SOFTWARE—PRACTICE AND EXPERIENCE

Softw. Pract. ExperQ0(00), 1-7 (2009) Prepared usingpeauth.cls [Version: 1999/06/11 v1.1a]

The use of Search-Based Optimization Techniques to
Schedule and Staff Software Projects: an Approach and
an Empirical Study

Massimiliano Di Pentg Mark Harmari*, and Giuliano Antonigt*
* Department of Engineering, University of Sannio — PalazzBaste, Via Traiano 82100 Benevento, Italy
**Department of Computer Science, King’s College London anifrLondon WC2R 2LS, UK
***Department of Génie InformatiquEcole Polytechnique de Montréal — Canada

SUMMARY

Allocating resources to a software project and assigning &ks to teams constitute crucial activities that
affect project cost and completion time. Finding a solutionfor such a problem is NP-hard; this requires
managers to be supported by proper tools in performing such a allocation.

This paper shows how search-based optimization techniquesn be combined with a queuing simulation
model to address these problems. The obtained staff and tasgtlocations aim to minimize the completion
time and reduce schedule fragmentation. The proposed appezh allows project managers to run multiple
simulations, compare results and consider trade-offs beteen increasing the staffing level and anticipating
the project completion date and between reducing the fragma&ation and accepting project delays. The
paper presents results from the application of the proposedearch-based project planning approach to
data obtained from two large scale commercial software maitenance projects.
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1. Introduction

Project planning constitutes a vital task for many softwangineering activities, from
development to maintenance. Poor planning can cause caostsdelays that can be
unacceptable, giving the project timing and financial caists. It is well known that poor
planning, together with wrong cost estimation, is one ofrtfen causes of many software
project failures. Of course, there are existing tools swgctha Project Evaluation and Review
Technique (PERT), the Critical Path Method (CPM), Gantigthms and Earned Value
Analysis, all of which can help to plan and track project miitees. While these tools and
techniques are important, they are less helpful when it saimeolving important problems
such as (i) Determining the staffing needed to complete thegrwithin a given date; (i)
Creating working teams with the available developers; @énd\(locating atomic tasks to the
different teams.
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To achieve these objectives, we first need to organize thk (ver, the project) in atomic,
work packages (WPs), often derived from the project WorkaRdewn Structure (WBS).
Then, WP development/maintenance effort is estimatedgusine of the many techniques
available (such as COCOMO [1] or analogy estimation [2])b&quently, staffing can be
determined using a queuing-simulation approach, as peapbg Antoniolet al. [3]. The
project schedule can be further optimized by i) determirihng distribution of developers
into teams and ii) properly assigning WPs to teams. The twtofa are clearly interwoven.
Given a fixed distribution of developers into teams, thernstexa WP assignment to teams
that minimizes the time required to carry out the projectisTdan also be thought of as the
optimal order in which the WPs flow into a queuing network thmtdels the development
or maintenance process [3]. Such resource allocation gmublare instances of the ‘bin
packing problem’, the solution of which is known to be NP¢h§t] and for which, search-
based techniques are known to be effective [5]. For a larfi@vare project, the space of
possible project planning solutions is far too large to sleananually or to adopt exhaustive
enumeration of solutions to locate the optimal project pizgion. The problem of simply
determining the optimal ordering of WPs has search space sizg which is clearly
prohibitively large for non-trivial projects.

This paper explores the way in which search techniques caonmbined with techniques
from queuing theory to produce optimal or near optimal sohg to software project
planning. Specifically, the paper addresses problems iassdovith the determination of
the order in which to process WPs, and their allocation tonteaf developers. Search-
based techniques are not guaranteed to converge to a glairabin; nevertheless they are
able to find near-optimal solutions that are often close ghdo the best possible project
configuration. In our case, the manager is interested to mphe project within a given
deadline or to deliver the product to the customer in a tina¢ihshort enough not to conflict
with his/her other work, and to satisfy the customer dejivequirements.

The decision whether a particular solution can be consitiereeptable is left to the project
manager; the approach simply provides decision supportitwiag for exploration of the
trade offs and inherent tensions between potential soisiti; other words, the approach
aims to aid the manager in her/his scheduling and staffikgnas to replace her/him. In many
software projects, the manager’s task is to balance cantiigpals/objectives such as staffing
level, completion time, or resource utilization, ratheariffinding a global optimum for one of
these objectives. The approach can be applied to both gewelat and maintenance projects,
and accounts for several realistic situations that typiaadcur in real world software project
scenarios, such as:

1. Dependencesin particular, we deal with inter-dependences between .\iiag WP
that has a dependence cannot be handled until the WP on vihdgpénds on have
been processed.

2. Schedule Fragmentation This is a consequence of inter-dependences. If a WP is
assigned to a team and ready to be processed, but WPs upadm tvbEpends have
yet to be processed, the team is potentially idle, awaitorg@etion of pre-requisites.

3. Conflicting objectives Shorter project completion time can be achieved with highe
staffing costs and vice versa. The approach provides thegeandth a Pareto front [6]
of solutions optimizing conflicting objectives.

4. Need for specialized developersin many cases it happens that WPs need to be
dispatched to teams composed of developers specializedoecifis domains or
knowledgeable of a given technology. The approach accofmmtstaff teams of
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specialized developers and addresses the problem of deiregnthe WP allocation
to these specialized teams.

In order to validate the techniques introduced in the papempirical results are
presented from two large-scale case studies of maintermojeets from two large software
development organizations, specifically a Y2K remedialkymoject Project A and a multi-
platform evolution projectHroject B). Project Brequired, overall, less effort thdProject A
while its development activities were constrained by deleeees among WPs. The empirical
study compares the performance of different heuristicgiata Genetic Algorithms (GAs),
Stochastic Hill Climbing, and Simulated Annealing.

More specifically, the primary contributions of this paper as follows:

1. The paper introduces an approach to search based sofivajeet management that
caters for the above four mentioned issues of dependemagméntation, conflicts and
specialization. These four aspects are highly prevalesbftware projects and so any
optimization based approach to project management negusytparticular attention
to them if it is to be useful as a decision support tool forwafe intensive projects.
The approach is also novel because it is the first to use adPapdmal approach to
balancing conflicting concerns in software project managygm

2. The paper adapts several algorithms for search baseaipgtion to apply them to
these problems. The algorithms used in the paper are sidudaitnealing, single and
multi-objective genetic algorithms and hill climbing.

3. The paper presents the results of experiments on datavromarge real world software
projects, which assess the performance of each of the tdgwsj and the effects of
different staffing levels, fragmentation and employmerdpdcialist developers.

The optimization algorithms and methods used in this papecamplex to be understood
by project managers. However, the sophistication of pregoapproach can be easily
‘wrapped’ to hide this complexity; managers need only inpfdrmation with which they
are familiar (e.g., staffing level, developer expertisastmints between WPs and so on).
The results the manager receives are also easily intédigiithout any knowledge of the
techniques being used. This ‘wrapability’ must be an imguarfeature of any approach to
search based software project management, since theateniskers cannot be assumed to
have interest or skills in search based optimization.

The remainder of the paper is organized as follows. Sectitinisses the related work on
the use of search-based techniques to solve software engigg@roblems, and the related
literature on project scheduling and planning. Section 8cdkes the proposed search-
based project planning approach, while Section 4 detaédswhy in which search-based
optimization techniques can be used to find a solution to tbgeet scheduling and staffing
problem. Section 5 presents the results of a series of erpats that evaluate the proposed
techniques on data from the two commercial software prejéghally, Section 6 concludes.

