Why Source Code Analysis and Manipulation
Will Always Be Important

Mark Harman
University College London, CREST Centre, Department of @otar Science, Malet Place, London, WC1E 6BT, UK.

Abstract—This paper' makes a case for Source Code Analysis more flexible, responsive and adaptive to the pace of change
and Manipulation. The paper argues that it will not only remain that they, themselves engender. | will argue that source cod
important, but that its importance will continue to grow. This will come to be seen to be one of the most fundamental and

argument is partly based on the ‘law’ of tendency to executattity,
which the paper introduces. The paper also makes a case for pivotal materials with which humankind has ever worked. As

Source Code Analysis purely for the sake of analysis. Analjs @ result, its analysis and manipulation are paramount cosce
for its own sake may not be merely indulgent introspection. fie In the technical part of the paper (Section VII), | will
paper argues that it may ultimately prove to be hugely imporant consider the definition of source code, of analysis and of
as source code gradually gathers together all aspects of ham 5 qinlation, adopted by the community over the ten years
socioeconomic and governmental processes and systems.
since the founding of this conference, bringing a sharper
technical focus to the claims, in this introduction, thatiee
. INTRODUCTION code lies at the heart of socioeconomic interaction, gavernt

Source Code Analysis and Manipulation is important. gnd even our very piology. The analysis and the manipulation
will always be important and its importance will increase(?.f source code are interwoven; both can and should be used to

The argument for the longevity of Source Code Analysis af¢f!d insight into the properties, characteristics andavégur
Manipulation is based on the observation that all notatiend ©f the code. _ o
to become executable. This means that every new notationS€ction Il reviews the definition of source code and
whether lower level (and therefore already source code) ®fPlains why all descriptions will tend towards executapil
higher level (and therefore seeking, initially to escapedbde 9uaranteeing the study of source code analysis and manipula
level) will ultimately become source code. This is the ‘lafv otion and seat at the table of discourse in perpetuity. Se¢tio
tendency towards execution’. presents a very brief history of computation, source codk an
Because source code is, in the words of the SCAM cofource code analysis from Stonehenge to Ada Lovelace and
ference’s own call for papers ‘the only precise descriptdn the very first ever paper on Source Code Analysis. Section IV
the behaviour of the system’ its analysis and manipulatiih wdevelops this historical perspective to look towards ther
always be important and will always throw up new Cha||engec},gevelopment of source code and, with it, the future of Source
Perhaps this much is uncontroversial. Code Analysis and Manipulation. The section argues that
However, a little more controversially, | argue that Sourcource Code Analysis will be essential and may just rescue
Code Analysis and Manipulation will become ever morBumankind from the jaws of a ghastly, yet banal source—code—
important, because source code will increasingly find ity w&ontrolled dystopia. Section V shifts back to a more down-
into the socioeconomic, legal and governmental fabric of ofp-€arth and technical treatment of two of the conference’s
interconnected world. This is not necessarily a univeysalvidely studied source code manipulation techniques:rgici
good thing As software drives the trend for rapid changednd transformation. It shows that both are closely-related
typified by ever shorter cycle time between conception, HevéPecial cases of manipulation, formalizing this obseorati
opment and adoption we face new dangers. within the projegtion framework. Section VI argues thatrsm
There is a consensus that this trend has many posit%de manipulation can be used for source code anegS|s. It
effects. Nonetheless, it draws engineers and users intoa /S0 makes the case for source code analysis for its own
of increasing complexity and scale. Increasing automati§@ke, illustrating in Section VII with some personal expade
creates a potentially pernicious trap, into which we arasat r Of Source Code Analysis and Manipulation as a ‘voyage of
of falling as humans and systems are become ever more figigcovery’.
into a global Carbon-Software Skin.
This skin of interconnected systems, processes and people WHAT IS SOURCE CODE AND WHY IS IT GUARANTEED
may soon come to resemble more the inflexible mesh of TO BE ALWAYS IMPORTANT?

entrapment if we do not develop ways to make the systems .] o
Definition 1 gives the SCAM call for papers’ definition

1The paper is a written to accompany the author's keynoteeptaton Of source code. The definition focuses on the way in which

at the 10" International Working Conference on Source Code Analysid a source code fuIIy describes the execution of the systens Thi
Manipulation (SCAM 2010). As such, the body of the paper &slagolemic,

first person singular prose style and takes the form of amegt positon WasS intended to be a ger_weral definition. It would appear to
paper. have served the community well because there has been no

