2009, p. 602). The European Medicines Agency, and similar regulatory
bodies in the world, have established different levels for establishing the bioequiv-
alence between two drugs (EMA, 2010). These are the leading areas where the
bioequivalence methods have advanced since they are centered on the “risk of the
consumer”. But there are other areas where equivalence limits have been explored
and discussed taking into account the characteristics of the objects under study.
In the ecologial modelling field Robinson and Froese explored different levels for
equivalence using 10%, 25% and 50% relative to the sample standard deviation of
the differences (Robinson and Froese, 2004, p. 355). In (Robinson et al, 2005) the
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authors chose arbitrarily a ∆ of 25% on the measures of interest (intercept and
slope of a regression). In a work in the marine ecology field the limits were set at
50% of the standard deviation from the reference mean (Cole and McBride, 2004).
Since there are no guidelines in our field we will provide two limits at 20% and
at 50% over the means difference. In a recent software engineering study about
traceability recovery (Borg and Pfahl, 2011), the authors chose to use an absolute
interval of 0.05 for their specific analysis, which is not transferable to other settings
(additional comments in Section 8).

4 Experimental Designs for Equivalence Studies Involving Human
Subjects

When comparing a method T respect to another method R, by using two groups
of human subjects, the two basic designs to use are a crossover design and a par-
allel design. In a parallel design the experimental units are split into two groups
and each group receives only one treatment. On the contrary, in a standard 2x2
crossover design, the experimental units receive each treatment, T and R alterna-
tively. The advantages of a crossover study is that each group receives both treat-
ments but in reverse order, i.e, a group receives the sequence of treatments RT
and the other receives the sequence TR. The main benefit from the 2x2 crossover
(RT/TR) is that it allows intra-subject comparison, since each subject receives
both treatments.

The crossover design is the design most used for bioequivalence studies, al-
though a parallel group design can also be preferred in cases of long-life drug
studies. Usually, the researchers want to know if a generic medicine can be ex-
changed by another original specific medicine and, hence, the appropriate design
is a crossover (2 periods and 2 sequences of treatment). Two doses of medicines
are bioequivalent if they produce the same therapeutic effect.

There are several alternative designs such as a three period with two sequences
with replication of R (RTR/TRR) or with replication of T (TRT/RTT), and a
partial-replicate design (TRR/RRT/RTR) with three period with three sequences
(Hyslop and Iglewicz, 2001) (Siqueira et al, 2005). In section 6 we will see that we
have used a standard crossover (RT/TR) since our data fits with the characteristics
of the standard analysis, which is a comparison of methods in which carryover and
period effects may appear. In order to keep the analysis homogeneous, the two
other datasets analysed in this work also use a crossover design (see Section 7).

5 Sample Size

The sample size is an important parameter in both NHST and EHT procedures
because its relationship to power (1 − β), i.e, the ability to correctly reject H0

(or to accept Ha). Sample size increases the precision of the confidence intervals
and the parameters of interest and decreases the amount of the sampling error.
Sample size should be as large as possible in order to maximize power, since α is
fixed. Ideally, the identification of the sample size, the effect size and the desired
power is a requirement before conducting the experiment. However, there are many
circumstances which make it difficult to provide the ideal initial analysis and, in
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practice, one has to deal with less clear situations. In many occasions the sample
size is fixed and/or the effect size has a wide range of variation.

5.1 Sample size for the Equivalence Hypothesis Testing

Computing the sample size for equivalence requires different procedures from the
NHST case (Chow and Wang, 2001). A description of the basic ways of computing
sample size for bioequivalence can be found in (Chow and Liu, 2009). The work of
(Piaggio and Pinol, 2001) describes the use of different parameters for computing
sample size in reproductive health clinical trials and (Stein and Doganaksoy, 1999)
computes sample size for comparing process means. The articles of (Rogers et al,
1993) and (Cribbie et al, 2004) explain how to compute sample size for using the
Schuirmann’s test of equivalence and compare it with the traditional t-test.

