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SUMMARY

Allocating resources to a software project and assigning tasks to teams constitute crucial activities that
affect project cost and completion time. Finding a solutionfor such a problem is NP-hard; this requires
managers to be supported by proper tools in performing such an allocation.

This paper shows how search-based optimization techniquescan be combined with a queuing simulation
model to address these problems. The obtained staff and taskallocations aim to minimize the completion
time and reduce schedule fragmentation. The proposed approach allows project managers to run multiple
simulations, compare results and consider trade-offs between increasing the staffing level and anticipating
the project completion date and between reducing the fragmentation and accepting project delays. The
paper presents results from the application of the proposedsearch-based project planning approach to
data obtained from two large scale commercial software maintenance projects.
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1. Introduction

Project planning constitutes a vital task for many softwareengineering activities, from
development to maintenance. Poor planning can cause costs and delays that can be
unacceptable, giving the project timing and financial constraints. It is well known that poor
planning, together with wrong cost estimation, is one of themain causes of many software
project failures. Of course, there are existing tools such as the Project Evaluation and Review
Technique (PERT), the Critical Path Method (CPM), Gantt diagrams and Earned Value
Analysis, all of which can help to plan and track project milestones. While these tools and
techniques are important, they are less helpful when it comes to solving important problems
such as (i) Determining the staffing needed to complete the project within a given date; (ii)
Creating working teams with the available developers; and (iii) Allocating atomic tasks to the
different teams.
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To achieve these objectives, we first need to organize the work (i.e., the project) in atomic,
work packages (WPs), often derived from the project Work Breakdown Structure (WBS).
Then, WP development/maintenance effort is estimated, using one of the many techniques
available (such as COCOMO [1] or analogy estimation [2]). Subsequently, staffing can be
determined using a queuing-simulation approach, as proposed by Antoniolet al. [3]. The
project schedule can be further optimized by i) determiningthe distribution of developers
into teams and ii) properly assigning WPs to teams. The two factors are clearly interwoven.
Given a fixed distribution of developers into teams, there exists a WP assignment to teams
that minimizes the time required to carry out the project. This can also be thought of as the
optimal order in which the WPs flow into a queuing network thatmodels the development
or maintenance process [3]. Such resource allocation problems are instances of the ‘bin
packing problem’, the solution of which is known to be NP-hard [4] and for which, search-
based techniques are known to be effective [5]. For a large software project, the space of
possible project planning solutions is far too large to search manually or to adopt exhaustive
enumeration of solutions to locate the optimal project organization. The problem of simply
determining the optimal ordering ofn WPs has search space sizen!, which is clearly
prohibitively large for non-trivial projects.

This paper explores the way in which search techniques can becombined with techniques
from queuing theory to produce optimal or near optimal solutions to software project
planning. Specifically, the paper addresses problems associated with the determination of
the order in which to process WPs, and their allocation to teams of developers. Search-
based techniques are not guaranteed to converge to a global optimum; nevertheless they are
able to find near-optimal solutions that are often close enough to the best possible project
configuration. In our case, the manager is interested to complete the project within a given
deadline or to deliver the product to the customer in a time that is short enough not to conflict
with his/her other work, and to satisfy the customer delivery requirements.

The decision whether a particular solution can be considered acceptable is left to the project
manager; the approach simply provides decision support by allowing for exploration of the
trade offs and inherent tensions between potential solutions. In other words, the approach
aims to aid the manager in her/his scheduling and staffing task, not to replace her/him. In many
software projects, the manager’s task is to balance conflicting goals/objectives such as staffing
level, completion time, or resource utilization, rather than finding a global optimum for one of
these objectives. The approach can be applied to both development and maintenance projects,
and accounts for several realistic situations that typically occur in real world software project
scenarios, such as:

1. Dependences, in particular, we deal with inter-dependences between WPs. Any WP
that has a dependence cannot be handled until the WP on which it depends on have
been processed.

2. Schedule Fragmentation. This is a consequence of inter-dependences. If a WP is
assigned to a team and ready to be processed, but WPs upon which it depends have
yet to be processed, the team is potentially idle, awaiting completion of pre-requisites.

3. Conflicting objectives. Shorter project completion time can be achieved with higher
staffing costs and vice versa. The approach provides the manager with a Pareto front [6]
of solutions optimizing conflicting objectives.

4. Need for specialized developers. In many cases it happens that WPs need to be
dispatched to teams composed of developers specialized on specific domains or
knowledgeable of a given technology. The approach accountsfor staff teams of
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specialized developers and addresses the problem of determining the WP allocation
to these specialized teams.

In order to validate the techniques introduced in the paper,empirical results are
presented from two large-scale case studies of maintenanceprojects from two large software
development organizations, specifically a Y2K remedial work project (Project A) and a multi-
platform evolution project (Project B). Project Brequired, overall, less effort thanProject A,
while its development activities were constrained by dependences among WPs. The empirical
study compares the performance of different heuristics, namely Genetic Algorithms (GAs),
Stochastic Hill Climbing, and Simulated Annealing.

More specifically, the primary contributions of this paper are as follows:

1. The paper introduces an approach to search based softwareproject management that
caters for the above four mentioned issues of dependences, fragmentation, conflicts and
specialization. These four aspects are highly prevalent insoftware projects and so any
optimization based approach to project management needs topay particular attention
to them if it is to be useful as a decision support tool for software intensive projects.
The approach is also novel because it is the first to use a Pareto-optimal approach to
balancing conflicting concerns in software project management.

2. The paper adapts several algorithms for search based optimization to apply them to
these problems. The algorithms used in the paper are simulated annealing, single and
multi-objective genetic algorithms and hill climbing.

3. The paper presents the results of experiments on data fromtwo large real world software
projects, which assess the performance of each of the algorithms, and the effects of
different staffing levels, fragmentation and employment ofspecialist developers.

The optimization algorithms and methods used in this paper are complex to be understood
by project managers. However, the sophistication of proposed approach can be easily
‘wrapped’ to hide this complexity; managers need only inputinformation with which they
are familiar (e.g., staffing level, developer expertise, constraints between WPs and so on).
The results the manager receives are also easily intelligible without any knowledge of the
techniques being used. This ‘wrapability’ must be an important feature of any approach to
search based software project management, since the decision makers cannot be assumed to
have interest or skills in search based optimization.

The remainder of the paper is organized as follows. Section 2discusses the related work on
the use of search-based techniques to solve software engineering problems, and the related
literature on project scheduling and planning. Section 3 describes the proposed search-
based project planning approach, while Section 4 details the way in which search-based
optimization techniques can be used to find a solution to the project scheduling and staffing
problem. Section 5 presents the results of a series of experiments that evaluate the proposed
techniques on data from the two commercial software projects. Finally, Section 6 concludes.

2. Related Work

Search techniques have previously been applied to scheduling problems in general with
good results as described by Davis [7]. The mathematical problem encountered is, as
described by the author, the classical, NP-hard, bin packing or shop-bag problem. A survey
of approximated approaches for the bin packing problem is presented by Coffmanet al. [8].
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A survey of the application of GAs to solve scheduling problems has been presented by
Hart et al. [9]. Kolisch and Hartmann [10] also surveyed different techniques for project
scheduling, although their study was not focused on software engineering. Our work shares
with this previous work the finding that techniques such as genetic algorithms and simulated
annealing represent the best search based techniques in terms of performance for this kind
of problem. This may be an indication that Search based Software Project Planning (SBSPP)
may benefit from results from the more general literature on project scheduling.