2. Related Work

Search techniques have previously been applied to schedptioblems in general with
good results as described by Davis [7]. The mathematicablgno encountered is, as
described by the author, the classical, NP-hard, bin pgobirshop-bag problem. A survey
of approximated approaches for the bin packing problemeasgmted by Coffmaat al.[8].
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A survey of the application of GAs to solve scheduling profidehas been presented by
Hart et al. [9]. Kolisch and Hartmann [10] also surveyed different teiciues for project
scheduling, although their study was not focused on so#weagineering. Our work shares
with this previous work the finding that techniques such awege algorithms and simulated
annealing represent the best search based techniquesis aéperformance for this kind
of problem. This may be an indication that Search based &odt®Wroject Planning (SBSPP)
may benefit from results from the more general literature rojept scheduling.

However, these previous results have been obtained frorsoftware projects. It is only
more recently that researchers have turned their attetttithre special problems encountered
by software project managers and the ways in which searadbgstimization techniques
can be applied to help to provide mechanisms for decisiopatp

Surveys of the general area of Search Based Software Emigig¢€BSE) that contain a
treatment of SBSPP can be found elsewhere[11, 12, 13], ¢kisos focuses specifically on
the development of SBSPP as a sub area of activity within S&8Ehe relationship of this
previous work to that in the present paper.

Changet al. [14, 15, 16, 17] were the first to publish on SBSPP [14], witleith
introduction of the Software Project Management Net (SPNINwproach for project
scheduling and resource allocation, which was evaluatesirnlated project data. Aguilar-
Ruizet al.[18, 19] also presented early results on evolutionary aptition for SBSPP, once
again evaluated on synthetically created software prajata. Like Aguilar-Ruizet al. our
approach seeks to inform and assist the project managetp meplace the crucial human
element in decision making about project plans.

The allocation of teams to work packages in SBSPP can be thaigs an application
of a bin packing problem [8]. Motivated by this observati@hicano and Alba [21, 22]
applied search algorithms to software projects to seek tbdilocations that achieve earliest
completion time (tightest packed bins, where bins are teamtsWPs are the items to be
packed). The present authors also worked on a similar bikipgdormulation [23] upon
which the present paper builds. Alled al. [24] were the first to experiment with parallel
implementations of SBSE techniques for SBSPP, therebyoiixm) the potential of parallel
computation for improved efficiency.

In the past three years, there has been a significant upsuiigéerest ins SBSPP, with
many different SBSE techniques being applied ot the probkanexample, a scatter search
has been recently applied [25] to the problem of minimizimgjgct completion duration.
Scatter Search was also used by Ad¢hal.[24] but it is a technique not otherwise much used
in SBSE work. Also, several recent papers (published in R[8 27, 28] present results for
formulations of software project planning, evaluated gsipnthetic data.

The present paper is a version of our previous work [23],redee to handle developer
specialization, dependences and fragmentation and aleaded to present more empirical
results and evaluation and additional algorithms (not#i#yuse of a Pareto-optimal approach
for handling conflicts). The use of queuing simulations dsdds on the present authors’
previous work (see Antoniat al. [3]).

None of the previous work on allocation of staff to work pagé&shas used a Pareto-optimal
approach. Also, to the authors’ knowledge the evaluati@vipus work on these problems
has been based solely on synthetic rather than real datéhé-czlated topic of search based
cost estimation for software projects [29, 30, 31], reahdaroutinely used in evaluation, but
for SBSPP there is comparatively little real world data de. Synthetic data is very useful
for experimenting with search based algorithms under oiatt conditions; it facilitates
exploration of scalability and robustness. However, waild data additionally allows the
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researcher to address questions such as the effects okdiffgaffing levels, fragmentation
effects and employment of specialist developers, as we teipresent paper.

In common with the present paper, the authors’ recent workistnreduction for SBSPP
[32] presents an evaluation using real world data and aleptach Pareto-optimal approach.
However, this other recent work [32] is concerned with filgdénrobust project schedule and
does not cater for the issues of fragmentation and devesjileassignment.

Queuing theory was also applied by Ramaswamy [33] to modiélvare maintenance
projects. Simulations of a software maintenance process werformed by Podnar and
Mikac [34] with the purpose of evaluating different processitegies rather than staffing the
system. Recently, Bertolinet al.[35] proposed the use a performance engineering technique,
based on the use of queuing models and UML performance wafileid project managers
for decision making related to the organization of teams tas#ts. We share with them
the idea of using queuing networks to model software preseasd to support managers
in their choices. In our case, the use of search-based tpefmisuggests to managers the
configuration able to minimize the completion time and mazerthe efficiency in resource
usage, also considered an important issue by Bertelirad

Recently, Gutjahet al. [36] and Stummeet al. [20] formulated the portfolio selection
scheduling and staffing problem as a non linear mixed integémization. The proposed
objective function aggregates two terms: a per project gatha global company efficiency
improvement over the scheduled time span. Employees mos&dks, abilities modeled
as competencies; competencies are quantified as real yabssgly changing over time.
Projects are made up by tasks and each task is decomposetéts more work packages.
A work package is a logical unit requiring a given, deterrsiiici and known, effort of a
single competence. Then, the problem is solved using diftareuristics, namely Ant Colony
Optimization (ACO), and GAs combined with a problem-spedifieedy technique. Results
of a study conducted on data from an e-commerce project shola GAs are slightly
superior than ACO except than in some cases.

Several commonalities can be found with the present work.sWWare with Gutjahet
al. [36] and and Stummeet al. [20] the assumption of atomic tasks, the fact that a work
package is organized around a single precise skill and tjie lbivel ideas. However, they
tackle a different problem, the portfolio managment problehile we assume the project
is already assigned. In our formulation we explicitly motled contrasting objectives: the
project completion time and the fragmentation. Completimes and fragmentation are only
implicitely managed by Gutjahet al. and Stummeet al. via constraints. At a higher level,
we sought to determine the Pareto front and let the projectager decide the final project
configuration, while Gutjahet al. and and and Stummet al. compute a solution that mets
the constraints.

Other than search based optimization techniques, of catihee approaches are used for
(software) project scheduling. For example, Constrairgit ®rogramming (CLP).was used
by Barretoet al. [37]. However, the focus of their work is different from outkey aimed
at assigning maintenance requests to the most qualified ireaemms of skills, or to the
cheapest team, or to the team having the highest prodyctihat this aim, they assumed
the existence of a relationship between completion timedmveloper skills. This, however,
was not empirically supported by data from real projectstdad, the authors showed with a
controlled experiment that managers were able to benefiteofaol to schedule a (fictitious)
project better and faster. Results of such an experimentates that automatic project
scheduling approaches can be a valuable support for manadges approaches addressing
different objectives, like ours, are worth of being invgatied.
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Issues connected to empirical studies of software prodessdation modeling are also
discussed by Raffet al. [38], with particular reference to the estimate of simwuati
parameters from real-world data, and to compare actuaksdasithe model’s results. Abdel-
Hamid [39] published an approach based on system dynamidsling to verify the degree of
interchangeability of men and months [40]. Results fromahalyzed case study do not fully
support Brooks’ law. Nevertheless, in case there is comeatioin overhead, the proposed
search-based approach can still be applied, as shown in pacoom paper [41] where the
authors discuss the effect of different communication logad models on the project planning
(and resulting completion time) obtained by means of th@ased search-based approach.

3. The Search-Based Project Planning Approach

The approach presented in this paper allows to find (neaimapsolutions for the following
problem:

Given a set of WPs—having some dependence constraints-randitable pool
of N developers, create teams of developers and assign WiRede teams so
that the project completion time is (near) minimized. Ald® approach shall
(near) minimize the schedule fragmentation, i.e., thd taienber of days in which
developers remain inactive because the WPs they have bsigmed depend on
other WPs still to be processed. Finally, if each WP requirparticular expertise,
the approach shall staff teams composed of specializedajens, so that each
WP is assigned to a team having the proper expertise.