change to the definition over the decade since the confésendigerature on the history of computing [63]. | shall adopt a
inception. Also, there have been no protracted discussibnsparochial view and follow the story primarily from an Endjlis
the form ‘what is source code?’ during any of the previoyserspective, starting with what might be the world’s first
nine instances of the conference over the years. computer. Though now obsolete, the remains of this computer
Definition 1 (Source Code)For the purpose of clarity can still be seen on Salisbury Plain in Wiltshire in Englaind.
‘source code’ is taken to mean any fully executable dedoript is known as ‘Stonehenge’ [3]. This vast stone age computer
of a software system. It is therefore so construed as todecluwas one of the world's first timepieces, arguably a forerunne
machine code, very high level languages and executablégrapf today’s GPS-enabled, time—-and—position aware applets.
ical representations of systems. Though its origins and precise purpose remain partly migster
One obvious reason why source code analysis and marijs, it is clear that it allowed primitive date computatiembe
ulation will always be important derives from the prevakenomade, including predicting the summer and winter solstices
of source code. As we try to escape its clutches we are drawrThe first incarnation, built in 3,200 BC was constructed
back into its embrace. For instance, early attempts to movem earth, augmented in 3,000BC by a structure in wood.
away from source code to higher level languages led toThis proved to be a rather poor material from which to build
natural inclination towards specification languages suxlz a the computers of the day and so, around 2,600BC, a re-
[75] and VDM [53]. However, this was shortly followed by aimplementation was constructed in stone. This much more
retrenchment to what were termed ‘executable specificsitioncostly undertaking was accompanied by what might be termed
According to the SCAM definition of source code, since aone of the world’s first known ‘bug fixes'. It was found that
‘executable specification’ is executable, itijgso factg source the position of the northeastern entrance was not quiterateeu
code. and this was corrected by the stone re-implementation. The
More recently there has been a migration from lower levelg fix consisted of widening this northeastern entrance [3]
code towards models. Model Driven Development has a Ifg9].
to offer. The use of UML, for instance, is undoubtedly an Of course, this early computer was built without the one key
engineering advance. However, it is inevitable that we Ishahgredient that makes computation so astonishingly pawerf
seek to compile as much as possible of the UML design ahd all-embracingsource codeThis could be contrasted with
a system into executable code. As soon as we can compile other early computational device, dating to 2,700BE, th
it to an executable code it simply becomes the new ‘higibacus [51]. With the abacus, one can perform ndiffgrent
level language’. This is certainly progress, but we must nebmputations, based on a prescription for how to move the
lose sight of the fact that it means that UML will havebeads of the device. If these prescriptions for how to move
become ‘source code’ too. Already, there is work on analysise beads are written down then they become a form of
and manipulation of aspects of the UML using, for examplgource code, albeit one that denotes a sub-Turing langifage o
slicing [1], [56]. This should not be seen as a descent to som@mputation. Without source code, the computation peréarm
low level compromise by adherents of the UML. It is a natur@lannot change and so the implementation remains, perhaps
evolution of the notation. | believe it might even be called geliable, but inherently inflexible.
law: The most significant early landmark in the history of source
“Descriptions tend towards executability”. code was reached with the work of Charles Babbage and Ada
That is, no matter how we try to abstract away from whaugusta Lovelace in their work on the Analytical Engine
we may uncharitably describe as ‘low level’ code to ‘highefThis was an entirely different machine from the earlier at-
levels, we shall soon find that we are writing some form démpt by Babbage, with the Difference Engine, to replace
source code. This is a natural progressive charactertbt¢, ‘human computers’; clerks who were trained in arithmetid an
can be thought of as a law in the same sense as Lehman'’s |swho labouriously performed mundane computations, emtirel
of software evolution [61]. We are compelled by the humamithout the aid of automation. The analytical engine was, to
desire to master and control our environment. This entaddl intents and purposes, conceived entirely like a present
making descriptions executable: If our higher, more abstraday computer; its punched—card source code had versions of
notations are any use to us, then why would we not want assignments, conditionals and loops. The analytical erthiat
automate the process of transforming them into some low&as to execute this source code was to be built of brass rrathe
level executable code? Why would we want to undertake ththan earth, wood or stone. Crucially it was to &etomated
effort ourselves, and thereby be forced to descend back doweplacing potentially fault-prone human computers wittoau
to the lower levels? As soon as we have fully automated theated computation. This automation was to be powered by
process of transformation from our higher levels of absimac steam rather than electricity, which was only availablarfro
to executable code, we have invented a new form of soungemitive zinc—copper batteries at the time.
code. Perhaps it will be a better source code, but it will be

source code, nevertheless. _2A_s other aythors _have ‘found, it is _hard to provide a relialnid precise
citation for this crucially important piece of work. Loveks comments

appeared in her English translation of an article, oridynelritten in Italian,
[1l. THE BEGINNINGS OFSOURCE CODE AND ITS by Menabrae: ‘Sketch of Analytical Engine Invented by CesrBabbage'.
ANALYSIS AND MANIPULATION Lovelace added a commentary of seven entries, labellede‘Mbto ‘Note

. . . G’ to the translation and initialed each her entries ‘A.A.The full trans-

There is much debate as to the orgins of CompUtat'qléﬁion and commentary are available on the web at the time rting:

and claims and counter claims as to originality permeate thet p: / / www. f our i | ab. ch/ babbage/ sket ch. ht m .