Finding the exact sample size in TOST requires the numerical integration of the
t distribution with some specific parameters (see (Chow and Liu, 2009), sec. 5.3).
From (Chow and Liu, 2009) we show here the simplest approach for computing
sample size, which is to take the interval hypothesis (i.e, equations (4) for reference
mean and a 20% interval around it). Power is set at 80%. This sample size can be
computed manually as follows:

ne ≥ [t(α/2, 2n− 2) + t(β, 2n− 2)]2[CV/20]2 (8)

where t(α, ν) is the α-th percentile of a t-distribution with ν degrees of freedom,
being the total number of subjects N = 2n. CV is the coefficient of variation,

defined as CV = 100 ×
√
MSE
µ̄R

and MSE is the mean square error from the
analysis of variance table for the standard 2x2 crossover design. It is evident that
both MSE and µ̄R should be known in advance or a value should be assumed.
Therefore these procedures serve the purpose of verifying the sample size actually
used. Finally the value of ne is computed through iterations until the inequality
is met.

The requirements of sample size are higher in EHT than in NHST, for obtaining
the same power. This behaviour was described by (Siqueira et al, 2005) (Ogung-
benro and Aarons, 2008) (Cribbie et al, 2004) (Tempelman, 2004). (Ogungbenro
and Aarons, 2008) used simulations for determining sample size in the confidence
interval approach to equivalence. (Siqueira et al, 2005) explored a set of sample size
formulas and concluded that when there is high variance a 2x2 crossover requires
large sample sizes to achieve a reasonable power for testing bioequivalence.

In NHST, generally, sample size is directly dependent on power, inversely de-
pendent on significance level and inversely dependent on the absolute differences
of the group means. As lower is the level of significance α, as larger will be the
critical value t(α, ν), therefore increasing the sample size needed. A similar situa-
tion occurs with the parameter β. For obtaining low values on the Type II error,
β, a larger sample size is required. Additionally to those comments, when testing
for equivalence, sample size formulas have to take into account the interval ∆.

A simple comparison of the difference between the two types of computing
sample size, n, can be found in (Stein and Doganaksoy, 1999), where the two
formulas used are:

n =
2σ2(tα/2 + tβ)2

D2
(9)
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for the NHST case versus

n =
2σ2(tα/2 + tβ)2

(∆−D)2
+ 1 (10)

for the EHT case, where D = µ̄T − µ̄R, and σ2 is the common variance of the two
populations, which is assumed known. n is dependent on the variability within
samples, hence a larger sample is required in order to detect a smaller difference
between the means, given by D (Rani and Pargal, 2004). The denominator in the
second formula makes n inversely dependent on both ∆ and D. Given a value for
the equivalence interval ∆, sample size increases as D approaches the limits of ∆.
Sample size also directly increases Power, and this implies that the probability of
concluding equivalence is the highest when the true difference of the populations
means, given by D, is 0.

6 EHT applied to the Program Comprehension of Side Effects

In this section we illustrate the application of EHT to a problem in Empirical
Software Engineering that involves human subjects and for which a prior NHST
test demonstrated significant differences in human performance between two ‘treat-
ments’. In this case the ‘treatments’ were code samples which contained side effects
and code with the same effect that were guaranteed side-effect free. Details of the
original NHST testing approach can be found in our previous work (Dolado et al,
2003).

We report the results of the new analysis of an existing NHST-style experiment
into the impact of side effects on program comprehension. A side effect is the
assignment of a new value to a program variable that occurs when an expression
is evaluated. Some programming languages, for example declarative languages,
prohibit or semantically restrain the use of side effects in an attempt to improve
the quality of the programs written in the languages. In languages which allow
side effects to occur as the result of expression evaluation, many programmers are
advised to eschew the use of side effects in order to achieve programs with improve
maintainability and understandability.

These prohibitions and guidelines regarding side effects are founded upon a
‘folklore’ of computer programming, which asserts that side effects are harmful
to program comprehension. However, despite the huge effect of this folklore as-
sumption (in terms of programmer behaviour and programming language design
and implementation) there remain very few studies in the literature which aim to
explore, empirically, the assertion that side effects are harmful. The further inves-
tigation of this issue, therefore, remains a pressing concern for empirical software
engineering. The results of such empirical investigation can be expected not only
to confirm of refute the fundamental assertion that side effects are harmful, but
they should also aim to characterize and explore the precise nature of the impact
of side effects on program comprehension.