In the following we provide a formal statement of the aboverfolated problem. Then, it
is described how a problem solution can be represented, @andjhality of a solution (the
fithess function) can be evaluated.

3.1. Problem statement

Let us consider a maintenance or development project haagsignedN developers
D = {di,ds,...,dy} and composed oM atomic WPsSW = {wj,ws,...,wy}. Each
WP w; is characterized by an estimated development/mainteneifce ¢; and requires
a particular expertisex; in a set of expertise&z = {ex,exs,...,exp}. The function
ExW : W — Ex given one WRw; assigns its expertisBxW (w;).

Each software developer possesses a set of expertise @mestinEz. The function
ExzD : D — 2P, given developed; returns her/his set of expertiéer D(d;). Furthermore,
we consider a set of dependences between YW&s= {dp1, dp2, ..., dpg} each one having
the formdp; : w; — w; i.e.,w; needs to be completed befare can be started. Notice that
in this model cyclic dependences, in theory, may exist. Hewveve do not model the case
in which two or more WPs have to be worked out simultaneourslgarallel. Thus, prior to
applying the approach, it is necessary to make the dependgaph acyclic by removing
cyclic dependences or collapsing loops into a single WP.

The manager’s task is to determine a seLdaéams7? = {71, T5,...,T}, an assignment
of WPs to teams and a suitable order of assigned WPs suchapahdences are satisfied
while minimizing completion time and fragmentation.
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To support the manager in her/his task we assume that teamsiast have the following
four properties:

1. U, T; C D, i.e., teams are composed solely of developeis;in

2.Y14,5 Ni#jT;NTj; = ¢,l.e. teams are non-overlapping;

3.VT; €T :(\yer, ExD(d;) # ¢, i.e., developers in one team must share a common
set of expertise competences;

4.V w; €W IT; €T | EaW(w;) € [Ny,er, ExD(dy)], i.€., in order to complete the
project, the manager must allocate teams so that the reloexertise is covered by at
least one team.

To model the manager’s choices, any approach supportirjggrrecheduling should also
provide a functionMwT : W — 7 such that given a WRy; it produces its assignment
MuwT(w;) to a team. We require thatwT defines a partitioMV PT,, W PTy, ..., W PTy,
over W—i.e., it assigns each WP to one and only one team—such teaaghignment
is compliant with expertise constraints. More formally, vesjuire that for eachw;, the
constraint ExW(w;) € [Ny, errwr(w,) ExD(di)] must be satisfied. In the following, to

simplify the notation, let us denote by/wT (W, T}), the setW PT; of WPs assigned to
T;. For each setV PT;, the manager must define a permutatignso that dependences in
Dep are satisfied while completion time and fragmentation arg@nmized.

To express and verify dependences, we observe that givéi P1,, W P1s, ..., W PTy,
and the set of permutatiod (W PT4), ..., PL.(W PTy), it would be possible to determine
when each WP will start and when it will be completed. As wil teescribed in Section 3.2,
this is done by using queuing simulation. That is, assumigthieaWWPw; is assigned to team
T, having a workloadV P,, ordered as defined by the permutatiBy, then the queuing
simulation computes the start time and the completion tonef, referred agb(w;, T,,, FPa,)
andte(w;, Ty, , P,,) respectively.

Dependence constraints can be described in term$ ahdte. That is, a dependence
dp; : w; — w; is mapped into the additional problem constraint as follo§appose
that WP w; is assigned tdl;,, then dependences are preserved provided we have that:
th(w;, Ta,, Pa,) < te(wj, Ty, , Py, ).

Overall we must determind,, 7, MwT (and thusW PT,, W PT5,... , W PT}) the
family of permutationsP, ..., P, so that queuing simulation can compute two functions
representing the objectives of our optimization problem:

o 1 =Ct(L,Th,..., T, MwT, Py, ..., Pr): completion timef the overall project, i.e.,
time from when the first WP is sent into the queue to when th&warthe last WP has
been completed;

e fo=Frag(L,Ty,..., Ty, MwT, P,..., Pr): fragmentationi.e., the total amount of
idle person months in the schedule, due to the need for cdimgple WP before other
WQPs in the queue could be processed. The fragmentationissdiseussed in detail in
Section 3.4.1.

Using this notation, it is possible to define the project @dktion optimization problem
formally as follows:
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Figure 1. Project scheduling: the queuing model.
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such that
V1, T, €T: TiNT; =¢ Disjoint teams
VT;,e€T: ﬂ ExD(d;) # ¢ Shared expertise
d,€T;

Vw, e W3T; € T | ExW(w;) € | m ExD(d;)]  Available expertise

d,€T;
V (dpy : wi — wj) € Dep : th(w;, T,,, Py,) < te(w;,Ta,, Pa;)  Dependences met
VT, Tj €T : pwy € W | MwT (wy, T;) N MwT (wg, Tj) # ¢ One team per WP

Vw, € W: ExW (w;) € m ExD(d;) Appropriate expertise
die MwT (w;)

3.2. Modeling the maintenance/development process as a qliieg system

We start by assuming that all WPs belong to the same catdfas/no particular expertise
is required from the developer. Then, in Section 3.5, wexrtils constraint, describing how
teams of specialized developers will be handled.

To solve the problem defined in Section 3.1 with a searchébapproach, the software
development/maintenance is modeled as a queuing systerH¢8jever, we don'’t use the
gueuing theory as in [3], but rather we build a queuing sitaulthat simulates how WPs—
ordered as determined by possible solution of our problerow-ihto teams (or wait in the
queue for an available team), and are then processed.
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WP Ordering | Pos. 4 | Pos. 2 || Pos. 7 |

WP 1 Wp 2 WP M

People distrib | Team 2 | Team 7 || Team 2 |

People 1 People 2 People N

Figure 2. Solution representation.

As shown in Figure 1, a queuing system can be described asotness” arriving for
service (WPs in our case), waiting for service (developnmnmnaintenance task) if it is
not immediate, and leaving the system after being servete@y of developers, referred as
“servers” in queuing theory). Further details on queuirgptly can be found in the book by
Gross and Hatrris [42].

In the context of software project planning, given a possiploblem solution, i.e., a
distribution of developers among teams, and a permutatientbe WP ordering, the queuing
simulation is used to compute the project completion timies€ve that the order in which
WPs enter into the queue determines the team to which the VEBsigned (i.e., the first
available one).

A search-based project planning approach includes thexoly components:

1. the heuristic for solution generation. For instances#hdescribed in Section 4. The
heuristic approach generates a solution;

2. the fitness of the objective(s) to be optimized. For insarsolution completion
time and, if necessary, other dependent variables suchhaslgle fragmentation (see
Section 3.4.1). These objectives are evaluated by meangjoé@ing simulation, and
used by the heuristic to guide the generation of next salatio

The search—based optimization process iterates thesddp® @ntil the heuristic stopping
criteria is satisfied. That is, the process continues tog@@and evaluate candidate solutions
until either a set of acceptable solutions are discoverddeoprocess is ‘timed out'.

3.3. Solution Representation

Consider a project modeled as a single node queuing systienen @iis, a solution to the
project planning problem can be represented 2raaray data structure as shown in Figure 2.
The first array represents the WP ordering in the incomingigrieis aM -sized array (where
M is the number of WPs), and the value of an entry indicates dsitipn of the WP in
the incoming queue, for a single-queue/multi-server queesiystem. As shown in Figure 2,
the second array is an array of side whereN is the number of developers available for
the project. Each value of the array indicates the team tahvhi developer is assigned.
Section 3.5 explains how the representation is extendeltbio for specialized teams.
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TeamA [ wee | wes | wea |

Team A we1 wp2 wp3 [ wes |

Team B WP1 WP5
Team B WPS

WP1 WP4

WPz Time (days) (I) l l L Time (days) 5 . ) :! 4|
(a) WP dependences (b) Schedule with fragmentation (c) Schedule without fragmentation

Figure 3. Example of fragmented schedule and of non-fraggdeschedule with a higher completion time.