However, these previous results have been obtained from non-software projects. It is only
more recently that researchers have turned their attentionto the special problems encountered
by software project managers and the ways in which search based optimization techniques
can be applied to help to provide mechanisms for decision support.

Surveys of the general area of Search Based Software Engineering (SBSE) that contain a
treatment of SBSPP can be found elsewhere[11, 12, 13], this section focuses specifically on
the development of SBSPP as a sub area of activity within SBSEand the relationship of this
previous work to that in the present paper.

Chang et al. [14, 15, 16, 17] were the first to publish on SBSPP [14], with their
introduction of the Software Project Management Net (SPMNet) approach for project
scheduling and resource allocation, which was evaluated onsimulated project data. Aguilar-
Ruizet al. [18, 19] also presented early results on evolutionary optimization for SBSPP, once
again evaluated on synthetically created software projectdata. Like Aguilar-Ruizet al. our
approach seeks to inform and assist the project manager, notto replace the crucial human
element in decision making about project plans.

The allocation of teams to work packages in SBSPP can be thought of as an application
of a bin packing problem [8]. Motivated by this observation,Chicano and Alba [21, 22]
applied search algorithms to software projects to seek to find allocations that achieve earliest
completion time (tightest packed bins, where bins are teamsand WPs are the items to be
packed). The present authors also worked on a similar bin packing formulation [23] upon
which the present paper builds. Albaet al. [24] were the first to experiment with parallel
implementations of SBSE techniques for SBSPP, thereby exploiting the potential of parallel
computation for improved efficiency.

In the past three years, there has been a significant upsurge in interest ins SBSPP, with
many different SBSE techniques being applied ot the problem. For example, a scatter search
has been recently applied [25] to the problem of minimizing project completion duration.
Scatter Search was also used by Albaet al. [24] but it is a technique not otherwise much used
in SBSE work. Also, several recent papers (published in 2008) [26, 27, 28] present results for
formulations of software project planning, evaluated using synthetic data.

The present paper is a version of our previous work [23], extended to handle developer
specialization, dependences and fragmentation and also extended to present more empirical
results and evaluation and additional algorithms (notablythe use of a Pareto-optimal approach
for handling conflicts). The use of queuing simulations alsobuilds on the present authors’
previous work (see Antoniolet al. [3]).

None of the previous work on allocation of staff to work packages has used a Pareto-optimal
approach. Also, to the authors’ knowledge the evaluation previous work on these problems
has been based solely on synthetic rather than real data. Forthe related topic of search based
cost estimation for software projects [29, 30, 31], real data is routinely used in evaluation, but
for SBSPP there is comparatively little real world data available. Synthetic data is very useful
for experimenting with search based algorithms under controlled conditions; it facilitates
exploration of scalability and robustness. However, real-world data additionally allows the
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researcher to address questions such as the effects of different staffing levels, fragmentation
effects and employment of specialist developers, as we do inthe present paper.

In common with the present paper, the authors’ recent work onrisk reduction for SBSPP
[32] presents an evaluation using real world data and also adopts a Pareto-optimal approach.
However, this other recent work [32] is concerned with finding a robust project schedule and
does not cater for the issues of fragmentation and developerskill assignment.

Queuing theory was also applied by Ramaswamy [33] to model software maintenance
projects. Simulations of a software maintenance process were performed by Podnar and
Mikac [34] with the purpose of evaluating different processstrategies rather than staffing the
system. Recently, Bertolinoet al.[35] proposed the use a performance engineering technique,
based on the use of queuing models and UML performance profiles, to aid project managers
for decision making related to the organization of teams andtasks. We share with them
the idea of using queuing networks to model software processes and to support managers
in their choices. In our case, the use of search-based techniques suggests to managers the
configuration able to minimize the completion time and maximize the efficiency in resource
usage, also considered an important issue by Bertolinoet al.

Recently, Gutjahret al. [36] and Stummeret al. [20] formulated the portfolio selection
scheduling and staffing problem as a non linear mixed integeroptimization. The proposed
objective function aggregates two terms: a per project gainand a global company efficiency
improvement over the scheduled time span. Employees possess skills, abilities modeled
as competencies; competencies are quantified as real valuespossibly changing over time.
Projects are made up by tasks and each task is decomposed intoone or more work packages.
A work package is a logical unit requiring a given, deterministic and known, effort of a
single competence. Then, the problem is solved using different heuristics, namely Ant Colony
Optimization (ACO), and GAs combined with a problem-specific greedy technique. Results
of a study conducted on data from an e-commerce project showed that GAs are slightly
superior than ACO except than in some cases.

Several commonalities can be found with the present work. Weshare with Gutjahret
al. [36] and and Stummeret al. [20] the assumption of atomic tasks, the fact that a work
package is organized around a single precise skill and the high level ideas. However, they
tackle a different problem, the portfolio managment problem while we assume the project
is already assigned. In our formulation we explicitly modeltwo contrasting objectives: the
project completion time and the fragmentation. Completiontimes and fragmentation are only
implicitely managed by Gutjahret al. and Stummeret al. via constraints. At a higher level,
we sought to determine the Pareto front and let the project manager decide the final project
configuration, while Gutjahret al.and and and Stummeret al.compute a solution that mets
the constraints.

Other than search based optimization techniques, of courseother approaches are used for
(software) project scheduling. For example, Constraint Logic Programming (CLP).was used
by Barretoet al. [37]. However, the focus of their work is different from ours: they aimed
at assigning maintenance requests to the most qualified teamin terms of skills, or to the
cheapest team, or to the team having the highest productivity. To this aim, they assumed
the existence of a relationship between completion time anddeveloper skills. This, however,
was not empirically supported by data from real projects. Instead, the authors showed with a
controlled experiment that managers were able to benefit of the tool to schedule a (fictitious)
project better and faster. Results of such an experiment indicates that automatic project
scheduling approaches can be a valuable support for managers, thus approaches addressing
different objectives, like ours, are worth of being investigated.
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Issues connected to empirical studies of software process simulation modeling are also
discussed by Raffoet al. [38], with particular reference to the estimate of simulation
parameters from real-world data, and to compare actual results to the model’s results. Abdel-
Hamid [39] published an approach based on system dynamics modeling to verify the degree of
interchangeability of men and months [40]. Results from theanalyzed case study do not fully
support Brooks’ law. Nevertheless, in case there is communication overhead, the proposed
search-based approach can still be applied, as shown in a companion paper [41] where the
authors discuss the effect of different communication overhead models on the project planning
(and resulting completion time) obtained by means of the proposed search-based approach.

3. The Search-Based Project Planning Approach

The approach presented in this paper allows to find (near) optimal solutions for the following
problem:

Given a set of WPs—having some dependence constraints—and an available pool
of N developers, create teams of developers and assign WPs tothese teams so
that the project completion time is (near) minimized. Also,the approach shall
(near) minimize the schedule fragmentation, i.e., the total number of days in which
developers remain inactive because the WPs they have been assigned depend on
other WPs still to be processed. Finally, if each WP requiresa particular expertise,
the approach shall staff teams composed of specialized developers, so that each
WP is assigned to a team having the proper expertise.

In the following we provide a formal statement of the above formulated problem. Then, it
is described how a problem solution can be represented, and how quality of a solution (the
fitness function) can be evaluated.

3.1. Problem statement

Let us consider a maintenance or development project havingassignedN developers
D ≡ {d1, d2, . . . , dN} and composed ofM atomic WPsW ≡ {w1, w2, . . . , wM}. Each
WP wi is characterized by an estimated development/maintenanceeffort ei and requires
a particular expertiseexi in a set of expertisesEx ≡ {ex1, ex2, . . . , exP }. The function
ExW : W → Ex given one WPwi assigns its expertiseExW (wi).