Two kinds of fragments of C programs are used. The two kinds are coded in
two different ways: one in which the side effects are present (e.g.: x=++y;) and the
other in which there are not (e.g.: x=y+1; y=y+1;).
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SE. Consider the C program fragment below SEF. Consider the C program fragment below

if (++i!=0) x=i++; 
else x=--i; 

if(i != -1){ x=i+1; i=i+2;} 
else x=i;  

(a) what is the final value of x if i is –1?
(b) what is the final value of x if i is 0? 
(c) what is the final value of x if i is 1? 

Same questions

Fig. 3 Example of the pieces of software code that was the object of the original experiment:
“SE” is the side-effect version and “SEF” is its corresponding side-effect free version.

Subjects are presented with both versions of the programs and are asked a series
of questions which aim to test their comprehension of the effect of the programs
on the variables assigned to.

The side effect free versions of the programs were produced using a side effect
removal algorithm (Harman et al, 2001) (Harman et al, 2002). We use an algorithm
to ensure that the side effect free code fragments are produced in a systematic
way and are not influenced by experimentor biases that might creep into the
experiment through the choice of side effect free formulations of the originals. The
experiment consisted in comparing different pieces of software code such as those
shown in Figure 3. There were some small code blocks developed with side-effect
(SE) syntax and there were the corresponding side-effect free (SEF) syntax.

The present paper extends our previous work on the consequences of program-
ming with side-effects (Dolado et al, 2003), which used an ANOVA analysis, reject-
ing the Null Hypothesis (that there were no differences in performance of subjects
with side effecting and side-effect free programs). The present paper studies the
experiment in more detail, deploying EHT to examine the results of the empirical
study into the effect size and associated confidence intervals.

The experiments used a crossover design shown in Figure 4. Three trials were
implemented: Trial 1 and Trial 2 had the same group of subjects (18 and 16 partic-
ipants, respectively) and Trial 1X had another different group of people (15 more
experienced participants). Different small pieces of software C code were presented
to the subjects and several questions were asked afterwards. The measured vari-
ables on the subjects were:

Score: dependent variable which is the number of correct answers to the ques-
tionnaires

Time: dependent variable which measures the time spent on answering the
questionnaires.

The problems posed in the questionnaires can be found on the companion web
page (see figure 2 of (Dolado et al, 2003) for samples). The results of the data
analysis concluded that the two methods of programming were different and that
better results were obtained in the SEF version. However, although the NHST
was rejected, we may think that that was predictable, since both techniques were
already visually different.

Instead of testing whether the results of the experiment are different in the
two groups we may be more interested in knowing whether the differences are
maintained within a predefined range. This would translate in reversing the null
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Trial 1 – Questions A Trial 2 – Questions B

1st  Round
Period 1

2nd Round
Period 2

1st  Round
Period 1

2nd Round
Period 2

Group (sequence) 1 SEF SE SE SEF

Group (sequence) 2 SE SEF SEF SE

Trial 1X – Questions A

Group (sequence) 1X SEF SE

Group (sequence) 2X SE SEFW
as
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Fig. 4 Three crossover Trials: Trial 1, Trial 2 and Trial 1X.

hypothesis of the indifference to put the burden of proof in the difference of the
treatments. This equates to test for equivalence or bioequivalence, being the latter
the most known application of equivalence tests.

From the different ways of applying EHT mentioned in the previous section,
here we use average bioequivalence in a 2x2 crossover design, which is used in the
three Trials (see Figure 4). When testing bioequivalence there must be a time delay
(a short period of no new treatments). It is a period during which the effect of the
treatment in the first period of application lapses so that no remaining effects last
in the second period. In drugs trials, this is called the “washout period” because
the drugs ‘wash out’ of the body of the subjects during this time.

For software engineering experiments on human subjects a similar time delay
may often be required. In the case of the study of the effects of programming
“treatments” on human subjects, the washout period seeks to reduce the risk that
there is no carryover from the application of the programs with side effects and the
application of the programs which are side effects free. This property is fulfilled
in the current analysis since the previous results with NHST proved that there
was no carryover in our environment, so we may proceed safely with the analysis
(Dolado et al, 2003).

When using EHT, the analysis handles the data from an alternative viewpoint
to NHST in order to assert the non-equivalence of the two types of writing software
code. Table 3 describes the four possible scenarios for statistical decision making.