3.4. Evaluating a solution: the fithess function

As explained in Section 3.2, the quality of a solution—reddras “fithess function™—
in metaheuristics is quantified as the completion time aadrfrentation, estimated by the
queuing simulator. Basically, the simulator picks incogiiaquests from the queue and sends
them to available teams, and for each one of them, givilne size of the team to which the
request is dispatched amdhe estimated effort for the WP, the time necessary to cample
the WP will be consideretl= e/s.

As will be discussed in Section 5.5, due to Brooks’ law [48]stcould be an optimistic
assumption, i.e., the time required to complete a task nmighbe just the effort divided by
the team size because, for example of overhead due to tearben&wmmunication, or to
training activities needed when adding a new team membar émgoing activity. Truly, this
does not lead the approach generalizability, and reasemmn the nature of the projects
we used as case studies. In fact, the model can be generaligiédations in which Brooks’
law does apply by the simple introduction of a non-lineddistor. Generalized models taking
care of communication overhead are discussed elsewhdr@ ELoverall project completion
time will be equal to the time elapsed from when the first WPeist $nto the system to the
time when the last WP has been completed.

The completion time depends upon the particular queuindigumation (determined by
varying the distribution of developers across teams) aerdgten WP ordering. However,
the search algorithm must be able to handle dependencesdieiwPs. Among the different
ways of handling constraints in metaheuristic search #lyos [43, 44], we chose to repair
solutions violating constraints, i.e., searching for héigr acceptable solutions:

1. WPs are seeded into the queue in the order specified by ttelifie of the
representation.

2. Every time a team is available, the dispatcher tries tgassthe WP in front of the
gueue. In case such a WP cannot be handled yet because ofreldepe, the schedule
searches back in the queue until it finds a WP that can be hkndle

3. If the dispatcher is able to find a WP, it will be assignedh® available team. If not,
this means that no assignment is currently possible, beaaues of the WPs currently
under work needs to be completed before any of the waiting @diRde assigned. In
that case, simulation proceeds leaving the available tédlei "

It is important to remark that, given any possible schedihlis, always corresponds to a
WP ordering in the queue. In fact, the combination of WP drdgMWP required effort, team
staffing level, WP dependencies, and the above mentioned taldispatch WPs to teams
determines the assignment of WPs to teams.
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Figure 4. Multi-objective project planning: Pareto fronbd dominating/dominated solutions.

3.4.1. Dealing with Schedule Fragmentation — Multi-Obj)geOptimization

As described before, when there are dependences betweenRsmight be cases for
which the schedule generated to minimize the project cotiopléime requires that some
teams remain inactive for a period of time. While it would leeptable that a team starts
its work later or finishes earlier (in that case staff can b&gaed to other projects), it is
an additional goal to avoid—or at least to limit—schedukgfnentation. That is, we seek
to limit the schedule fragmentation, defined as the total memof idle days for teams that
have been already assigned to the project. Although idls dey not always be a problem—
e.g., they could be used for training purposes—they, nefeth, represent an additional,
unwanted cost for the project and a potential waste of ressiespecially if this happens for
larger teams. On the other hand, given a distribution of ldg@ezs across teams, there may not
exist a schedule with no fragmentation. Furthermore, elvifrere did exist a fragmentation-
free schedule, it may be unacceptably expensive.

Reducing completion time and schedule fragmentation are gatentially conflicting
objectives, since solutions achieving a shorter compidiime can exhibit higher schedule
fragmentation, and vice versa. Let us consider the examagure 3, where (i) for each WP
the effort needed is of one person day, (ii) both Team A andeR.amposed of one developer
only, and (iii) WPs have dependences as illustrated in 3-B{W WP3 indicates that WP1
must be completed before WP3 starts). In this example, wahaama schedule like the one in
Figure 3-b, where the completion time is of three days, h@v&eam B suffers of a schedule
fragmentation, or the one in Figure 3-b, where there is ngnfientation but the completion
time is of four days but the Team B works just one day,

For this kind of situation, instead of having one problemusoh achieving a compromise
between the two objectives, the manager might want to chaoseng different possible
solutions. To this aim, we can use Pareto optimality. WitlheRaoptimality, one cannot
measure to whagxtenta solution is better than another. However, it is possiblgei@rmine
whethera solution for a multi-objective problem is better than dweot That is, given two
solutionsz; andzs:

F(z1) < F(x2) & 35 | fi(@1) < fi(w2) AVi fi(w1) < fi(w2) (2)

wherei € O, the set of all problem objectives. In other words, one smiuts better than

another if it is better for at least one objective (fithessction) and no worse for all the
others. If this does not happen—e.g., a solution is betteofe@ objective, but worse for
another—then two solutions are incomparable, and the uggtt imave to decide whether to
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Figure 5. Schedule with specialized queues: (a) multi qugypeoach, and (b) representation.

give priority to one objective or the other.

When searching for solutions using Pareto optimality, th&rsh produces a set nbn-
dominatedsolutions (referred as a “Pareto front”) rather than a singblution. Non-
dominated means that there do not exist other solutionsatteabetter in terms of all the
objectives. For example, in Figure 4 solutionsand x5 belong to the Pareto front: while
x1 is better in terms of schedule fragmentation,is better in terms of completion time.
Instead,z3 belongs to the dominated (shaded) areagfbeing worse than:; in terms of
both objectives. Details on multi-objective optimizaticen be found elsewhere as [6, 44].

Since, differently from the completion time, the fragmeiatiais not a regular function, and
since when solving the problem formulated in Section 3.1wikéc would attempt to start
dispatching a WP to a team as soon as possible—this, in tlesislihg theory, is referred
as a “semi-active schedule” [45]—there is no guaranteethi@asolution found is the global
optimum.

Another scenario in which multi-objective optimizationnche useful in this context is
when one wants to balance between minimizing the compldiina and having a lower
staffing level. In this case we will have a Pareto front like tine in Figure 4, where, for
decreasing staffing levels (x-axis), we can have incregsiogct completion time (y-axis).

3.5. Employing specialized developers

Until now we have assumed that developers/maintainers @ifeeiently skilled to be
allocated to any task. When this is not the case, the singgerg model shown in Figure 1
becomes a multi-queue system, where each queue dispamipassts related to a team
composed of developers having expertise for a particulaciapzation (see Figure 5-a).
Although a developer can have more than one expertise, snpgper we assume—in the
context of a project—to assign a developer to a single sjzaii@n only. Future work will
deal with more complex scenarios. For example, by creag@gnt corresponding to the
various possible combination of expertise and dynamicailgnging team composition on
demand.
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The problem representation (Figure 5-b) is similar to thee ofor a staged
development/maintenance process. WP ordering is once egaesented as an array, where
WPs are labeled according to the specialization. There iseea to have separate ordering
since a permutation of such an array also determines the W flow in the separate,
specialized queues. The allocation of staff into speadlieam is represented by means on
P arrays, one for each expertise. Also in this case, as exqdamSection 3.4 the schedule is
properly repaired to handle dependences, which can octweba WPs related to the same
or different specialization.

4. Solving the project staffing problem

Once the project planning problem has been modeled, a mped®n provided and a fithess
function described, we can use different search baseditlger to solve it. We applied
GAs, Stochastic Hill Climbing (SHC), and Simulated Annegl{SA) in order to experiment
with those optimization techniques most widely used in SBBEse techniques account for
those used in over 80% of all SBSE publications accordingrexant comprehensive survey
[13]). SHC and SA will be used as single-objective optimimatechniques, with the aim of
(near) minimizing the project completion time only. As dietd in Section 4.1.2, GAs will
be used both as single objective technique—and compar&dSHC and SA—and multi-
objective techniques with the aim of considering both catiph time and fragmentation as
(potentially conflicting) objectives.