It is truly astonishing for any researcher in Source Codengine. For example, she realised the need to analyze source
Analysis and Manipulation to read Lovelace’s account of thebde to find the most efficient expression of computational
the coding of the engine, which is by far the larger part dftent from those available:

the article at approximately 75% of the overall article lé#ng

“The order in which the operations shall be per-

In her seven prescient notes she on the one hand, recognisesformed in every particular case is a very interesting

the practical importance of loops, optimization and delgg
while on the other she speculates on theoretical aspedisasuc
artificial intelligence. All this, written in 1842: over a ciry
beforeany form of source code would ever be executed by a
computer.

At the heart of the Analytical Engine approach weas-
tomation Automation is impossible without a source code
that defines the process to be automated. Ada Lovelace, the
daughter of a mathematician and a poet, wrote eloquently
about the manner in which the source code inscribed on
punched cards was to be used to program the Analytical

and curious question, on which our space does not
permit us fully to enter. In almost every computation
a great variety of arrangements for the succession of
the processes is possible, and various considerations
must influence the selection amongst them for the
purposes of a Calculating Engine. One essential
object is to choose that arrangement which shall
tend to reduce to a minimum the time necessary
for completing the calculatioh. Extract from Ada
Lovelace’s ‘Note D’ to her translation of Menabrae’s
manuscript.

Engine:

“The distinctive characteristic of the Analytical En-
gine, and that which has rendered it possible to
endow mechanism with such extensive faculties as
bid fair to make this engine the executive right-hand
of abstract algebra, is the introduction into it of
the principle which Jacquard devised for regulating,
by means of punched cards, the most complicated
patterns in the fabrication of brocaded stuffs. Itis in
this that the distinction between the two engines lies.
Nothing of the sort exists in the Difference Engine.
We may say most aptly, that the Analytical Engine
weaves algebraical patterns just as the Jacquard-
loom weaves flowers and leavesExtract from Ada
Lovelace’s ‘Note A’ to her translation of Menabrae’s
manuscript.

This is probably the first statement ever made in print
regarding Source Code Analysis and Manipulation.

Looking back over 176 years since she wrote these words
we can see the astonishing manner in which source code
touches fundamental aspects of intellectual creativitith w
profound practical ramifications. The ambit of source code
has continued to widen: through computability source code
encompasses mathematics, logic and philosophy. Work on
evolutionary metaphors of computation bring it into comtac
with concepts of natural selection and evolution. In time,
Sociology, Economics and even Political Science will all
submit to source code, the analysis of which will yield il
into socioeconomic and political systems and processes.

IV. THE DEVELOPING IMPORTANCE OFSOURCE CODE
AND ANOTHER REASONWHY IT WILL CONTINUE TO

This was more than an analogy: the inspiration for the GROW IN IMPORTANCE
‘punched cards’ of the analytical engine came from the cardsin Section Il, | argued that source code analysis and
used in Joseph Jacquard's looms, the automation of whigfanipulation will always be important because source code
revolutionised the clothing industry. Jacquard’s punct@dis will always be important; as long as there is computation,
were the equivalent of straight line code; configurable, btiere will always be new notations that will be used as
ultimately producing the same garment on each rendition. $ource code. This argument is, | believe, uncontroversial:
the same way, a musical box is constrained to identically reursory review of the development of programming languages
perform the piece inscribed by its metal teeth. In computingill reveal a continuous cycle of invention, innovation and
nomenclature, Jacquard’s loom could be thought of as a Vis@velopment. With each new concept in the expression of
Display Unit, fashioned out of fabric, with the punch carés d computational abstraction comes a concomitant need for re-
scribing a kind of vector image, translated into a ‘bit map’ osearch in analysis and manipulation. Each change in ptatfor
cloth by execution on the loom. As source code, the languaged implementation brings associated issues for the peacfi
was clearly not Turing complete. What Babbage and Lovelagseurce code analysis and manipulation. In this section ulavo
had in mind for the analytical engine was a flexible codike to advance a potentially more controversial argument
capable of capturing arbitrary arithmetic computation ,angegarding what | believe will be a dramatic growth in the fetu
thereby, essentially a Turing complete programming lagguaimportance of source code analysis and manipulation.
in the sense that we would now understand it. In 1948, Alan Turing wrote a paper (sometimes overlooked