We have set the parameters α at 0.1, β at 0.2 considering that we accept 1
in 10 times being wrong using SEF or SE indistinctly (α) and, also we accept 2
in 10 times being wrong not using SEF and sticking the software practice to SE
(β). This is a case where the values of α and β depend specifically of the software
engineering risks that we are willing to accept. ∆ is set at ±20% and at ±50% over
the least squares mean of the reference (SE) (see p. 60 in section 3.3 of (Chow and
Liu, 2009) for the description of the least squares mean), meaning that the effect
sizes that we are looking for are similar to those of other fields. Therefore, those
range of values in ∆ should be assumed of no technical and scientific importance
in the software field. Other types and ranges of effect size could be proposed but
the lack of data difficults establishing the interval limits.
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Table 3 Possible outcomes in Equivalence Hypothesis Testing between SE and SEF.

H0 is: SE and SEF are different for more than a margin ∆. The
alternative hypothesis Ha is Equivalence. Actually, the null hy-
pothesis H0 in the Equivalence Test is ...

True False
Decision taken

Not rejection of H0 a) The decision is correct: we de-
tect that SE and SEF are really
different.

b) Type II error: we erroneously
consider SE and SEF different.
β is the parameter that controls
this error (β = 0.2).

Rejection of H0 c) Type I error: we erroneously
consider SE and SEF equivalent.
α is the parameter that controls
this error (α = 0.1).

d) The decision is correct: we
correctly detect that SE and
SEF are equivalent. Power (1 −
β) is the parameter that controls
this decision.

Figures 5 and 6 plot the actual values obtained for the the confidence intervals
of the Time and Score variables with respect to the the equivalence intervals ∆20%

and ∆50%. Computations and plots have been obtained with R scripts (R Core
Team, 2012; Chen and Peace, 2011; Pikounis et al, 2001). In Figure 5 the three CIs
of the Score are completely outside the equivalence intervals, so that the hypothesis
of inequivalence cannot be rejected, i.e., SEF and SE are not exchangable within
those ∆. In Figure 6 the three CIs are crossing the equivalence interval ∆20% but
they are inside the equivalence interval ∆50%. We may conclude that whilst the
methods SEF and SE are inequivalent at the level ∆20% they are equivalent at
a level ∆50%. This is an interesting result derived from the EHT analysis since
NHST gave the impression of the difference of the methods, but EHT establishes
some level of similarity.

Table 4 summarizes all results of the EHT performed on the three original
crossover designs and, after comparing all CIs, we can assert that we cannot reject
the null hypothesis H0 in EHT at a level of ∆20%, therefore the methods SEF and
SE are inequivalent, besides being different. Widening the confidence level from
80% to 90% make the intervals larger, because of the properties of CIs, and the
direct result is the inequivalence in all cases. However, we observe the equivalence
of the methods in the Time variable at ∆50%. Statistically speaking, when using
EHT we cannot conclude that the treatment SEF is better than the reference SE
because that is not the purpose of an equivalence trial. However, by using the
descriptive nature of the CIs and the previous results in NHST (Dolado et al,
2003) we observe that side-effects are harmful in all circumstances examined for
the Score variable. The situation is less clear in the Time variable since equivalence
can be established at the 50% level but not at the 20%. The values obtained in
the confidence intervals provide a valuable information for planning future exper-
iments, such as in the identification of critical points in understanding programs
with side-effects. Bioequivalence testing helps us to take a final decision about
the effects of a treatment, in our case the consequences of programming with side
effects.
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− ∆20% 0 ∆20% ∆50% 11
µT − µR More Score in SEF

| |

| |

| |

Trial 1
( 7.96 , 9.71 )

Trial 1X
( 5.7 , 8.96 )

Trial 2
( 5.21 , 8.29 )

Fig. 5 Computed 80% Shortest Confidence Intervals over the Equivalence intervals ∆ in the
Score variable of the Program Comprehension experiment. The three intervals are inequivalent
at both ∆ levels.

− ∆50% − ∆20% 0 ∆20%

µT − µRLess Time in SEF

| |

| |

| |

Trial 1
( −119.22 , −70.45 )

Trial 1X
( −98.48 , −40.57 )

Trial 2
( −104.62 , −34.53 )

Fig. 6 Computed 80% Shortest Confidence Intervals over the Equivalence intervals ∆ in the
Time variable of the Program Comprehension experiment. The three intervals are equivalent
within ∆50% but not at ∆20%.