4.1. An overview on the search-based algorithms used

Below we briefly describe the three algorithms we adoptedoteesthe scheduling and
staffing problem. Further details can be found in books bydGelg [46] or by Michalewicz
and Fogel [44].

A GA may be defined as an iterative procedure that searchéisfdrest solution of a given
problem among a population having a constant or variabks siad represented by a finite
string of symbols, thgenome The search starts from an initial population of individyjal
often randomly generated. At each evolutionary step, iddads are evaluated usinditness
functionand selected using selection mechanisniigh-fithess individuals will have the
highest reproduction probability. The evolution (i.eg theneration of a new population) is
affected by two genetic operators: tbmssover operatoand themutation operator The
crossover operator takes two individuals (fherentg of the old generation and exchanges
parts of their genomes, producing one or more new indivi(takoffspring. The mutation
operator has been introduced to prevent convergence tbdptena; it randomly modifies
an individual's genome (e.g., by flipping some of its bits witlee representation is a binary
string).

SHC is a local search method, where the search proceeds framdamly chosen point
(solution) in the search space by considering the neighfree solutions obtained by
mutating the previous solution) of the point. Once a fitteighbor is found this becomes
the current point in the search space and the process istegpéaafter mutating a given
number of times no fitter neighbor is found, then the seanchitates and a maximum has
been found (by definition). To avoid local maxima, the hiihdbing algorithm is restarted
multiple times from a random point.
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Figure 6. Crossover and mutation operators for WP orderimgl developers allocation to teams.

SA [47], like hill climbing, is a local search method. Howeveimulated annealing has a
‘cooling mechanism’ that initially allows moves to less fitlstions if p < m, wherep is
a random number in the rand. .. 1] andm a value that decays (‘cools’) at each iteration
of the algorithm according to the following law = e2fitness/T  whereT (temperature) is
T = Thae - €77 (Tnae it the starting temperature, is the cooling factor j the number
of iterations), and\ fitness is the difference between the fitness values of the two neighb
individuals being compared. The effect of ‘cooling’ on thglation of annealing is that the
probability of following an unfavorable move is reducedisTtinitially) allows the search to
move away from local optima in which the search might be teabp\s the simulation ‘cools’
the search becomes more and more like a simple hill climb.

Below we detail the operators used for the GA. SHC and SA caapgpdied using, as
operator for generating a neighbor solution from an exgstime, the mutation operator
defined for the GA.

4.1.1. Genetic Algorithm Configuration and Operators

To construct a GA for a given problem, we need to define theesgmtation, the fitness
function, the GA operators (selection, crossover and natpgnd choices of settings for
other GA parameters. We used a simple (i.e., with a non-appihg population) GA, with
a roulette wheelselection mechanism and an elitism of 2 individuals (i.ee best two
individuals are guaranteed to survive across generatidin® GA representation adopted
is the two-array representation of Figure 2, extended tontlagray representation when
separate queues with teams of specialized developers adedéFigure 5-b). The fitness
function is evaluated as described in Section 3.4. The pdipul is randomly initialized
with individuals where (i) the WP ordering is randomly detéred and (ii) for each queuing
node the available staff is randomly grouped into teams.cFbssover operator (Figure 6-a)
produces an offspring of two new individuals; (ando,) starting from two parent( and
p2). The first row of the parents (representing the WP orderdmgye-combined as follows:

1. Arandom positiork, is selected in the chromosome.

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. ExperQ0(00), 1-7 (2009)

Prepared usingpeauth.cls



15

2. The firstk elements op; become the first elements ob;.

3. The lastN-k elements ob; are the sequence &f-k elements which remain when the
k elements selected from are removed fronps.

4. o, is obtained similarly, composed of the fidt-k elements ofp; and the remaining
elements op; (when the firstV-k elements of, are removed).

For the remaining rows (encoding the staff distributiondaclequeue handling requests for
a particular expertise), a standaidgle-pointcrossover is used.
The mutation operator (Figure 6-b) works as follows:

¢ it randomly decides whether to alter the WP ordering or th# distribution;

e if the WP ordering is to be mutated then the mutation openaodomly selects two
WPs (i.e., two array items) and exchanges their positiohemueue;

e if the staff distribution is to be mutated, then:

— ifthere are separate queues, the queuing node (i.e., tomospme row—where
2 < r < ||Ez|| + 1, ||Ez|| is the number of separate queues handling requests
for particular expertises—in which the mutation has to bdgumed is randomly
chosen;

— mutation is applied, by randomly choosing a staff memberdarahging his/her
team. It is worth pointing out that the random number gereeraly the mutation
operator is an integer ranging from 1 to the maximum numbetaff available.
The cardinality of the set of numbers present in the genoregmes the number
of teams (servers) of the queuing model. Clearly, a caritjredjual to the number
of developers available indicates that each team is condpoka single staff
member, while a cardinality equal to one indicates that glsiserver (composed
of all staff) is used.

After a new individual has been generated by means of thalimétion, crossover or
mutation operator, it is repaired as discussed in SectirirBorder to ensure that precedence
constraints are respected.

4.1.2. Configuration and Operators for the Multi-ObjectiBenetic Algorithm

When a multi-objective optimization, as mentioned in Sat8.4.1, needs to be performed,
we used the Non-dominated Sorting Genetic Algorithm Il (MSI§ approach proposed by
Debet al. [48]. NSGA-Il is a multi-objective optimization algoriththat incorporates elitism
to maintain the solutions of the best front found.

A naive multi-objective optimization algorithm would reiggt O(M N) comparisons to
identify each solution of the first nondominated front in gplation of sizeN and with M/
objectives, and a total aP(M N?) comparisons to build first non-dominated front. This
because each solution needs to be compared with all othersd. Since the above step has
to be repeated for all possible fronts—which cat be at mésif each front is composed of
one solution—the overall complexity for building all frens O(M N3).

NSGA-II uses a faster algorithm for nondominated sortindpicly has a complexity
O(M N?) (as shown in the paper by Dedbal. [48]):

1. for each solutiorp in the population, the algorithm finds the set of solutios}s
dominated byp and the number of solutions, that dominatep. The set of solutions
with n, = 0 are placed in the set first froi, .
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2. Vp € F1, solutionsg € S, are visited and, if,, — 1 = 0, then solutiory is placed in the
second frontF,. This step is repeateth € F; to generates, etc.

To compare solutions, NSGA-II uses the “crowded comparigoerator”. That is, given
two solutionsz; andxs, x; is preferred over if it belongs to a different (better) front.
Otherwise, ifz; andz, belong to the same front, the solution located in the leswaea
region of the front is preferred.

Then, NSGA-II produces the generatios 1 from generation as follows:

1. generating the child populatiof; from the parent populatio®; using the binary
tournament selection and the crossover and mutation apsrdéfined for the specific
problem;

2. creating a set dfN solutionsR; = P, |J Qy;

3. sorting R; using the nondomination mechanism above described, amdirfgrthe
new population?;; by selecting theV best solutions using the crowded comparison

operator.

For the particular problem of balancing between the coridime and the staffing level,
crossover and mutation operators need to be slightly clthigallow for a variable staffing
level. The problem is simply dealt by using, for the develogdocation to teams, the same
pigeon-hole representation described in Section 3.3¢catilog as many slots in the array
as the maximum number of developers available for the quBuen, each slot can either
contain a non-negative integer indicating the team whezedttveloper is allocated, or -1 if
the developer is not allocated at all. In such a case:

1. the crossover operator works as described in Sectiorl.4However in case one
individual of the produced offspring exhibits a staffingpathtion below a (fixed) lower
bound, then the crossover is rolled-back;

2. the mutation operator randomly selects a developer aigrasit to a randomly chosen
team, or to the pool of unassigned developers (slot valjeAldo in this case, if the
total staffing of the queue is below a lower-bound, the maitais rolled-back.