According to the SCAM definition of source code (Definiby comparison to his other groundbreaking work) entitled
tion 1) the punched cards of the Analytical Engine do indee@hecking a large routine’ [78]. So what was this ‘large
inscribe source code. Even Jaquard’s punch cards are soumgine’, for which Turing sought a checking method and,
code according to the SCAM definition, with the loom a@ so doing, produced possibly the earliest work on software
computer in exactly the same way that Lovelace describearification and testing? It is interesting to speculate dratv
it. Lovelace clearly recognised the profound significanée anight have constituted a large routine in 1948. In his short
the advent of source code and made the first remarks abpaper, Turning does not elaborate on the size he had in
its analysis and manipulation in her note on the Analyticahind. The example Turing used to illustrate his ideas was

multiplication by repeated addition. Turing makes it cleaand faintly ridiculous. This is our present day impression
that this is merely an illustrative example. This simpledooof the Victorian vision of a bank of ‘computers’, busily
was sufficient for him to be able to tease out issues such @msulting their logarithmic tables and inscribing theitgwof
the separation of tester and developer, the use of embedtteddr labours in indian ink.

assertions and the distinction between partial correstaes Governmental treaties such as the Maastricht Treaty [79]
total correctness. are famous, perhaps infamous, for their complexity, with
In the same year, Eric Blair, under the pen name Georgie result that such treaties are themselves the subject of
Orwell, was speculating about how government might evolvgnalysis in the literature on ‘political science’ [86]. Dxbs
In order to compute a date for his book’s tltle, it is Widel}fage among member states of the European Union about the
believed that he took the simple expedient of transposieg thegree to which the rules and regulations of such treaties
two last digits of the date the manuscript was completege followed. Might we start to use computers to check
(December 1948), yielding the now famous title ‘Nineteethese ‘large routines'? After all, they are rule based syste
Eighty—Four’ [71]. In the software development community would be a reckless optimist who would predict future
we have had some problems of our own with two digit datgmpilification of the rules that govern our social, economic
fields [72]. Transposing the last two digits of the presernedagnd intergovernmental interactions. It seems far morésteal
will not move us forward. Instead, let us allow ourselves tg presume that the complexity of these systems will become
speculate about the development of source code over a simdger higher. Indeed, | would argue that is is precisely bseau
time frame. Let us move our focus, first from 1948 to 201f}e have large digital databases and automated computation
and then, from 2010 to 2072. and networked connectivity that we are able to countenance
In 1948, the structure of DNA was still, as yet, unknownhe existing complexity. As such, technology is not a passiv

Social, financial and governmental processes were entirgfiness, recording and adapting to complexity increaseisou
mediated by humans. A ‘data base’ was still the term mogh active driver of the very complexity it records.

Ilrl1<ely used t(; refer to ? co_lle<|:t|orl Olf Papers. Ey this time ¢ jger again, the SCAM definition of source code (Defi-
t ere were, 0 courseHe ectrica hcalgu an?g r:nac ine o hnition 1). Depending on how one chooses to define ‘execution’
primitive computers. However, the idea of a ‘computer” nigh; ¢ possible to see how this definition could equally well

in the public_: m.ind, still refer egually wgll to the humanapply for the code that defines the behaviour (execution) of
operator as it might to the machine. Looking forward by th§ cell or an entire organism for which the source code is

same amount of time, what will we think of as a ‘large routinqoCateol in the DNA. It also captures, as source code, the

) - NA. caf , _ :

n 207_2' . rules and regulations that delimit governmental intecarj
Having unlocked the source code that underlies the Char@‘é’cial networking, bureaucratic rules and economic tretitsa

.terls_'ucilof cr)]ur own b!OE)gICGJ sy?tems, |s||t !|kelr, Eg[ha rotocols. Humans and systems constructed of part human,
Inevitable, that we mig t_move rom analysis o this ne_\gart machines are the executors of this source code.
source code to manipulation. Humans will become the first

species on earth to perform self-modifying code. As a resear
and practitioner community working on Source Code Analys

and Manipulation we are only too well aware of the possibi L)
ities this creates, for good and ill. | believe that the idéa uman activity. Biological organisms, financial systemsl an

our programming our own source code will not be sciendPvernments have all been compared to systems or machines,

fiction in 2072. We had better start to prepare for this: wh nd_ S0 it ShOUId not be surprising that the rules that govern
knows what the consequences of implementation bugs a §'r behaviour could (and perhaps should) be thought of as
misunderstood requirements will be in this new source cod@Hrce code.
We shall also have to contend with the feature interaction! believe that the law of ‘tendency to executability’ de-
problems and other unintended consequences. scribed in Section Il also applies to other rules and prasess

It is a tired analogy that describes DNA as ‘the source codlzat humans create for themselves and for which we create
of life’. Nonetheless, worn though this observation maynsee Systematic descriptions. We seek to ‘execute’ these puresd
it continues to inspire and confound. | am simply taking th@hd processes in all aspects of our lives; in companies, in
analogy to its logical conclusion. It is not inconceivattat: Vvoluntary oganisations, in government, in laws and in tesat
this new source code may become a ‘programming |anguad—é"ere are two ways in which this law of execution manifests
in its own right. This year, there have been credible clainas t itself. The first, and longer—established, is the impleratorn
the first steps towards the programming language ‘DNA+Pf processes and procedures by the humans we sometimes
have already been taken [36]. disparagingly refer to as bureaucrats. Long before theradve