Table 4 Summary of EHT on Score and Time for each Trial.

Trial 1 Trial 1X and Trial 2

Time Score Time Score

Confidence Level 90% 80% 90% 80% 90% 80% 90% 80%

Statistically Different? Yes Yes Yes Yes Yes Yes Yes Yes
Equivalent at ∆=20%? No No No No No No No No
Equivalent at ∆=50%? Yes Yes No No Yes Yes No No

6.1 Meta-analysis of the Equivalence Data

In order to apply in a homogeneous way the procedures, the data of Trial 2 has
to be scaled such that the results of Time and Score can be compared to those of
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Trial 1 and Trial 1X. For the variable Score the transformation simply takes the
range of the possible correct answers 0-14 of Trial 2 into the range 0-21 of Trial
1. For the variable Time, since there were no minimum and maximum values for
the time spent in answering the questions, the transformation uses range-scaling
2 using the maximum and minimum values observed in both trials. The final CIs
obtained are (−93.90,−63.81) for the Time variable and (7.02, 8.39) for the Score
variable. These values are not much different from those obtained under classic
meta-analysis in NHST that are (−109.01,−45.27) and (6.99, 9.14), respectively.
These intervals summarize the global differences that can be observed between
the SEF and SE methods, i.e., there is inequivalence of the Score variable at both
levels but there is equivalence of the Time variable at 50%.

6.2 Sample Size

Since there was no previous experimental data related to our research, the main
source of problems for the sample size analysis was the lack of previous data about
the effect size and the lack of data for computing the desired power. Hence, it was
impossible to guess neither the effect-size (in absolute terms) nor the error variance.
However, instead of proceeding by randomly suggesting a value we proceeded by
using standardized values.

6.2.1 Classic approach to sample size

In the classic NHST analysis some standard values for the Score variable were used,
such as an approximate standard effect size and an estimated average correlation,
obtaining a sample size between 15 and 18 subjects. In our a priori power analysis,
we explored the relationships among the sample size (n), the effect size (Cohen’s
f ), the significance level (α) and the desired power (1-β). We observed that there
was a great variation in the sample size needed for obtaining significant results,
ranging from a minimum of 6 subjects having both large correlation and large
effect size, to a maximum of 209 in the opposite situation. After the data was
collected the precise formulas of (Yue and Roach, 1998) were used, obtaining a
sample size of 6 subjects for detecting a difference in Score of 2 correct answers.
The same procedure was used for the variable Time. Therefore the sample size
used was enough to give validity to the results of the SEF-SE comparison under
NHST.

6.2.2 EHT approach to sample size

Using the software program PASS (Hintze, 2000), that uses the TOST approach to
equivalence analysis, we show in Figure 7 the plots of power versus sample size of
Trial 1. The graphs in Figure 7 are plotted for power as the dependent variable and

2 The value of variable y scaled from range (ymin, ymax) into range (xmin, xmax) is given
by the transformation

yscaled = y
xmax − xmin
ymax − ymin

+
xmin · ymax − xmax · ymin

ymax − ymin
.
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Fig. 7 Power versus sample size in EHT for the two variables Score and Time.

they use as independent variables the sample size n and the true difference of the
means D. In Figure 7 it can be observed that for achieving a given level of power
the sample size should be larger as the value of the true difference D aproaches
the value of the interval ∆. In the three trials the plots showed acceptable power
respect to the actual number of subjects. Therefore, although for the current study
sample sizes are sufficient for providing credibility to the results, researchers must
be aware of the additional experimental resources that may be needed when using
EHT.

7 Analysis of two Additional Software Engineering problems

In order to show the application of EHT in the software engineering field, we
have chosen two previous published studies. Both studies have the data publicly
available and use a crossover design as the experimental setting with the subjects
of the study. In this way we can apply homogeneously the procedures used in
previous sections.