Each software developer possesses a set of expertise competences inEx. The function
ExD : D → 2Ex, given developerdj returns her/his set of expertiseExD(dj). Furthermore,
we consider a set of dependences between WPsDep ≡ {dp1, dp2, . . . , dpQ} each one having
the formdpl : wi → wj i.e.,wi needs to be completed beforewj can be started. Notice that
in this model cyclic dependences, in theory, may exist. However we do not model the case
in which two or more WPs have to be worked out simultaneously,in parallel. Thus, prior to
applying the approach, it is necessary to make the dependency graph acyclic by removing
cyclic dependences or collapsing loops into a single WP.

The manager’s task is to determine a set ofL teamsT ≡ {T1, T2, . . . , TL}, an assignment
of WPs to teams and a suitable order of assigned WPs such that dependences are satisfied
while minimizing completion time and fragmentation.
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To support the manager in her/his task we assume that teams inT must have the following
four properties:

1.
⋃

i Ti ⊆ D, i.e., teams are composed solely of developers inD;
2. ∀ i, j ∧ i 6= j Ti ∩ Tj = φ, i.e., teams are non-overlapping;
3. ∀ Tj ∈ T :

⋂
di∈Tj

ExD(di) 6= φ, i.e., developers in one team must share a common
set of expertise competences;

4. ∀ wi ∈ W ∃Tj ∈ T | ExW (wi) ∈ [
⋂

dl∈Tj
ExD(dl)], i.e., in order to complete the

project, the manager must allocate teams so that the required expertise is covered by at
least one team.

To model the manager’s choices, any approach supporting project scheduling should also
provide a functionMwT : W → T such that given a WPwi it produces its assignment
MwT (wi) to a team. We require thatMwT defines a partitionWPT1,WPT2, . . . ,WPTL

over W—i.e., it assigns each WP to one and only one team—such that the assignment
is compliant with expertise constraints. More formally, werequire that for eachwj , the
constraintExW (wj) ∈ [

⋂
dl∈MwT (wj)

ExD(dl)] must be satisfied. In the following, to
simplify the notation, let us denote byMwT (W,Tj), the setWPTj of WPs assigned to
Tj . For each setWPTi, the manager must define a permutationPi so that dependences in
Dep are satisfied while completion time and fragmentation are minimized.

To express and verify dependences, we observe that givenT , WPT1,WPT2, . . . ,WPTL

and the set of permutationsP1(WPT1), . . . , PL(WPTL), it would be possible to determine
when each WP will start and when it will be completed. As will be described in Section 3.2,
this is done by using queuing simulation. That is, assume that the WPwi is assigned to team
Tai

having a workloadWPai
ordered as defined by the permutationPai

, then the queuing
simulation computes the start time and the completion time for wi, referred astb(wi, Tai

, Pai
)

andte(wi, Tai
, Pai

) respectively.
Dependence constraints can be described in terms oftb and te. That is, a dependence

dpl : wi → wj is mapped into the additional problem constraint as follows. Suppose
that WP wj is assigned toTaj

, then dependences are preserved provided we have that:
tb(wi, Tai

, Pai
) ≤ te(wj , Taj

, Paj
).

Overall we must determineL, T , MwT (and thusWPT1,WPT2, . . . ,WPTL) the
family of permutationsP1, . . . , PL so that queuing simulation can compute two functions
representing the objectives of our optimization problem:

• f1 = Ct(L, T1, . . . , TL,MwT,P1, . . . , PL): completion timeof the overall project, i.e.,
time from when the first WP is sent into the queue to when the work on the last WP has
been completed;

• f2 = Frag(L, T1, . . . , TL,MwT,P1, . . . , PL): fragmentation, i.e., the total amount of
idle person months in the schedule, due to the need for completing a WP before other
WPs in the queue could be processed. The fragmentation issueis discussed in detail in
Section 3.4.1.

Using this notation, it is possible to define the project allocation optimization problem
formally as follows:
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Figure 1. Project scheduling: the queuing model.

min
L,T1,...,TL,MwT,P1,...,PL

(f1, f2) (1)

such that

∀ Ti, Tj ∈ T : Ti ∩ Tj = φ Disjoint teams

∀ Tj ∈ T :
⋂

di∈Tj

ExD(di) 6= φ Shared expertise

∀ wi ∈ W ∃Tj ∈ T | ExW (wi) ∈ [
⋂

dl∈Tj

ExD(dl)] Available expertise

∀ (dpl : wi → wj) ∈ Dep : tb(wi, Tai
, Pai

) ≤ te(wj , Taj
, Paj

) Dependences met

∀ Ti, Tj ∈ T : ∄wk ∈ W | MwT (wk, Ti) ∩ MwT (wk, Tj) 6= φ One team per WP

∀ wi ∈ W : ExW (wi) ∈
⋂

dl∈MwT (wi)

ExD(dl) Appropriate expertise

3.2. Modeling the maintenance/development process as a queuing system

We start by assuming that all WPs belong to the same category,thus no particular expertise
is required from the developer. Then, in Section 3.5, we relax this constraint, describing how
teams of specialized developers will be handled.

To solve the problem defined in Section 3.1 with a search-based approach, the software
development/maintenance is modeled as a queuing system [3]. However, we don’t use the
queuing theory as in [3], but rather we build a queuing simulator that simulates how WPs—
ordered as determined by possible solution of our problem—flow into teams (or wait in the
queue for an available team), and are then processed.
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Figure 2. Solution representation.

As shown in Figure 1, a queuing system can be described as “customers” arriving for
service (WPs in our case), waiting for service (developmentor maintenance task) if it is
not immediate, and leaving the system after being served (byteam of developers, referred as
“servers” in queuing theory). Further details on queuing theory can be found in the book by
Gross and Harris [42].

In the context of software project planning, given a possible problem solution, i.e., a
distribution of developers among teams, and a permutation over the WP ordering, the queuing
simulation is used to compute the project completion time. Observe that the order in which
WPs enter into the queue determines the team to which the WP isassigned (i.e., the first
available one).

A search-based project planning approach includes the following components:

1. the heuristic for solution generation. For instance, those described in Section 4. The
heuristic approach generates a solution;

2. the fitness of the objective(s) to be optimized. For instance, solution completion
time and, if necessary, other dependent variables such as schedule fragmentation (see
Section 3.4.1). These objectives are evaluated by means of aqueuing simulation, and
used by the heuristic to guide the generation of next solutions.

The search–based optimization process iterates these two steps until the heuristic stopping
criteria is satisfied. That is, the process continues to generate and evaluate candidate solutions
until either a set of acceptable solutions are discovered orthe process is ‘timed out’.

3.3. Solution Representation

Consider a project modeled as a single node queuing system. Given this, a solution to the
project planning problem can be represented in a2-array data structure as shown in Figure 2.
The first array represents the WP ordering in the incoming queue; it is aM -sized array (where
M is the number of WPs), and the value of an entry indicates the position of the WP in
the incoming queue, for a single-queue/multi-server queuing system. As shown in Figure 2,
the second array is an array of sizeN , whereN is the number of developers available for
the project. Each value of the array indicates the team to which a developer is assigned.
Section 3.5 explains how the representation is extended to allow for specialized teams.
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(a) WP dependences
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(b) Schedule with fragmentation
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(c) Schedule without fragmentation

Figure 3. Example of fragmented schedule and of non-fragmented schedule with a higher completion time.