Currently, the term ‘bioinformatics’ is used to refer tof digital technology, humans served the role of computer,
the use of computers and the algorithms they implemeftplementing the execution of these descriptions.
to analyze the vast databases of DNA and other biologicalFranz Kafka noticed this apparently inherent human impulse
sequences available to us. It is a subject in its infancy. \Whawards executability and its potential to enmesh the human
will another 62 years of the development of bioinformaticspirit in a bureaucratic cage [55]. He takes the unfortunate
research produce? Perhaps, by 2072, the notion of computaesequences of inflexible ‘governmental source code’ to a
as analyzers of DNA will seem quaint, essentially mundamguesome conclusion. In his novel The Trial, bureaucratic

With this view of source code in mind, it would appear
Ljat the concept of source code is gradually spreading out
rom its foundation within computers, to almost all sphesés

execution of procedures leads to wrongful execution of anAs source code comes to define the actions in which people
innocent victim. and organisations may engage we will need new kinds of
The second and more recent example of the law of executiource code analysis. Source code will increasingly captur
comes from our ability to replace the human bureaucrat withdelimit, prescribe and proscribe the permissible forms of
cheaper, faster and more reliable software—centric elguitta communication between organisations and states and betwee
The idea that laws and treaties might be coded as soustates and their peoples. We currently rightly, but pritgari
code is not new. Indeed, 25 years ago, there was alredalink of type theory [65] and abstract interpretation [278]
work on executable descriptions of laws. One notable exampls routes to program correctness. When we reach the point
was the source codification of the British Nationality Act asvhere source code defines the parameters that may be ex-
a program in Prolog[73]. Partly because of the doctrine ahanged between governmental bodies and their citizems, ho
binding precedent and partly as a result of humans’ naturalich more important will be the lattice of types that deserib
propensity for augmentation laws have increasingly becortfeese exchanges? Organisations and even states may have
more numerous and more complex. The same applies piperties in their interactions that can only be undestoo
the procedures and processes that exist within and betwé@eterms of source code, because of the (possibly unintgnded
organisations. As a result we can expect more automationhigh level effects of lower level automaton in code. In such
these processes through source codification. a world, how much more important will it be to have precise
Authors have begun to consider the implications of sqget efficient means of abstracting out these properties fham
called ‘e-government’ and the potentially pernicious atpe code?

of automation that accompany this trend [54]. At present, For this reason, if for no other, | believe that source code
systems are restricted to merely electronic data capthee; hnalysis and manipulation will continue to grow in impoxtan
bureaucrats’ forms are now implemented in javascript rathg,: the goals of our analysis will move up the abstraction
than folded paper. However this opens a door to greai@{ain, as source code itself does the same. For our part, as
automation. . _a primarily engineering and scientific community, we cannot

Automation speeds up processes and, it is often claimegone grapple with the social, ethical, legal and moraléssu
reduces costs. As engineers, we seek ever faster cheggpled by the growing significance of source code. It is not
solutions. However, a side effect of this speed up is thewtad o, ys to dictate the response required to the fundamental
extinction of human decision making and the surrender gfiestions this raises. However, through source code asalys
human sovereignty over aspects of the increasingly auimagng manipulation we may hope to better understand the sffect
process. and influences of source code.

We might speak figuratively of our world increasingly being | hope that the community will extend outwards from

‘governed by source code’. We should be careful we do not ; . ;
) i . analysis and manipulation of purely software source code,
sleepwalk into an Orwellian world that really igoverned

by source code. In his novel ‘nineteen eighty—four’ OrwefP embrace a wider conception of source code that includes

.)) . socioeconomic and governmental source code’ and even ‘bio
envisioned the ‘party’ controlling every aspect of human , :
. . ! ; .. __source code’. We have already seen that source code analysis
existence, including language and through it, thoughtfitse : o
can help us to understand the business rules of organisation

| am surely neither the first nor .the Iast-author to raus 4]. This work draws on the central ‘SCAM observation’
the dystopian spectre of automation and its dehumanisi)) . o
t source code ‘contains the only precise descriptiomef t

potential. However, previous concerns have focussed on I8 aviour of the svstem’. If an oraanisation relies heauily
legacy of Henry Ford and the mundane deadening of repetitivé y ! 9

manual tasks [50]. There are also potentially perniciofece source code, then it may not matter what the organisational