7.1 Dataset of the comparison of UML versus OML

Here we analyse with the EHT perspective a previous experiment that compared
the comprehension properties of the specification languages UML and OML (Otero
and Dolado, 2005). The experimental design was a standard crossover and the
NHST procedure gave as result the differences of the methods (in favour of OML)
in both variables Score and Time. The experiment was repeated with a different
set of subjects obtaining similar results. Applying EHT we obtain the plots of
Figures 8 and 9 where we observe the inequivalence of the Score variable although
there is equivalence of the Time variable at the 50% level over the reference mean.
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− ∆20% 0 ∆20% ∆50% 3
µT − µR More Score in OML

| | Experiment 1
( 0.69 , 1.51 )

| | Repetition Experiment 1
( 0.96 , 1.49 )

Fig. 8 Computed 80% Confidence Intervals over the Equivalence intervals ∆ in the Score
variable of the Program Comprehension experiment. The two intervals are not equivalent
within ∆50% and ∆20%.

− ∆50% − ∆20% 0 ∆20%

µT − µRLess Time in OML

| | Experiment 1
( −815.1 , −569.47 )

| | Repetition Experiment 1
( −804.24 , −497.59 )

Fig. 9 Computed 80% Confidence Intervals over the Equivalence intervals ∆ in the Time
variable of the Program Comprehension experiment. The two intervals are equivalent within
∆50% but not at ∆20%.

7.2 Dataset of the comparison of the specification methods UML-B versus B

Here we review the crossover experiments performed by Razali et al. (Razali and
Garratt, 2006; Razali et al, 2007b,a; Razali, 2008) for comparing the comprehen-
sion of two different software specification methods: a combination of a semiformal
notation, UML-B, and a purely textual one, i.e., B. They used the “rate of scoring”
as the measure for comparison, Efficiency, computed as marks per minute. This
measure includes both variables Score and Time. Score measures the accuracy and
Time measures the duration of the comprehension. In these experiments a model
with a “higher rate of efficiency is better than otherwise since it indicates a higher
accuracy with least time taken to understand the model”.

In their first experiment they compared the efficiency in Comprehension tasks
and in Modifications tasks using NHST. The authors state that (Razali et al,
2007a) “the results indicate with 95% confidence that a UML-B model could be
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up to 16% (Overall comprehension) and 50% (Comprehension for modification
task) easier to understand than the corresponding B model”. Figure 10 shows the
results of the application of EHT to their original data (Razali, 2008, pp. 337-338)
for their first experiment, including both comprehension and modifications tasks.
Equivalence at ∆50% over the reference mean has been found in the first dataset
corresponding to the Comprehension tasks. However, the Modifications tasks show
inequivalence at both levels.

As replication of the first experiment, in a second crossover experiment they
compared UML-B and and Event-B model and they measured also the Efficiency
obtained by the subjects in six questions. Since our purpose is to assess the value
of applying EHT we do not try to discuss the general conclusions of their research
and methods (that included bootstraping and permutations) but to apply EHT
to their basic NHST results. In this way we stick to their original data (Razali,
2008, pp. 370-371) and we proceed to analyse the six questions that were asked
in their second experimental design. Their results are described in (Razali, 2008,
pp.179-184) and we summarize in Table 7.2 the results stated in Table 5.6 of
(Razali, 2008, p.189). It can be compared with Figure 10 and we can observe the
information that EHT additionally provides to the statistical analysis. Questions
1, 3 and 6 were classified as “statistically significant” at α = 0.05 and Questions
2, 4 and 5 were assessed as “statistically not significant” with NHST. Through
the application of EHT we observe that the three questions that were classified
as different by NHST are identified as “inequivalent” by EHT. The other three
questions that didn’t reveal differences are not equivalent at the 20% level, but
Questions 2 and 5 are within a level of equivalence of 50%. Question 4 does not
show any level of equivalence. We may conclude that in the first set of three
questions EHT corroborates the differences originally found by NHST. Further
research could be done about the equivalence found in Questions 2 and 5 and
whether that has any implications in the context of their research.

Table 5 Summary of the original results of Razali et al.’s Experiment 2 (Razali, 2008, p.189)
of the application of NHST to the comparison of models UML-B with Event-B.