3.4. Evaluating a solution: the fitness function

As explained in Section 3.2, the quality of a solution—referred as “fitness function”—
in metaheuristics is quantified as the completion time and fragmentation, estimated by the
queuing simulator. Basically, the simulator picks incoming requests from the queue and sends
them to available teams, and for each one of them, givens the size of the team to which the
request is dispatched ande the estimated effort for the WP, the time necessary to complete
the WP will be consideredt = e/s.

As will be discussed in Section 5.5, due to Brooks’ law [40], this could be an optimistic
assumption, i.e., the time required to complete a task mightnot be just the effort divided by
the team size because, for example of overhead due to team member communication, or to
training activities needed when adding a new team member to an ongoing activity. Truly, this
does not lead the approach generalizability, and reasonable given the nature of the projects
we used as case studies. In fact, the model can be generalizedto situations in which Brooks’
law does apply by the simple introduction of a non-linearityfactor. Generalized models taking
care of communication overhead are discussed elsewhere [41]. The overall project completion
time will be equal to the time elapsed from when the first WP is sent into the system to the
time when the last WP has been completed.

The completion time depends upon the particular queuing configuration (determined by
varying the distribution of developers across teams) and the given WP ordering. However,
the search algorithm must be able to handle dependences between WPs. Among the different
ways of handling constraints in metaheuristic search algorithms [43, 44], we chose to repair
solutions violating constraints, i.e., searching for neighbor acceptable solutions:

1. WPs are seeded into the queue in the order specified by the first line of the
representation.

2. Every time a team is available, the dispatcher tries to assign it the WP in front of the
queue. In case such a WP cannot be handled yet because of a dependence, the schedule
searches back in the queue until it finds a WP that can be handled.

3. If the dispatcher is able to find a WP, it will be assigned to the available team. If not,
this means that no assignment is currently possible, because one of the WPs currently
under work needs to be completed before any of the waiting WPscan be assigned. In
that case, simulation proceeds leaving the available team “idle”.

It is important to remark that, given any possible schedule,this always corresponds to a
WP ordering in the queue. In fact, the combination of WP ordering, WP required effort, team
staffing level, WP dependencies, and the above mentioned rules to dispatch WPs to teams
determines the assignment of WPs to teams.
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Figure 4. Multi-objective project planning: Pareto front and dominating/dominated solutions.

3.4.1. Dealing with Schedule Fragmentation – Multi-Objective Optimization

As described before, when there are dependences between WPs, there might be cases for
which the schedule generated to minimize the project completion time requires that some
teams remain inactive for a period of time. While it would be acceptable that a team starts
its work later or finishes earlier (in that case staff can be assigned to other projects), it is
an additional goal to avoid—or at least to limit—schedule fragmentation. That is, we seek
to limit the schedule fragmentation, defined as the total number of idle days for teams that
have been already assigned to the project. Although idle days may not always be a problem—
e.g., they could be used for training purposes—they, nonetheless, represent an additional,
unwanted cost for the project and a potential waste of resources, especially if this happens for
larger teams. On the other hand, given a distribution of developers across teams, there may not
exist a schedule with no fragmentation. Furthermore, even if there did exist a fragmentation-
free schedule, it may be unacceptably expensive.

Reducing completion time and schedule fragmentation are two potentially conflicting
objectives, since solutions achieving a shorter completion time can exhibit higher schedule
fragmentation, and vice versa. Let us consider the example in Figure 3, where (i) for each WP
the effort needed is of one person day, (ii) both Team A and B are composed of one developer
only, and (iii) WPs have dependences as illustrated in 3-a (WP1→ WP3 indicates that WP1
must be completed before WP3 starts). In this example, we canhave a schedule like the one in
Figure 3-b, where the completion time is of three days, however Team B suffers of a schedule
fragmentation, or the one in Figure 3-b, where there is no fragmentation but the completion
time is of four days but the Team B works just one day,

For this kind of situation, instead of having one problem solution achieving a compromise
between the two objectives, the manager might want to chooseamong different possible
solutions. To this aim, we can use Pareto optimality. With Pareto optimality, one cannot
measure to whatextenta solution is better than another. However, it is possible todetermine
whethera solution for a multi-objective problem is better than another. That is, given two
solutionsx1 andx2:

F (x1) < F (x2) ⇔ ∃j | fj(x1) < fj(x2) ∧ ∀i fi(x1) ≤ fi(x2) (2)

wherei ∈ O, the set of all problem objectives. In other words, one solution is better than
another if it is better for at least one objective (fitness function) and no worse for all the
others. If this does not happen—e.g., a solution is better for one objective, but worse for
another—then two solutions are incomparable, and the user might have to decide whether to
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Figure 5. Schedule with specialized queues: (a) multi queueapproach, and (b) representation.

give priority to one objective or the other.
When searching for solutions using Pareto optimality, the search produces a set ofnon-

dominatedsolutions (referred as a “Pareto front”) rather than a single solution. Non-
dominated means that there do not exist other solutions thatare better in terms of all the
objectives. For example, in Figure 4 solutionsx1 andx2 belong to the Pareto front: while
x1 is better in terms of schedule fragmentation,x2 is better in terms of completion time.
Instead,x3 belongs to the dominated (shaded) area ofx1, being worse thanx1 in terms of
both objectives. Details on multi-objective optimizationcan be found elsewhere as [6, 44].

Since, differently from the completion time, the fragmentation is not a regular function, and
since when solving the problem formulated in Section 3.1 a heuristic would attempt to start
dispatching a WP to a team as soon as possible—this, in the scheduling theory, is referred
as a “semi-active schedule” [45]—there is no guarantee thatthe solution found is the global
optimum.

Another scenario in which multi-objective optimization can be useful in this context is
when one wants to balance between minimizing the completiontime and having a lower
staffing level. In this case we will have a Pareto front like the one in Figure 4, where, for
decreasing staffing levels (x-axis), we can have increasingproject completion time (y-axis).

3.5. Employing specialized developers

Until now we have assumed that developers/maintainers are sufficiently skilled to be
allocated to any task. When this is not the case, the single-queue model shown in Figure 1
becomes a multi-queue system, where each queue dispatches requests related to a team
composed of developers having expertise for a particular specialization (see Figure 5-a).
Although a developer can have more than one expertise, in this paper we assume—in the
context of a project—to assign a developer to a single specialization only. Future work will
deal with more complex scenarios. For example, by creating team corresponding to the
various possible combination of expertise and dynamicallychanging team composition on
demand.
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The problem representation (Figure 5-b) is similar to the one for a staged
development/maintenance process. WP ordering is once again represented as an array, where
WPs are labeled according to the specialization. There is noneed to have separate ordering
since a permutation of such an array also determines the order WPs flow in the separate,
specialized queues. The allocation of staff into specialized team is represented by means on
P arrays, one for each expertise. Also in this case, as explained in Section 3.4 the schedule is
properly repaired to handle dependences, which can occur between WPs related to the same
or different specialization.

4. Solving the project staffing problem

Once the project planning problem has been modeled, a representation provided and a fitness
function described, we can use different search based algorithms to solve it. We applied
GAs, Stochastic Hill Climbing (SHC), and Simulated Annealing (SA) in order to experiment
with those optimization techniques most widely used in SBSE(these techniques account for
those used in over 80% of all SBSE publications according to arecent comprehensive survey
[13]). SHC and SA will be used as single-objective optimization techniques, with the aim of
(near) minimizing the project completion time only. As detailed in Section 4.1.2, GAs will
be used both as single objective technique—and compared with SHC and SA—and multi-
objective techniques with the aim of considering both completion time and fragmentation as
(potentially conflicting) objectives.