; : dfocuments prescribe nor what the managers believe about
of control of the intellectual space by a monster entirely 9 -) .
organisational rules; the source code knows better. It és th

our own making. It may not be an ‘Orwellian party’ but ‘the ;
A source code that implements these rules and, therefore, the
source code’ that evermore controls our thought processks a BN .
) ; source code that ‘decides’ precisely what are the rules.
mediates what can and cannot be done. Even without our . .)
intending it, perhaps this banal source code monster maygcom OUr response as a source code analysis and manipulation
to control that which can be expressed community has been to analyse the source code to extract
In this future world of automated socioeconomic and goRusiness rules [74]. We have already seen that this is regess
ernmental processes, it seems clear that the full and proffrorganisations that have lost sight of their businessgss.
understanding of the source code that captures the praces¥¢ch organisations are bound to turn to software engineers
will be a paramount concern. At present our aims to manakfe extract the business logic from source code logic. My
the complexity of the source code of software have presenfd@ument is that it is inevitable that we will increasingly
great challenges. In future, we may have to raise our game@ve to adopt this form of post-hoc extraction and analysis
meet the challenge of world in which everything that mattefd order to discover exactly what is going on in our source
to the human enterprise is, in one way or another, capturé@de governed world.
by some form of ‘source code’. In this emergent paradigm However, having allowed myself the luxury of considering
of automated socioeconomic and governmental interactidghe nature of what | believe will prove to be one of the great
‘understanding the source code’ will take on a new signifieanchallenges of the 21st century, | must now turn to the rethtiv

and urgency. meagre technical contributions of this present positiopepa

V. SLICING AND TRANSFORMATION: TWO IDENTICAL
FORMS OFSOURCE CODE MANIPULATIONS

6

In considering the relationship between analysis and maqr
nipulation it is helpful to review the SCAM conference’s

own definition of ‘analysis’ and ‘manipulation’ as captured *|
in Definition 2 below. Like the definition of source code *|

(Definition 1 above), it has remained unchanged in the cal*|
for papers for 10 years. 0
Definition 2 (Analysis and Manipulation)The term ‘anal-

ysis’ is taken to mean any automated or semi automatgeg. 1. Numbers of papers on Slicing and Transformation aB®ver the
procedure which takes source code and yields insight isto years. The left hand bar of each pair shows the number of papeely on
meaning. The term ‘manipulation’ is taken to mean any aUtEé?nngn;atlon’ while the right hand bar shows the numbepagfers purely
mated or semi-automated procedure which takes and returns '
source code.

_Consider the widely studied source code manipulation teqfiic it is constructed, semantic termination has to formt pa
nique of program slicing [85]. Harman et al. [42] introduceds the ordering relation.

a theoretical framework called the ‘projection framewofl , o qer to cater for this observation, I will, in the remaénd

formalizing and comparing definitions of slicing as a pair of¢ s section, drop the requirement that the equivalence
relations, containing an equivalence and an orderingioelat g|5tion should capture semantic properties, while therng
The idea is very s_lr_nple: The equivalence re!at|on c_apturgﬁou'd capture syntactic properties. Rather, | will alldther

the property that slicing seeks to Preserve, while the_tmlger relation to capture either form of property. In this way, the
relat!on captures. that property that slicing seeks to img@ro projection framework simply says that slicing must hold som
If s is to be a slice of a program then s and p should be properties of the program constant and faithful to the aagi

equivalent according to th_e equivalence r(_alatlon a_mihould while changing some other properties (hopefully improving
be no worse thap according to the ordering relation. Moreupon them in some way)

formally, this s captured in the three definitions below ¢tak Over the 10 years of its history, the SCAM symposium

from t_h¢_2003 JSS paper [42)). has published 30 papers (about one sixth of all papers) on

Def|n|t|(_)n 3 (Or_dermg):) slicing and 31 (a further one sixth of all papers) on trans-
A syntactic ordering, denoted by, is any computable tran- ¢, mation. Figure 1 shows the numbers of papers on slicing
sitive r e.fllexwe relat!on on programs. and transformation over the years. In arriving at the figures

Def|n|t|o_n 4 (Equlvalence):)) made a (somewhat imprecise) assessment of whether a paper
A semantic equivalence, denoted by, is an equivalence yaq yrimarily about slicing, primarily about transfornuatior
relat|o_n.<.)n a projection of program semantics. primarily about neither.

Definition 5 (<, ~) Projection): _ The figures are not intended to be rigorous in any way and
Given syntactic ordering; and semantic equivalence, should be treated with a high degree of caution. In arriving a
Programp is a (<,~) projectionof programg < p<q A prg these figgres I_ adopteq the weII—known_source co_de a_malysis

~’ ~ and manipulation principle of ‘conservative approximatid
excluded papers that were ndearly about one of these two

Traditionally [42], this framework was instantiated withtopics. For instance papers about the SDG [49] are clearly
Weiser's trajectory semantics for the equivalence refatigelatedto dependence analysis and, thereby, slicing. However,
and syntactic statement inclusion for the ordering so as ifca paper concerned with the SDG did not have a significant
capture Weiser's 1984 definition of static program slicingegree of work orslicing from the SDG it was not counted
[85]. Several authors have studied the way this framewogls a slicing paper. Similarly, there are many source code
can be instantiated to capture other forms of slicing, sushanipulations, such as refactoring, that could be thought o
as dynamic, conditioned and amorphous forms of slicing [8s forms of transformation. However, if the paper did not
[42]. Other authors have also addressed semantic questiexglicitly present itself as a transformation paper, thewas
about the meaning of slicing [35], [82]. not counted as such.