Mean of difference (x2) Statistically Significant
Question 1 0.8877 Yes, p=0.001
Question 2 0.0835 No, p=0.335
Question 3 0.9137 Yes, p=0.005
Question 4 0.0487 No, p=0.483
Question 5 0.0706 No, p=0.339
Question 6 0.6589 Yes, p=0.02

8 Related Work

Besides the intensive use of bioequivalence in pharmacology, there are applications
of equivalence in many other fields like psychology, ecology, plant pathology, indus-
trial control, etc. (Cribbie et al, 2004) (Robinson and Froese, 2004) (Miranda et al,
2009) (Garrett, 1997) (Ngatia et al, 2010). Recently, there has been an application
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−0.9 − ∆50% − ∆20% 0 ∆20% ∆50% 0.9

µT − µR

| |Exp1 Comprehension
( 0.02 , 0.15 )

| |Exp1 Modifications
( 0.09 , 0.48 )

| |Exp2 Q1
( 0.25 , 0.61 )

| |Exp2 Q2
( −0.09 , 0.18 )

| |Exp2 Q3
( 0.14 , 0.79 )

| |Exp2 Q4
( −0.43 , 0.54 )

| |Exp2 Q5
( −0.14 , 0.18 )

| |Exp2 Q6
( 0.02 , 0.58 )

Fig. 10 Computed 90% Confidence Intervals over the Equivalence intervals ∆ in the Effi-
ciency variable of the two experiments (Exp1 and Exp2). Experiment 1 includes two tasks and
Experiment 2 has six questions.

of equivalence tests in the software engineering field (Borg and Pfahl, 2011) where
the authors used EHT for analyzing the effect of using tools in the accuracy of en-
gineers’ traceability recovery of artifacts. Their pilot experiment used 2 groups of 4
subjects and they compared the results using both NHST and EHT. Their results
were inconclusive since the confidence intervals of the variables examined greatly
exceded the equivalence interval established, i.e., an absolute value of ∆ = 0.05
(see Fig. 6 of (Borg and Pfahl, 2011)). That work is another example of the use of
NHST and EHT in the software field.

As we noted in this paper, Equivalence testing (EHT) and difference testing
(NHST) are not incompatible and can be used simultaneously (Mecklin, 2003).
This has previously been done in other fields of empirical research outside soft-
ware engineering. For example, as long ago as 1993, Rogers et al. presented and
encouragement to social scientists to consider the combined use of EHT and NHST
(Rogers et al, 1993), based on the successful application to the analysis of results
from drugs trials. A recent example of the application of NHST and EHT in health-
care research can be found in the findings reported by Waldhoer et al. (Waldhoer
and Heinzl, 2011).

Westlake proposed a procedure for computing a bioequivalence intervals (West-
lake, 1976). There have been several proposals for different types of intervals such
as Shortest, Fieller, Anderson-Hauck, Locke, Mandallaz-Mau’s, and some authors
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suggest that confidence intervals are the most reasonable way of assessing mean
treatment differences. This is supported by the results of Hoenig and Heisey about
the relationship between power and p-values (Tempelman, 2004) (Rani and Pargal,
2004) (Tryon, 2001).

Most works that use bioequivalence methods adopt the ‘average bioequivalence
mean’ for comparing treatments. However, there are situations where the within-
subject variability of a product (such as variations of more than 30% in some
parameters, as in the case of highly variable drugs) make the use of the concept
of average bioequivalence less appropriate. For coping with those problems there
are other proposals such as the use of Population bioequivalence, Individual bioe-
quivalence, Scaled Individual bioequivalence, Scaled Average bioequivalence and
the use of different means of groups instead of only using two groups (Van Peer,
2010) (Hyslop and Iglewicz, 2001).

The classic NHST has been the subject of much debate regarding its applica-
tions, uses and misuses. It has been widely observed that NHST provides only a
single decision point and little information about the phenomenon being studied.
This can promote, in some research communities, an almost ‘ritualistic’ applica-
tion of NHST, merely in order to satisfy referees and to pass through peer review
to publication, but with little thought given to the scientific interpretation of the
meaning of the results and with little impact on whether or not the research find-
ings are actionable.

The literature abound on discussions about the value of the tests under NHST
(see for example (Chow, 1998) for a general discussion). Independently of the value
and objections to this classic approach, the NHST is based on the assumption that
the null hypothesis about the means is true, something that has been questioned
in other fields of study (Tryon, 2001).

It has also been observed that many experimental studies do not provide
enough elements to guarantee the validity of their conclusions by some statis-
tical criteria. (Miller et al, 1997) described a set of elements that must be taken
into account when designing an experiment. From this point of view, the elements
that are involved in the validation of the results are: the significance level α, the
sample size n, the effect size f , and the power level (1−β), being β the probability
of commiting a Type II error.