4.1. An overview on the search-based algorithms used

Below we briefly describe the three algorithms we adopted to solve the scheduling and
staffing problem. Further details can be found in books by Goldberg [46] or by Michalewicz
and Fogel [44].

A GA may be defined as an iterative procedure that searches forthe best solution of a given
problem among a population having a constant or variable size, and represented by a finite
string of symbols, thegenome. The search starts from an initial population of individuals,
often randomly generated. At each evolutionary step, individuals are evaluated using afitness
function and selected using aselection mechanism. High-fitness individuals will have the
highest reproduction probability. The evolution (i.e., the generation of a new population) is
affected by two genetic operators: thecrossover operatorand themutation operator. The
crossover operator takes two individuals (theparents) of the old generation and exchanges
parts of their genomes, producing one or more new individuals (theoffspring). The mutation
operator has been introduced to prevent convergence to local optima; it randomly modifies
an individual’s genome (e.g., by flipping some of its bits when the representation is a binary
string).

SHC is a local search method, where the search proceeds from arandomly chosen point
(solution) in the search space by considering the neighbors(new solutions obtained by
mutating the previous solution) of the point. Once a fitter neighbor is found this becomes
the current point in the search space and the process is repeated. If, after mutating a givenx
number of times no fitter neighbor is found, then the search terminates and a maximum has
been found (by definition). To avoid local maxima, the hill climbing algorithm is restarted
multiple times from a random point.
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Figure 6. Crossover and mutation operators for WP ordering and developers allocation to teams.

SA [47], like hill climbing, is a local search method. However, simulated annealing has a
‘cooling mechanism’ that initially allows moves to less fit solutions if p < m, wherep is
a random number in the range[0 . . . 1] andm a value that decays (‘cools’) at each iteration
of the algorithm according to the following lawm = e∆fitness/T , whereT (temperature) is
T = Tmax · e−j·r (Tmax it the starting temperature,r is thecooling factor, j the number
of iterations), and∆fitness is the difference between the fitness values of the two neighbor
individuals being compared. The effect of ‘cooling’ on the simulation of annealing is that the
probability of following an unfavorable move is reduced. This (initially) allows the search to
move away from local optima in which the search might be trapped. As the simulation ‘cools’
the search becomes more and more like a simple hill climb.

Below we detail the operators used for the GA. SHC and SA can beapplied using, as
operator for generating a neighbor solution from an existing one, the mutation operator
defined for the GA.

4.1.1. Genetic Algorithm Configuration and Operators

To construct a GA for a given problem, we need to define the representation, the fitness
function, the GA operators (selection, crossover and mutation) and choices of settings for
other GA parameters. We used a simple (i.e., with a non-overlapping population) GA, with
a roulette wheelselection mechanism and an elitism of 2 individuals (i.e., the best two
individuals are guaranteed to survive across generations). The GA representation adopted
is the two-array representation of Figure 2, extended to then-array representation when
separate queues with teams of specialized developers are needed (Figure 5-b). The fitness
function is evaluated as described in Section 3.4. The population is randomly initialized
with individuals where (i) the WP ordering is randomly determined and (ii) for each queuing
node the available staff is randomly grouped into teams. Thecrossover operator (Figure 6-a)
produces an offspring of two new individuals (o1 ando2) starting from two parents (p1 and
p2). The first row of the parents (representing the WP ordering)are re-combined as follows:

1. A random positionk, is selected in the chromosome.
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2. The firstk elements ofp1 become the firstk elements ofo1.
3. The lastN -k elements ofo1 are the sequence ofN -k elements which remain when the

k elements selected fromp1 are removed fromp2.
4. o2 is obtained similarly, composed of the firstN -k elements ofp2 and the remaining

elements ofp1 (when the firstN -k elements ofp2 are removed).

For the remaining rows (encoding the staff distribution to each queue handling requests for
a particular expertise), a standardsingle-pointcrossover is used.

The mutation operator (Figure 6-b) works as follows:

• it randomly decides whether to alter the WP ordering or the staff distribution;
• if the WP ordering is to be mutated then the mutation operatorrandomly selects two

WPs (i.e., two array items) and exchanges their position in the queue;
• if the staff distribution is to be mutated, then:

– if there are separate queues, the queuing node (i.e., the chromosome rowr—where
2 ≤ r ≤ ||Ex|| + 1, ||Ex|| is the number of separate queues handling requests
for particular expertises—in which the mutation has to be performed is randomly
chosen;

– mutation is applied, by randomly choosing a staff member andchanging his/her
team. It is worth pointing out that the random number generated by the mutation
operator is an integer ranging from 1 to the maximum number ofstaff available.
The cardinality of the set of numbers present in the genome determines the number
of teams (servers) of the queuing model. Clearly, a cardinality equal to the number
of developers available indicates that each team is composed of a single staff
member, while a cardinality equal to one indicates that a single server (composed
of all staff) is used.

After a new individual has been generated by means of the initialization, crossover or
mutation operator, it is repaired as discussed in Section 3.4, in order to ensure that precedence
constraints are respected.

4.1.2. Configuration and Operators for the Multi-ObjectiveGenetic Algorithm

When a multi-objective optimization, as mentioned in Section 3.4.1, needs to be performed,
we used the Non-dominated Sorting Genetic Algorithm II (NSGA-II) approach proposed by
Debet al. [48]. NSGA-II is a multi-objective optimization algorithmthat incorporates elitism
to maintain the solutions of the best front found.

A naive multi-objective optimization algorithm would require O(M N) comparisons to
identify each solution of the first nondominated front in a population of sizeN and withM
objectives, and a total ofO(M N2) comparisons to build first non-dominated front. This
because each solution needs to be compared with all other solutions. Since the above step has
to be repeated for all possible fronts—which cat be at mostN , if each front is composed of
one solution—the overall complexity for building all fronts isO(M N3).

NSGA-II uses a faster algorithm for nondominated sorting, which has a complexity
O(M N2) (as shown in the paper by Debet al. [48]):

1. for each solutionp in the population, the algorithm finds the set of solutionsSp

dominated byp and the number of solutionsnp that dominatep. The set of solutions
with np = 0 are placed in the set first frontF1.
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2. ∀p ∈ F1, solutionsq ∈ Sp are visited and, ifnq − 1 = 0, then solutionq is placed in the
second frontF2. This step is repeated∀p ∈ F1 to generateF3, etc.

To compare solutions, NSGA-II uses the “crowded comparisonoperator”. That is, given
two solutionsx1 andx2, x1 is preferred overx2 if it belongs to a different (better) front.
Otherwise, ifx1 andx2 belong to the same front, the solution located in the less crowded
region of the front is preferred.

Then, NSGA-II produces the generationt + 1 from generationt as follows:

1. generating the child populationQt from the parent populationPt using the binary
tournament selection and the crossover and mutation operators defined for the specific
problem;

2. creating a set of2N solutionsRt ≡ Pt
⋃

Qt;
3. sorting Rt using the nondomination mechanism above described, and forming the

new populationPt+1 by selecting theN best solutions using the crowded comparison
operator.

For the particular problem of balancing between the completion time and the staffing level,
crossover and mutation operators need to be slightly changed to allow for a variable staffing
level. The problem is simply dealt by using, for the developer allocation to teams, the same
pigeon-hole representation described in Section 3.3, allocating as many slots in the array
as the maximum number of developers available for the queue.Then, each slot can either
contain a non-negative integer indicating the team where the developer is allocated, or -1 if
the developer is not allocated at all. In such a case:

1. the crossover operator works as described in Section 4.1.1. However in case one
individual of the produced offspring exhibits a staffing allocation below a (fixed) lower
bound, then the crossover is rolled-back;

2. the mutation operator randomly selects a developer and assigns it to a randomly chosen
team, or to the pool of unassigned developers (slot value=-1). Also in this case, if the
total staffing of the queue is below a lower-bound, the mutation is rolled-back.