One such work by Ward and Zedan [83] pointed out that My conservative analysis of the last nine years is that
the original 2003 interpretation of equivalence and omtgri roughly one third of all papers at the conference concern one
was flawed because it requires that semantic properties arether of these two topics (in roughly equal measureshén t
captured by the equivalence relation, while syntactic prips discussions at the symposium there have been several debate
are captured by the ordering relation. This interpretafails about the relative merits of the two techniques.
to cater adequately for the manner in which a slice could beHowever, using the projection framework, we can see that
more defined than the original from which it was constructed;is possible to consider traditional transformation apecl
a slice may introduce termination though it may not remove itase of slicing. Those working on program transformatiog ma
Termination is clearly a ‘'semantic’ property. However, fdgse be pleased to hear that it is also possible to consider glicin
a traditional slice must be more defined than the program fraas a special case of transformation. As such | believe that

120

these are both examples of the same thimgmnipulation |
think discussions about relative merits are a distractiod a o
we should consider all forms of manipulation of source code
to be equally valuable. Indeed, | believe that we shouldlidel
refactoring and any other techniques that take source audle a «
return source code to be equivalently part of the same catego |,
of ‘source code manipulation’.

Let us consider the two relations in the projection frame- *
work in turn. A transformation is a slice in which the equiv- |
alence relation is functional equivalence. That is, tiaddlly
speaking, si_nce its inception il’_l the 1970s [29] a transfdiona 2. Trend in papers on Analysis and Manipulation at SCAMper bar
has been viewed a_s a funCtlor_] from pro_gr_ams to prograiizg percentage of papers on manipulation; lower bar spensentage of
that must be ‘meaning preserving’. For slicing, on the oth@gpers on analysis.
hand, the equivalence relation is more restricted, so thigt o
a projection of the meaning of the original program need be
preserved during slicing. In this sense, a transformati@on i At the time of writing, the developed and developing world
a specific case of slicing, in which the equivalence relaticare collectively entering into a period of austerity ungrec
is the smallest possible and therefore the most restrictiviented in living memory, brought about by the global finahcia
Slicing merely relaxes this to consider programs equivtalegrisis of 2008. Many governments are asking themselves and
‘with respect to a slicing criterion’. their citizens the question: ‘on what areas of governmetit-ac

More formally, letE(, ,,y denote equivalence with respect taty should we cut back our spending?’. The application of the
some set of variables at some set of program pointsand let ‘cuts’ is crude and imprecise. It has uncertain consequence
V denote the set of all variables aidthe set of all possible and potentially unexpected side effects. However, suppose
program points. For transformation, the equivalence imlat after the next economic meltdown, source code has continued
is E(v,n), Whereas for slicing, it isE; 1,1 for some set of its present trend to the point where it has permeated every
variablesi and some program point The pair(i, n) is merely ~aspect of the government and economy of the world. Might we
a parametercalled the slicing criterion. The slicing criterionnot be able to apply dependence analysis in order to discover
relaxed the traditional transformation view of equivalencpotential effects (and otherwise unforeseen side effeats)
allowing it to capture many forms of projected meaning, whilgovernmental actions? Instead of ‘cutting back’ in a crude
retaining the ability to capture traditional transfornoatias a and imprecise manner, might our governments be able to use
special case. In this way, transformation is a special cfisesource code analysis and manipulation to ‘slice back’?
slicing.

Now let us turn our attention to the ordering relation. v/|. ANALYSIS PURELY FOR THE SAKE OF ANALYSIS
Traditionally [85], slices are constructed by statemeetiten,
so that a slice is a syntactic subset of the program from whi
it was constructed. This is more restrictive than transrm

2001 2002 2003 2004 2005 2006 2007 2008 2009

ChIn recent years, the SCAM conference has shown an in-
creasing trend for papers on Analysis over Manipulatio® (se

'l]:égure 2). In this section | want to make a case for source code
analysis purely for its own sake. | also seek to argue that we
can use Source Code Manipulation for Source Code Analysis.
originally envisioned, that transformation is performeal tThose authors working on Source Code Manipulation who are

improve the execution speed of the source code. Howev%llarmed by the t_rend _tow_ards analysis, therefore nee_d not be
other authors have used transformation, in its broadesEser?oncemed’ manipulation is another way to do analysis. .
for many other purposes, including refactoring [33], [916]] The need to always seek an application before embarking on