However, there have been results in other fields that are also worthy of consid-
eration. Related to the use of the power analysis, the work of (Hoenig and Heisey,
2001) criticised the common use of the concept of statistical power, 1 − β. This
work had a strong impact in the field of applied statistics since it clarified the
function of power analysis and suggested a reconsideration of the use of criteria
derived from power analysis to assess the results of an experiment.

It has been recognized by researcher in other fields (outside software engineer-
ing) that as sample size increases it also does the probability of rejecting the null
hypothesis, giving to the believe that the null hypothesis is always true under many
circumstances. Using NHST, the concept of power was used wrongly to assert sta-
tistical equivalence, and the usual α was used to reject H0 (Stegner et al, 1996).
It has been proven that observed power is a 1:1 function of the p-value (Hoenig
and Heisey, 2001). Because of the limited usefulness of the p-values, many authors
advocate the use of confidence intervals instead of the p-values.



Equivalence Hypothesis Testing in Experimental Software Engineering 23

9 Conclusion

Equivalence Hypothesis Testing (EHT) offers several conceptual advantages over
classic t-tests under NHST, such as to allow to test for a convenient difference of
the treatments and to state a more realistic null hypothesis than that of equality.
We have applied EHT to the two original experimental designs about SE and SEF
programs and we have rejected the equivalence of both types of programming lan-
guage syntax at a level of 20%, but the inequivalence could not be established for
the Time variable at a 50% level (therefore implying equivalence). There remains
the transferability of the results to other settings. The current data are only a ref-
erence point for establishing differences with future trials. In a second application
of EHT for the comparison of OML and UML specifications, the inequivalence in
the Score variable has been established, but the Time variable has equivalence at
a level of 50%. In a third application of EHT to a crossover study that compared
UML-B and B specifications the original Efficiency variable was found equivalent
at 50% in one dataset and inequivalent in the other. Since the Efficiency vari-
able includes the Time variable in the computations, future studies may take into
consideration this result. In the second experiment EHT has helped to assess the
previous results.

Classic NHST and equivalence statistical tests are not exclusive and both ap-
proaches provide useful information about the issue under experimentation. Equiv-
alence helps to reason about intervals of interests and it is important for future
studies.

We have used the “average bioequivalence” criterion with the difference of
the means between groups, although the ratio of the means could also have been
applied. Other bioequivalence alternatives remain as other research possibilities.
The main problem when using EHT is to establish the intervals for the equivalence
and the related reference values. In our case, whithout knowing previously what
the standard human parameters for the answers are, it is difficult to set a specific
range for the Time and Scores variables. Is it enough with 15, 8 or 2 seconds of
difference in the time spent in answering questions? We may ask what the effects
in the large or in a software house are of a difference in the scores of 3, 4 or 2
points. Due to lacking those reference points we have used two levels for observing
equivalence (20% and 50%). A related issue is to compute the sample size for a
experiment using EHT. Sample size have been observed to be larger in EHT than
in NHST. These are questions that remain to study.

Given the fact that in software engineering the starting conditions in exper-
iments are already different in many designs, testing for bioequivalence may be
appropriate in some settings. The most important question to ask is how much
differences in the treatments we allow in order to consider them as equivalent or
non-equivalent. This may be difficult to answer given that human factors pervade
all software engineering activities and the empirical experiments not only should
try to reject the null hypothesis of indifference, but to analyse how prevailing the
Type I and II errors are and what the consequences of making them are. EHT eases
the reasoning on the experiment and it allows to dismiss results non-equivalent to
what the researcher is looking for.

Equivalence Hypothesis Testing recently (Borg and Pfahl, 2011) made the
transition from empirical studies of medical trials, where it has been a proven
inferential statistical analysis technique for some time, to the software engineering
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domain. This paper provides further evidence for the potential use of EHT as a
means of checking, statistically, whether we can infer that two populations as es-
sentially equivalent, based on samples drawn from these populations. Equivalence
Hypothesis Testing combines both aspects of statistical significance and practical
relevance into one procedure, by defining the reasonable limits of acceptance of
the new methods under study. The use of the confidence interval approach in EHT
provides an accurate description of the results and it allows the visualization of
the computed results in relation to the equivalence region.
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