5. Empirical Study

The objective of this empirical study is to evaluate the effectiveness and the performance of
different search-based techniques, combined with queuingsimulation, to determine project
planning, i.e., the distribution of the staffing across teams and WPs assignment to teams.

The context of our study is constituted of two maintenance projects, hereby referred as
Project AandProject B. Project Awas a massive maintenance project aimed at fixing the
Y2K problem in a large financial software system from a European financial organization. The
entire system was decomposed in 84 WPs, each one composed, onaverage, of 300 COBOL
and JCL files. No WP dependence was documented and thus no constraint has to be satisfied
in Project Ascheduling. Further details can be found in the paper [3].

Project Bis composed of 108 WPs for which WP inter-dependence information is available.
Though a little smaller (in terms of total effort required) than Project A, the presence of
a total of 102 dependences between the project’s WPs (Figure7) considerably complicates
the problem of project management. The project is aimed at delivering the next release of
a large data intensive software system, written in several languages, including DB II, SQL,
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Project A Project B

Total # of WPs 84 108

Dependences – 102

Min. Effort 2 1

Max. Effort 306 60

Median Effort 29 4

Mean Effort 51 5

Std. Dev. Effort 59 6

Total Effort 4287 525

Table I. Descriptive statistics for the two projects (effort is expressed in person days).

and .NETTM . The project involved members of staff who had been developing the project
previously and so unfamiliarity with the work and consequent training time was not an issue.
Although all developers taking part in the project worked onany WP, it is possible to classify
WPs according to the main expertise required for each one. Inparticular, there are 32 WPs
related to database creation and maintenance, 14 to Graphical User Interface, 11 related to
networking (LDAP), 12 related to Middleware, and 16 relatedto the core application domain.

This information will be used in Section 5.3.4 to simulate the possibility of employing
specialized developers, i.e., developers having the expertise required to process a given WP
(in this project, each WP requires only one expertise). Descriptive statistics of WP efforts for
the two projects are reported in Table I.

Although bothProject A andProject B are maintenance projects, this does not lead the
applicability of the proposed approach to other activities, such as coding, testing, etc.

5.1. Research Questions

The research questions this study aims at investigating arethe following:

• RQ1: Performance
How do different search algorithms compare in terms of the interms of project
completion time after a fixed number of evaluations?

• RQ2: Effect of varying the staffing level
How do estimated project completion times and the distribution of developers across
teams vary under different staffing levels, i.e., total number of developers available?

• RQ3: Fragmentation effects
What is the effect of staffing level and completion time on fragmentation?

• RQ4: Employment of specialized developers
What will be the completion time for different staffing levels if WPs need to be
dispatched to teams of specialized developers?
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Figure 7. Dependences among WPs for Project B. Letters indicate the WP category (C: Core, D: Database, N:

Networking, M: Middleware, G: GUI).
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5.2. Empirical study settings and instrumentation

In order to facilitate replication of our work, in this section we report the details of the
parameter settings used in our experiments. Settings were performed by means of a trial-and-
error procedure, starting from parameter settings suggested by the literature [49].

SA parameters were set up as follows: maximum temperatureTmax = 0.30, minimum
temperatureTmin = 0.01, cooling factorr = 0.001. GA simulations were run considering
the following parameters:

1. non-overlapping GA with elitism of two individuals;
2. population composed of 50 individuals;
3. 250 generations forProject A and 100 forProject B. Such a stopping criterion

was determined by identifying the number of generations over which no further
improvement was obtained (doubling the number of generations we obtained an
improvement of less than 5%). The number of generations forProject Bis smaller since,
because of the presence of dependences, the degrees of freedom for WP ordering are
reduced;

4. mutation probability 0.1, crossover probability 0.7.

Multi-objective optimization (used to address research questions 3 and 4) was performed
with an NSGA-II algorithm for which the same configuration used for the single-objective GA
was used. To make the comparison between different algorithms fair, the number of restarts
for SHC and SA was chosen so to generate the same number of solutions as for GA, and in
any case the algorithms is stopped once such a maximum numberof evaluations has been
reached.

To reduce the bias of randomness, each experiment was repeated 30 times and statistics of
all runs are reported in form of boxplots.

5.3. Empirical Study Results

This subsection reports results from the application of theproposed search-based staffing
approach to the two projectsProject AandProject B.

5.3.1. Comparing the different search algorithms

To answerRQ1 andRQ2, we analyzed the evolution of the minimum completion time over
the same number of solutions generated by the different algorithms and by random search. In
this section we aim at minimizing completion time only (without considering fragmentation)
intended to be one of the ultimate goals for a project manager, which requires to complete the
project in the minimum time possible, or to meet a deadline negotiated with the customer.

For GA this means that it generates a number of solutions =population size· number
of generations. Random search generates each time a random WP ordering and arandom
assignment of developers across teams. Comparisons were performed for a fixed staffing
level, i.e., 46 developers forProject A(as estimated in a previous work [3]), and 20 developers
(the actual staffing) forProject B. Figure 8 shows boxplots of estimates obtained by the
different algorithms for the 30 runs.
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Figure 8. Boxplots of estimated project completion times for different algorithms.

Project SA SHC GA

A RND 3·10−11 0.015 3·10−11

SA – 4·10−11 0.015

SHC – – 3·10−11

B RND 2·10−7 2·10−6 1·10−10

SA – 2.9 · 10−5 0.18

SHC – – 1·10−5

Table II. Comparison between different algorithms using a two-tailed Mann-Whitney unpaired test of estimated

project completion times.

First, we compared every algorithm with random search and with other algorithms, using
the non-parametric two-tailed Mann-Whitney test. Resultsshown in Table II and boxplots
in Figure 8 indicate that all algorithms outperform random search. Moreover, for both
projects SA and GA outperformed SHC. However, while inProject A—the project without
dependences between WPs—SA significantly outperformed GA,this is not the case for
Project B—the project with dependences between WPs—where no significant difference was
found between SA and GA. In the following, to answer the remaining research questions, we
report results for SA in the case ofProject Aand for GA in the case ofProject B.

5.3.2. Completion time and distribution of developers for different staffing levels

RQ2 analyzes the effect of staffing levels on completion time andon distribution of
developers across teams. Such a research question is relevant for a manager who would like
to decide how to adjust his/her project staffing to be able to complete a project within a
given date. Figure 9 shows boxplots of estimated completiontimes for the two projects. To
evaluate the cost/benefit tradeoff due to staff increasing,we used the ratio ∆ time

∆ staffing . Results
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Figure 9. Boxplots of estimated project completion times for different staffing levels.
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Figure 10. Boxplots of number of allocated teams for different staffing levels.

are different for the two projects. ForProject A the staffing increase 35–40 exhibit a high
ratio (2.6); then for further increases the ratio decreases(0.66 for the increase 40–46, 1.7 for
46–50 and 1.2 for 50–55). ForProject Bthe ratio is high (2.4) for the increase 10–15, then it
decreases to 1.2 for 15–20. For further staffing increases, the ratio tend to be very small (0.2
for 20–25 and 0.4 for 25–30).

Let us now analyze how developers are distributed across teams. Figure 10 shows the
number of allocated teams for different staffing levels. ForProject A the median number
of teams tends to increase only slightly for staffing levels above 50. ForProject B, where
there are WP dependences, a staffing increase between 25 and 30, although does not reduce
the completion time, causes an increase of the number of allocated teams.