5. Empirical Study

The objective of this empirical study is to evaluate the @ffeeness and the performance of
different search-based techniques, combined with quesiglation, to determine project
planning, i.e., the distribution of the staffing across teamd WPs assignment to teams.

The context of our study is constituted of two maintenanageets, hereby referred as
Project AandProject B Project Awas a massive maintenance project aimed at fixing the
Y2K problemin a large financial software system from a Euarpgfnancial organization. The
entire system was decomposed in 84 WPs, each one composazkrage, of 300 COBOL
and JCL files. No WP dependence was documented and thus ricedornisas to be satisfied
in Project Ascheduling. Further details can be found in the paper [3].

Project Bis composed of 108 WPs for which WP inter-dependence infoomés available.
Though a little smaller (in terms of total effort requirediah Project A the presence of
a total of 102 dependences between the project's WPs (FiQurensiderably complicates
the problem of project management. The project is aimed latedieg the next release of
a large data intensive software system, written in sevargjuages, including DB I, SQL,
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Project A | ProjectB
Total # of WPs 84 108
Dependences - 102
Min. Effort 2 1
Max. Effort 306 60
Median Effort 29 4
Mean Effort 51 5
Std. Dev. Effort 59 6
Total Effort 4287 525

Table I. Descriptive statistics for the two projects (effigrexpressed in person days).

and .NETM. The project involved members of staff who had been devetpfiie project
previously and so unfamiliarity with the work and consedugining time was not an issue.
Although all developers taking part in the project workedam WP, it is possible to classify
WPs according to the main expertise required for each ongatticular, there are 32 WPs
related to database creation and maintenance, 14 to Gedplser Interface, 11 related to
networking (LDAP), 12 related to Middleware, and 16 reldiethe core application domain.

This information will be used in Section 5.3.4 to simulate thossibility of employing
specialized developers, i.e., developers having the &gpeequired to process a given WP
(in this project, each WP requires only one expertise). Byetbee statistics of WP efforts for
the two projects are reported in Table I.

Although bothProject Aand Project B are maintenance projects, this does not lead the
applicability of the proposed approach to other activjtiegh as coding, testing, etc.

5.1. Research Questions
The research questions this study aims at investigatinthar®llowing:

e RQ1: Performance
How do different search algorithms compare in terms of thaeims of project
completion time after a fixed number of evaluations?

¢ RQ2: Effect of varying the staffing level
How do estimated project completion times and the distidoubf developers across
teams vary under different staffing levels, i.e., total nentdif developers available?

¢ RQ3: Fragmentation effects
What is the effect of staffing level and completion time omgfreentation?

¢ RQ4: Employment of specialized developers
What will be the completion time for different staffing leseif WPs need to be
dispatched to teams of specialized developers?
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Figure 7. Dependences among WPs for Project B. Letters atelithe WP category (C: Core, D: Database, N:

Networking, M: Middleware, G: GUI).
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5.2. Empirical study settings and instrumentation

In order to facilitate replication of our work, in this semti we report the details of the
parameter settings used in our experiments. Settings veefermed by means of a trial-and-
error procedure, starting from parameter settings sugdést the literature [49].

SA parameters were set up as follows: maximum temperdtyrg = 0.30, minimum
temperaturel;,,;,, = 0.01, cooling factorr = 0.001. GA simulations were run considering
the following parameters:

1. non-overlapping GA with elitism of two individuals;

2. population composed of 50 individuals;

3. 250 generations foProject A and 100 forProject B Such a stopping criterion
was determined by identifying the number of generationsr avkich no further
improvement was obtained (doubling the number of generatiwe obtained an
improvement of less than 5%). The number of generationBroject Bis smaller since,
because of the presence of dependences, the degrees anfré@dWP ordering are
reduced;

4. mutation probability 0.1, crossover probability 0.7.

Multi-objective optimization (used to address researchstjons 3 and 4) was performed
with an NSGA-II algorithm for which the same configuratioredgor the single-objective GA
was used. To make the comparison between different algusifair, the number of restarts
for SHC and SA was chosen so to generate the same number tibsslas for GA, and in
any case the algorithms is stopped once such a maximum nwhleealuations has been
reached.

To reduce the bias of randomness, each experiment was ee®atimes and statistics of
all runs are reported in form of boxplots.

5.3. Empirical Study Results

This subsection reports results from the application ofpfumosed search-based staffing
approach to the two projecBroject AandProject B

5.3.1. Comparing the different search algorithms

To answeRQ1 andRQ2, we analyzed the evolution of the minimum completion timerov
the same number of solutions generated by the differentitiges and by random search. In
this section we aim at minimizing completion time only (vatit considering fragmentation)
intended to be one of the ultimate goals for a project managdech requires to complete the
project in the minimum time possible, or to meet a deadlirgotiated with the customer.

For GA this means that it generates a number of solutiop®pulation size number
of generationsRandom search generates each time a random WP ordering rand @n
assignment of developers across teams. Comparisons wedoenped for a fixed staffing
level, i.e., 46 developers fétroject A(as estimated in a previous work [3]), and 20 developers
(the actual staffing) foProject B Figure 8 shows boxplots of estimates obtained by the
different algorithms for the 30 runs.
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Figure 8. Boxplots of estimated project completion timeslifferent algorithms.

Project SA SHC GA
A RND | 3-10—11 0.015| 3-10— !
SA - 4.10—11 0.015
SHC - -] 310711
B RND | 21077 21076 | 1.10710
SA -129-107° 0.18
SHC - - | 110°°

Table 1l. Comparison between different algorithms usingve-tailed Mann-Whitney unpaired test of estimated

project completion times.

First, we compared every algorithm with random search arld @ther algorithms, using
the non-parametric two-tailed Mann-Whitney test. Ressiftswn in Table Il and boxplots
in Figure 8 indicate that all algorithms outperform randoearsh. Moreover, for both
projects SA and GA outperformed SHC. However, whiléPimject A—the project without
dependences between WPs—SA significantly outperformed tGi8,is not the case for
Project B—the project with dependences between WPs—where no sigmnifitifference was
found between SA and GA. In the following, to answer the rerimgj research questions, we
report results for SA in the case Bfoject Aand for GA in the case d®roject B

5.3.2. Completion time and distribution of developers fiffecent staffing levels

RQ2 analyzes the effect of staffing levels on completion time anddistribution of
developers across teams. Such a research question isttdieva manager who would like
to decide how to adjust his/her project staffing to be ableaimplete a project within a
given date. Figure 9 shows boxplots of estimated compldiinas for the two projects. To
evaluate the cost/benefit tradeoff due to staff increaswegsed the ratig- 5757 Results
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Figure 9. Boxplots of estimated project completion timeslifferent staffing levels.
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Figure 10. Boxplots of number of allocated teams for difiesgaffing levels.

are different for the two projects. Fétroject Athe staffing increase 35-40 exhibit a high
ratio (2.6); then for further increases the ratio decref3€® for the increase 40-46, 1.7 for
46-50 and 1.2 for 50-55). Féroject Bthe ratio is high (2.4) for the increase 10-15, then it
decreases to 1.2 for 15-20. For further staffing increakegatio tend to be very small (0.2
for 20—25 and 0.4 for 25-30).

Let us now analyze how developers are distributed acrosssteBigure 10 shows the
number of allocated teams for different staffing levels. Pagject Athe median number
of teams tends to increase only slightly for staffing levdievee 50. ForProject B where
there are WP dependences, a staffing increase between 29 aalth®ugh does not reduce
the completion time, causes an increase of the number afeaitid teams.