5.3.3. Reducing schedule fragmentation

RQ3 deals with reducing schedule fragmentation, that can occurin all cases where there
are dependences among WPs. In fact, teams might have to wait until blocking dependences
of an incoming WP are solved (as inProject B). Figure 11 shows an example of Pareto front
obtained by means of a multi-objective NSGA-II optimization, as explained in Section 3.4.1,
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Figure 11. Project B: Tradeoff between completion time and schedule fragmentation.

and considering a staffing level of 20 developers. The two conflicting objectives are the
completion time and the idle person days. Using the Pareto front, the manager can select
solution achieving, for example a low number of idle person days (8), accepting a higher
completion time (42 days). Alternatively, the manager can see that there also exist valid
solutions with a higher number of idle person days (24) but a shorter completion time (37).

In the Pareto-based search, all objectives are treated equally so that no trading off between
objectives takes place until the manager consults the Pareto front. In this way, the Pareto-
based approach makes a suitable delineation of responsibilities, separating those aspects of the
problem that require human expertise and judgment from thatwhich can be easily automated
and which concern the tiresome, repetitive and less imaginative aspects of the search.

5.3.4. Dispatching WPs to specialized teams

To answerRQ4, we simulated, forProject B, the availability of developers having
specialized skills. A multi-objective NSGA-II algorithm was used to determine WP allocation
and developers distribution across specialized teams. In this case, the NSGA-II considered as
objectives the project completion time and the staffing level. Since in this case we had to deal
with expertise, the model was instantiated as explained in Section 3.5 and shown in Figure 5,
i.e., with five separate queue, each one handling WP requiring a particular expertise. The
algorithm considered solutions with a staffing level, for each queue, varying between 2 and
10, which resulted in an overall staffing level between2 · 5 = 10 and10 · 5 = 50 developers.

The multi-objective NSGA-II produced Pareto fronts composed of solutions for different
staffing levels and different completion times. An example is shown in Figure 12. As
expected, completion times tend to be higher than the ones with the same staffing level
reported in Figure 9-b, where it was assumed that developerscould have worked on any
WP. The inclusion of skills-match as a constraint makes the problem harder with a tendency
to increase completion time. For example, for a staffing level of 20 developers the completion
time increased from 34 to 50; for higher staffing levels (30) the difference is smaller, i.e., from
31 to 34.

Table III shows how resources are allocated across teams fordifferent staffing levels. Note
that the configurations reported here only represent examples of solutions that can be obtained
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Figure 12. Dispatching requests to specialized teams.

Completion Total Database GUI Networking Middleware Core

Time Staffing

58 18 1,2 1,1,2 1,1 1,2 1,2,3

56 19 1,2 1,1,2 1,1,1 1,2 1,2,3

53 20 1,1,2 1,1,1 1,1,1,1 3 1,2,3

49 21 1,2 1,1,1,1 1,1,1 1,2 1,3,4

48 22 1,2 1,1,1 1,1,1,1 1,3 1,3,4

40 23 2,2 1,1,1 1,1,2 1,3 1,3,4

39 25 2,2 1,1,2 1,1,3 1,3 1,3,4

37 27 2,2 1,1,1,1 1,1,3 1,3 2,3,5

Table III. Staffing of specialized teams: team composition for different staffing levels.

with that staffing levels.x, y, z in a column means that the algorithm allocated, for that queue,
three teams composed ofx, y, andz developers respectively. The search process yields insight
into the effects of skills-matching on team sizes. The search is guided by fitness and so there
is a ‘logic’ to the solutions that it is able to locate in the solution space. Inspection of the
results reveals some interesting relationships between the structure of the dependences in the
project and the way in which the search-based algorithms seeks to optimize the allocation of
staff to teams.

For example, consider the Database queue. For this queue, the algorithm attempts to create
teams composed on 2 developers. Database WPs constitute themajority of the WPs, thus
they required short maintenance times, although on most cases they did not block other WPs,
as shown in Figure 7. Perhaps the most interesting situationoccurs with the GUI queue:
the number of developers did not necessarily increase with ahigher total staffing (and a
smaller completion time). This is because almost all GUI WPsare independent of other WPs.
Therefore, project completion time tends to depend upon other WPs.
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Notice that, for the Network queue, the algorithm allocatedmany singleton teams. This
turns out to happen because Networking WPs impose dependences on several groups of other
WPs. Therefore, working on Networking tasks in parallel is highly efficient for this problem
structure. For Middleware, the algorithm allocated a larger team (composed of 2-4 developers)
plus (except for a staffing of 20) one singleton team. This is because most these WPs were
sequentially dependent: the only way to complete them in a short time is to create larger
teams. Finally, the team allocation was consistent, when increasing the staffing, for the Core
queue: a smaller team, a medium team, and a larger team to be able to handle Core WPs that
were of different size and on which many other WPs are dependent on.

5.4. Discussion

When comparing different algorithms (RQ1) it is evident that SA and GA outperform SHC.
Despite the use of random restarting, hill climbing still suffers from the fact that solutions tend
to get trapped into local optima, while it is known that GA canavoid this problem and that
SA is able to improve it because of its capacity to temporarily accept worse solutions. The
performance of both GA and SA in our experiments provide evidence to support the claim
that it is worthwhile adopting of one of these two algorithmsin a tool that act as a project
management assistant.

The proposed approach permits the decision maker to analyzethe variation in best
completion time when increasing or decreasing the staffing level (RQ2). As might be
expected, the case studies reveal that, in the presence of a large number of dependences,
staffing increments over certain values do not produce improvements in project completion
time, since dependences limit the level of parallelism thatcan be achieved. Of course, in both
cases we are considering projects where Brooks’ law does notapply, thus there is a linear
relationship between staffing levels and time needed to perform the task. Once again, the
availability of analyses performed with the proposed approach gives the manager the ability
to analyze the return on investment of staff time in terms of reduced completion time. This
may help to facilitate the negotiation of deadlines and costs with the software customer.

Differences between the two projects studied in this paper can be seen by considering
how staff is distributed across teams when varying the staffing level. Where there are no
dependences, the approach tends to parallelize the work as much as possible, by creating
a large number of small teams. In projects with a high number of dependences—such as
Project B—larger teams appear more desirable, since they can be used to quickly process
blocked tasks. On the other hand, this is also true when the project contains very large WPs:
such is the case withProject A, where, above a certain staffing level, the search tends to locate
solutions that increase the size of existing teams rather than creating new ones.

When handling projects with dependences among WPs, such asProject B, one phenomenon
that should be limited as much as possible is schedule fragmentation (RQ3). Clearly, there
may be cases in which fragmentation might be acceptable, e.g., when developers are able to
work on different projects at the same time or when there is the possibility of using the idle
time for other activities such as training. By using multi-objective NSGA-II optimization,
the manager can choose among a Pareto front of solutions achieving different compromises
between project completion time and idle person days.

When using queues with teams composed of specialized developers (RQ4), it was noted
that the algorithm tends to understaff queues for categories of WPs that do not block the entire
project (e.g., GUI-related WPs forProject B), while it creates a small number of larger teams
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Config. Singleton # of teams for Total

allowed different sizes # of

1 2 3 4 5 6 7 teams

Generated Yes 3 1 5 0 0 0 0 9

Generated No 0 4 1 1 1 0 0 7

Actual – 0 1 2 0 1 0 1 5

Table IV. Project B: Comparison between generated and actual team allocation.

if WPs of a particular category (e.g., Middleware) must be worked sequentially. In other cases
the algorithm tends to balance between having many smaller teams working in parallel with
large teams able to quickly complete a WP.

Finally, it is interesting to compare the results of our approach with the real project staffing
level and people organization. While forProject A this information was fully available, for
Project B(which comes from a different company) it was not possible toinclude real data
about the projects actual completion time, but only about the staffing level and the distribution
of developers across teams.

ForProject Athe actual staffing level was roughly 80 developers while thecompletion time
of 155 working days. The number of teams varied during the time between 2 and 27 with
a median value of 6, as shown in previous papers [3, 50]. The number of teams working
concurrently in a given day (thus the number of servants in a queuing model) varied from 1 to
12, with a median value of 6. This confirms the fact that industry managers avoided having a
large number of teams composed of few developers, preferring, instead, few teams composed
of more developers. This permitted to minimize the risks, also because developers were also
working on other, different tasks. If comparing, for the same staffing level (46 developers) the
completion time with the one estimated in paper [3], the new developers distribution and WP
assignment to team permitted a median completion time of 116working days instead of 155
working days.

Differently fromProject A, the resource allocation forProject Bwas done at the beginning
of the project and not changed anymore. Table IV compares theactual distribution of
developers across teams with the ones instantiated by our approach. As shown, actual
assignment is closer to the automatically generated assignment when preventing the creation
of singleton groups. This confirms the conjecture that managers tends not to create such a
kind of teams. The most tangible difference is the presence in the actual allocation of a team
composed of 7 developers, supplied, in the generated allocation, by a large (four) number of
2-developers teams, that can better permit the parallelization of work.

5.5. Limitations, Assumptions and Threats to Validity

The evaluation of approach presented in this paper relies onthe two real world projects
for which we were able to obtain data. Naturally, these projects may not be typical and
so care is required in extrapolating the results. In particular, neither project had mutually
interdependent WPs (cyclical dependences) or WPs that had to be processed in parallel at the
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same time nor requirements for specific skill assignments. Naturally, this may be different
in other software projects, thereby requiring a change in formulation. Notwithstanding the
precedence constraints imposed by dependences, non overlapping WPs means that each WP
can be treated as an atomic unit of work. A different formulation would be required to handle
overlapping WPs.

Expertise was treated as Boolean property; either a developer has the expertise or does not.
Our real world projects did not have expertise data and we didnot think it right to develop
sophisticated approaches based on mere speculation. Finally, we also assumed that each WP
required only a single expertise.

Each of the two projects also has its own set of limitations and assumptions, that were
made by the managers who collected the data and this has a consequent effect upon the way
in which we are able to experiment with the data.

Project Awas the simpler of our two real world projects, because it involved maintenance
interventions were performed almost semi-automatically and involved highly standardized
activities. The project involved searching for year fields and making them Y2K compliant by
inserting a source code fragment implementing a windowing mechanism. In such conditions,
it is possible to make the assumption of interchangeabilitybetween people and months. That
is, given a maintenance team size,s and the effort requirede, the timet necessary to perform
the task ist = e/s .

Of course, in general, due to Brooks’ law [40], this could be an overly optimistic
assumption. However, as other authors have noted [39], given the small team sizes (fewer
than eight developers) and the standard (training-free) nature of the maintenance task, this
approximation was considered reasonable. Therefore, results may not be limited merely to
similar ‘defined task’ maintenance interventions but may also apply to other projects.

For Project B, we also make the assumption that staff can be allocated to different WPs
without a need for re-training. This does not directly contravene Brooks’ law, because we
make no attempt to allocate new staff to work on a WP that has already underway. Thus,
it could be said that we observe Brooks’ law at the micro level, but at the macro level, we
assume that there is no need for re-training.

The remainder of this section, formally considers the threats to validity that may affect
the extent to which the empirical results of any study can be generalized. We shall consider
these general treats to validity and the way in which they affect the extent to which the results
presented in the paper can be generalized and relied upon.

Construct validitythreats may be due to the simplifications made on the maintenance
process modeled, as well as to the assumptions made in Section 5.5. However (i) more
complex maintenance processes can be modeled using queuingnetworks as shown in
paper [3] without preventing the applicability of the proposed approach (ii) this paper
has shown how it is possible to consider a multi-queue configuration to allocate teams of
specialized developers, and (iii) effects such as communication overhead can be introduced
in the relationship between completion time and effort as shown in paper [41].

Internal validity threats, in our case study, can be due to the randomness of theresults
obtained when running the different algorithms. To limit such a threat, different actions were
taken:

• First and foremost, we carefully calibrated the parametersfor each algorithm, the
number of comparisons needed by SA, SHC and RND and the numberof generations
and the population size needed by GA. The chosen values were determined ensuring that
further increases do not significantly affect the results, and we compared the different
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algorithms over the same number of solutions generated.
• To avoid results being affected by randomness, as mentionedin Section 5.2 each

experiment was performed 30 times, and statistics over the different runs were reported.

With regards toExternal validity, as explained earlier, the results obtained can be extended
to projects where communication overhead does not affect the performance of the teams. For
all the other cases, there is the need for a more complex model. Nevertheless, this does not
affect the applicability of the overall approach, once factors such as communication overhead
have been modeled in the fitness function, as shown in other work paper [41].

6. Conclusion

This paper presented a comprehensive treatment of a search-based approach to software
project planning, showing how search-based techniques canbe used to address problems
of staffing level adjustment, allocation of staff to teams, reduction of project fragmentation
and team composition based on different programmer expertise and WP required knowledge.
These problems are believed to be particularly acute in software projects, yet hitherto, there
has been little work on the application of search-based optimization techniques for addressing
these problems.

The paper reported empirical results from the application of search techniques to two large
scale, real world maintenance and evolution projects. The results show that both Simulated
Annealing and Genetic Algorithms can construct solutions that have the potential to provide
valuable decision support to software managers. The results also show that the search-based
approach implicitly maximizes parallelism in the project to shorten completion time and
reduce fragmentation. The data also shed light on the impactof dependences in software
projects. Finally, the approach allows for balancing conflicting objectives such as completion
time, staffing level and resource allocation by using multi-objective optimization, providing
the manager with Pareto fronts of possible solutions ratherthan single solutions.

The proposed approach cannot be considered a substitute to the managers’ activity related
to project planning and staffing: personal experience, plusthe knowledge of the organizational
structure, of people skills and working attitude are vital to effectively plan a project. The
manager is the sole judge of feasibility and soundness of computed solutions; approaches
as the one presented in this paper aim at supporting manager activity when the space of
solutions is so large that the manual or exhaustive search became daunting tasks. Indeed,
(semi)automatic approaches can be a useful contribution, providing managers with initial
solutions that can be refined taking into account factors notcaptured by the model.

Work-in-progress includes empirical studies aimed at evaluating the robustness and
sensitiveness of schedules generated by the proposed approach [32]. Also future work is
devoted to add further levels of complexity to the proposed model for example:

• the presence of interdependent (overlapping) WP requiringsome joint work;
• the use of a more sophisticated model of expertises. For instance, instead of considering

expertise as a Boolean property, one can imagine that there might be developers with
low, medium or high expertise, as in the work of Gutjahret al. [36] and Stummeret
al. [20]. Moreover, complex projects might require more than one expertise for each
WP, thus future extensions of the approach proposed in this paper should support that.

• the possibility of periodically re-organizing the people distribution to teams, as well as
the possibility (as in [36, 20]) that developers might only spend part of their available
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time on the WP they have been assigned to.

Last, but not least, we intend to consider further optimization techniques, in particular to
handle multi-objective optimization (e.g., comparing solutions provided by NSGA-II with the
exact Pareto front).
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