5.3.3. Reducing schedule fragmentation

RQ3 deals with reducing schedule fragmentation, that can oiccall cases where there
are dependences among WPs. In fact, teams might have to miblocking dependences
of an incoming WP are solved (asioject B. Figure 11 shows an example of Pareto front
obtained by means of a multi-objective NSGA-II optimizatias explained in Section 3.4.1,
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Figure 11. Project B: Tradeoff between completion time actieglule fragmentation.

and considering a staffing level of 20 developers. The twdlicting objectives are the
completion time and the idle person days. Using the Paretat,fthe manager can select
solution achieving, for example a low number of idle persagsd(8), accepting a higher
completion time (42 days). Alternatively, the manager cae that there also exist valid
solutions with a higher number of idle person days (24) bdtaater completion time (37).

In the Pareto-based search, all objectives are treatedlyqaahat no trading off between
objectives takes place until the manager consults the &&att. In this way, the Pareto-
based approach makes a suitable delineation of respatisshiseparating those aspects of the
problem that require human expertise and judgment fromwthath can be easily automated
and which concern the tiresome, repetitive and less imégenaspects of the search.

5.3.4. Dispatching WPs to specialized teams

To answerRQ4, we simulated, forProject B the availability of developers having
specialized skills. A multi-objective NSGA-II algorithmas used to determine WP allocation
and developers distribution across specialized teamhiditase, the NSGA-II considered as
objectives the project completion time and the staffingllesimce in this case we had to deal
with expertise, the model was instantiated as explaine@atié 3.5 and shown in Figure 5,
i.e., with five separate queue, each one handling WP reguéiparticular expertise. The
algorithm considered solutions with a staffing level, fockegueue, varying between 2 and
10, which resulted in an overall staffing level betw@ers = 10 and10 - 5 = 50 developers.

The multi-objective NSGA-II produced Pareto fronts comgubsf solutions for different
staffing levels and different completion times. An exampeshown in Figure 12. As
expected, completion times tend to be higher than the ontts e same staffing level
reported in Figure 9-b, where it was assumed that develapmrsl have worked on any
WP. The inclusion of skills-match as a constraint makes thblpm harder with a tendency
to increase completion time. For example, for a staffingllef/20 developers the completion
time increased from 34 to 50; for higher staffing levels (8@)difference is smaller, i.e., from
31to 34.

Table 11l shows how resources are allocated across teandsfferent staffing levels. Note

that the configurations reported here only represent exesblsolutions that can be obtained
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Figure 12. Dispatching requests to specialized teams.

Completion | Total Database| GUI Networking | Middleware | Core
Time Staffing
58 18 1,2 1,1,2 1,1 1,2 1,2,3
56 19 1,2 1,1,2 1,11 1,2 1,2,3
53 20 1,1,2 1,11 1,111 3 1,2,3
49 21 1,2 1,111 11,1 1,2 13,4
48 22 1,2 1,1,1 1,111 1,3 13,4
40 23 2,2 1,1,1 1,1,2 1,3 13,4
39 25 2,2 1,1,2 1,1,3 1,3 13,4
37 27 2,2 1,111 1,13 1,3 2,35

Table Ill. Staffing of specialized teams: team compositomlifferent staffing levels.

with that staffing levelsz, y, z in a column means that the algorithm allocated, for that gueu
three teams composedafy, andz developers respectively. The search process yields insigh
into the effects of skills-matching on team sizes. The desrguided by fitness and so there
is a ‘logic’ to the solutions that it is able to locate in thdwimn space. Inspection of the
results reveals some interesting relationships betweestthcture of the dependences in the
project and the way in which the search-based algorithnissgeeoptimize the allocation of
staff to teams.

For example, consider the Database queue. For this queuglgibrithm attempts to create
teams composed on 2 developers. Database WPs constituteafbgty of the WPs, thus
they required short maintenance times, although on mossdhsy did not block other WPs,
as shown in Figure 7. Perhaps the most interesting situaticnrs with the GUI queue:
the number of developers did not necessarily increase witigler total staffing (and a
smaller completion time). This is because almost all GUI \&@Rsindependent of other WPs.
Therefore, project completion time tends to depend upoeardfPs.
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Notice that, for the Network queue, the algorithm allocateahy singleton teams. This
turns out to happen because Networking WPs impose depesslenseveral groups of other
WPs. Therefore, working on Networking tasks in parallelighty efficient for this problem
structure. For Middleware, the algorithm allocated a latgam (composed of 2-4 developers)
plus (except for a staffing of 20) one singleton team. Thiscisanise most these WPs were
sequentially dependent: the only way to complete them incatthme is to create larger
teams. Finally, the team allocation was consistent, whereasing the staffing, for the Core
queue: a smaller team, a medium team, and a larger team tdebmdiandle Core WPs that
were of different size and on which many other WPs are depérme

5.4. Discussion

When comparing different algorithmRQ1) it is evident that SA and GA outperform SHC.
Despite the use of random restarting, hill climbing stiffets from the fact that solutions tend
to get trapped into local optima, while it is known that GA Guwoid this problem and that
SA is able to improve it because of its capacity to temporadcept worse solutions. The
performance of both GA and SA in our experiments provide @vig to support the claim
that it is worthwhile adopting of one of these two algorithinsa tool that act as a project
management assistant.

The proposed approach permits the decision maker to andheesariation in best
completion time when increasing or decreasing the staffevgll RQ2). As might be
expected, the case studies reveal that, in the presenceanfi@ mumber of dependences,
staffing increments over certain values do not produce irgnents in project completion
time, since dependences limit the level of parallelism ¢aatbe achieved. Of course, in both
cases we are considering projects where Brooks’ law doeapyly, thus there is a linear
relationship between staffing levels and time needed tooparthe task. Once again, the
availability of analyses performed with the proposed apphogives the manager the ability
to analyze the return on investment of staff time in termseoluced completion time. This
may help to facilitate the negotiation of deadlines and<sw4th the software customer.

Differences between the two projects studied in this paper e seen by considering
how staff is distributed across teams when varying the statevel. Where there are no
dependences, the approach tends to parallelize the workuel &s possible, by creating
a large number of small teams. In projects with a high numbbetependences—such as
Project B—larger teams appear more desirable, since they can be aspdckly process
blocked tasks. On the other hand, this is also true when thjegircontains very large WPs:
such is the case witRroject A where, above a certain staffing level, the search tends#ddo
solutions that increase the size of existing teams ratfzer ¢heating new ones.

When handling projects with dependences among WPs, siRfoest B one phenomenon
that should be limited as much as possible is schedule fratien RQ3). Clearly, there
may be cases in which fragmentation might be acceptable vehgn developers are able to
work on different projects at the same time or when thereaspibssibility of using the idle
time for other activities such as training. By using mubjective NSGA-II optimization,
the manager can choose among a Pareto front of solutionsviropidifferent compromises
between project completion time and idle person days.

When using queues with teams composed of specialized gerslRQ4), it was noted
that the algorithm tends to understaff queues for categofi@/Ps that do not block the entire
project (e.g., GUI-related WPs fétroject B, while it creates a small number of larger teams
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Config. Singleton # of teams for Total

allowed different sizes # of

112|3|4|5|6]| 7] teams

Generated Yes 3|1|5|]0|0|0]|O0 9

Generated No o(4|1(12|1|0]0O0 7

Actual - J|Jofl1]2|0|1|0f1]|] 5

Table IV. Project B: Comparison between generated and &ttaen allocation.

if WPs of a particular category (e.g., Middleware) must beked sequentially. In other cases
the algorithm tends to balance between having many smaklens working in parallel with
large teams able to quickly complete a WP.

Finally, it is interesting to compare the results of our aymh with the real project staffing
level and people organization. While fBroject Athis information was fully available, for
Project B (which comes from a different company) it was not possiblentdude real data
about the projects actual completion time, but only aboaistaffing level and the distribution
of developers across teams.

ForProject Athe actual staffing level was roughly 80 developers whilectirapletion time
of 155 working days. The number of teams varied during the tatween 2 and 27 with
a median value of 6, as shown in previous papers [3, 50]. Timebeu of teams working
concurrently in a given day (thus the number of servants imeaiing model) varied from 1 to
12, with a median value of 6. This confirms the fact that industanagers avoided having a
large number of teams composed of few developers, predgiriatead, few teams composed
of more developers. This permitted to minimize the riskspdlecause developers were also
working on other, different tasks. If comparing, for the sestaffing level (46 developers) the
completion time with the one estimated in paper [3], the newetbpers distribution and WP
assignment to team permitted a median completion time ofwidr&ing days instead of 155
working days.

Differently from Project A the resource allocation fétroject Bwas done at the beginning
of the project and not changed anymore. Table IV comparesatiieal distribution of
developers across teams with the ones instantiated by quoagh. As shown, actual
assignment is closer to the automatically generated assighwhen preventing the creation
of singleton groups. This confirms the conjecture that marsatends not to create such a
kind of teams. The most tangible difference is the presamtied actual allocation of a team
composed of 7 developers, supplied, in the generated dbocdy a large (four) number of
2-developers teams, that can better permit the parafiielizaf work.

5.5. Limitations, Assumptions and Threats to Validity

The evaluation of approach presented in this paper reliegh®mwo real world projects
for which we were able to obtain data. Naturally, these mtsjenay not be typical and
SO care is required in extrapolating the results. In padicwneither project had mutually
interdependent WPs (cyclical dependences) or WPs thabhaelprocessed in parallel at the
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same time nor requirements for specific skill assignmenguidlly, this may be different
in other software projects, thereby requiring a change imédation. Notwithstanding the
precedence constraints imposed by dependences, nonpgpiagaVPs means that each WP
can be treated as an atomic unit of work. A different formalatvould be required to handle
overlapping WPs.

Expertise was treated as Boolean property; either a deselgs the expertise or does not.
Our real world projects did not have expertise data and wendidhink it right to develop
sophisticated approaches based on mere speculationyFmalalso assumed that each WP
required only a single expertise.

Each of the two projects also has its own set of limitationd assumptions, that were
made by the managers who collected the data and this has eqummg effect upon the way
in which we are able to experiment with the data.

Project Awas the simpler of our two real world projects, because lved maintenance
interventions were performed almost semi-automaticatlgt emvolved highly standardized
activities. The project involved searching for year fieldd anaking them Y2K compliant by
inserting a source code fragment implementing a windowieghmanism. In such conditions,
it is possible to make the assumption of interchangealtikityveen people and months. That
IS, given a maintenance team sizeynd the effort required, the timet necessary to perform
the taskig =¢/s .

Of course, in general, due to Brooks’ law [40], this could be @erly optimistic
assumption. However, as other authors have noted [39]ndive small team sizes (fewer
than eight developers) and the standard (training-fre@)raaf the maintenance task, this
approximation was considered reasonable. Thereforeltsesay not be limited merely to
similar ‘defined task’ maintenance interventions but mapapply to other projects.

For Project B we also make the assumption that staff can be allocatedfeyedit WPs
without a need for re-training. This does not directly caméme Brooks’ law, because we
make no attempt to allocate new staff to work on a WP that h&sdy underway. Thus,
it could be said that we observe Brooks’ law at the micro Iekat at the macro level, we
assume that there is no need for re-training.

The remainder of this section, formally considers the ttsré@ validity that may affect
the extent to which the empirical results of any study candreegalized. We shall consider
these general treats to validity and the way in which thegcffhe extent to which the results
presented in the paper can be generalized and relied upon.

Construct validitythreats may be due to the simplifications made on the maintena
process modeled, as well as to the assumptions made in $écto However (i) more
complex maintenance processes can be modeled using queeingrks as shown in
paper [3] without preventing the applicability of the preged approach (ii) this paper
has shown how it is possible to consider a multi-queue cordtgun to allocate teams of
specialized developers, and (iii) effects such as comnatioic overhead can be introduced
in the relationship between completion time and effort asshin paper [41].

Internal validity threats, in our case study, can be due to the randomness oédhkts
obtained when running the different algorithms. To limitkwa threat, different actions were
taken:

e First and foremost, we carefully calibrated the parameterseach algorithm, the
number of comparisons needed by SA, SHC and RND and the nushigenerations
and the population size needed by GA. The chosen values werenined ensuring that
further increases do not significantly affect the resultg] we compared the different
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algorithms over the same number of solutions generated.
e To avoid results being affected by randomness, as mentioneétkection 5.2 each
experiment was performed 30 times, and statistics overitfegeht runs were reported.

With regards tdexternal validity as explained earlier, the results obtained can be extended
to projects where communication overhead does not affeqénformance of the teams. For
all the other cases, there is the need for a more complex mdeértheless, this does not
affect the applicability of the overall approach, oncedastsuch as communication overhead
have been modeled in the fitness function, as shown in othes paper [41].

6. Conclusion

This paper presented a comprehensive treatment of a skaseld approach to software
project planning, showing how search-based techniqueseamsed to address problems
of staffing level adjustment, allocation of staff to teanejuction of project fragmentation
and team composition based on different programmer espeaatid WP required knowledge.
These problems are believed to be particularly acute inveoft projects, yet hitherto, there
has been little work on the application of search-basedropdition techniques for addressing
these problems.

The paper reported empirical results from the applicatissearch techniques to two large
scale, real world maintenance and evolution projects. €kalts show that both Simulated
Annealing and Genetic Algorithms can construct solutitrad have the potential to provide
valuable decision support to software managers. The eealgd show that the search-based
approach implicitly maximizes parallelism in the projeotghorten completion time and
reduce fragmentation. The data also shed light on the impladependences in software
projects. Finally, the approach allows for balancing catifig objectives such as completion
time, staffing level and resource allocation by using madtjective optimization, providing
the manager with Pareto fronts of possible solutions ratiaar single solutions.

The proposed approach cannot be considered a substitine managers’ activity related
to project planning and staffing: personal experience, thles&nowledge of the organizational
structure, of people skills and working attitude are vitaleffectively plan a project. The
manager is the sole judge of feasibility and soundness ofpatea solutions; approaches
as the one presented in this paper aim at supporting manatigtyawhen the space of
solutions is so large that the manual or exhaustive searcaniie daunting tasks. Indeed,
(semi)automatic approaches can be a useful contributia@vigpghg managers with initial
solutions that can be refined taking into account factorsaptured by the model.

Work-in-progress includes empirical studies aimed at watalg the robustness and
sensitiveness of schedules generated by the proposedaappj®?2]. Also future work is
devoted to add further levels of complexity to the proposedehfor example:

e the presence of interdependent (overlapping) WP requsamge joint work;

e the use of a more sophisticated model of expertises. Fa@rinst instead of considering
expertise as a Boolean property, one can imagine that thigiet ime developers with
low, medium or high expertise, as in the work of Gutja&tral. [36] and Stummeet
al. [20]. Moreover, complex projects might require more thae enpertise for each
WP, thus future extensions of the approach proposed in #peshould support that.

e the possibility of periodically re-organizing the peoplstdbution to teams, as well as
the possibility (as in [36, 20]) that developers might onesd part of their available
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time on the WP they have been assigned to.

Last, but not least, we intend to consider further optimaatechniques, in particular to
handle multi-objective optimization (e.g., comparingsiins provided by NSGA-II with the
exact Pareto front).
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