[66], restructuring [39], [60], [80], reuse [24], testatyil[40], research in source code analysis is worthy. Sh(_)uld it become
[44], [67], and migration [81]. In this sense a slice has aemof:nandatory then it would become a tyranny. | wish to argue:
restrictive ordering relation than transformation, whiem use ‘it is valuable to use Source Code Analysis and
many different orderings depending upon the application. Manipulation purely and simply in order to discover

More formally, using the projection framework, a slice is that which may be there to be discovered”.
a (<, ~) Projection in which< is restricted to program size In the longer term, this unconstrained analysis for its own
and ~ is arbitrary. A transformation is &<,~) Projection sake may have profound and important applications. However
in which < is arbitrary and~ is restricted to functional it is not always possible tpredictthe application at the outset
equivalence. Each is a special case of a more gefigrat) of analysis and so this should not de rigueur nor should
Projection for which neithex nor =~ is restricted. Such a it be a pre-requisite for publication.
more general projection is, in SCAM terms, a source codeOf course, we often do use source code analysis and
manipulation. That is, in its most general form, we want athanipulation techniques with a purpose in mind. These ap-
source code manipulations to hold some properties invarigtications lead to a prevalence of analysis and manipuiatio
according to a chosen equivalence relation while improvirgapers in conferences such as those concerned with Program
on others according to some chosen ordering relation. Comprehension [19], [37], [57], [64], [70], Maintenancq,[2

meaning of the original. In program transformation the gwal
transformation is left unspecified [26]. It may be, as Locela

[7], [23], [25], [31], [59] and Reverse Engineering [32],3¢ manipulation thatoes notarget any particular application. In
[68]. the words of the SCAM call for papers:

However, there is value in what might be termed ‘analysis “While much attention in the wider software en-
for the sake of analysis’. That is, the pursuit of analysi®as gineering community is properly directed towards
voyage of discovery with an uncertain destination. Withs thi other aspects of systems development and evolution,
approach, we treat source code more like a ‘naturally oguyirr such as specification, design and requirements engi-
phenomenon’; one that we seek to understand by experimental neering, it is the source code that contains the only

investigation. We seek to understand and expose struauarks precise description of the behaviour of the system.
relationships in source code that occur almost as the edshom The analysis and manipulation of source code thus
might seek to explain the structures and relationshipsdbat remains a pressing concefn.

cur in economic systems. Both are concerned with systens thaThis is not to say that the work that has appeared in
are entirely created by humans but which exhibit behaviotie conference has not been applied; it has. Space does
for which those involved cannot have planned. Since we aiat permit a comprehensive list of all the applications that
to identify unplanned outcomes, we cannot know that whidiave been addressed in the conference proceedings. As an
we seek, we can only hope to recognise anything interestimglication of the breadth covered, a chronological list of
and potentially important when we stumble across it. | velie applications from the past ten years of the Working Confegen
that this trend in the evolution of source code will force as ton Source Code Analysis and Manipulation includes Security
consider it as having properties with an emergent characf®4], Documentation [5], Re-engineering [58], Predict[aa],

This will drive us towards analysis that treats source codthange Management [34], Inspections [20], Design Patterns
more like a naturally occurring phenomenon and less like[4], Testing [52], Clone Detection [77] and Evolution [76].
human-constructed artefact. I am not making a case for application—free research. What |

At the time of writing the economist has no ‘source codgjropose is that we should continue to allow space for arglysi
that can form a basis for economic analysis and must therefaihd manipulation that yields interesting results, but féok
rely upon simulations instead. How long will it be beforave cannot, at present, discern a definite application. $ourc
source code is a viable mechanism for understanding asgble analysis is aend in itselfand we should not be afraid
investigating world economic structures? How much mote say so.
complex will computer software become before there is aln the future, we may hope that a software engineer would
need for not just models, bisimulationsthat abstract from be provided with a suite of tools for analysis and manipatati
the detail in order to examine and predict the bahaviour of source code that encourages and facilitates this kinc-of e
software systems? ploratory investigation. This can have several benefittially,

The two worlds of economics and software are becomirgich an approach can be used to support computer science ed-
increasingly interwoven. Therefore, we may as well try tacation. In the laboratory and the classroom, studentsduoeil
understand software in a more exploratory manner that &&cegupported by an exploratory investigative approach to@our
that it will possess unintended, but nonetheless intergsti code. Lectures that teach programming from first principles
structures and relationships. through necessarily small toy examples can be supported by

For small programs, this does not make sense; we canikgestigative, ‘browse and dig’ classes, in which the shide
sure that the purpose, effects and characteristics arelyargorowses a large code base, occasionally using more in-depth
those the designer intended and so there is no need to tmadlysis to dig deeper when an interesting feature is rohtice
the source code as some sort of ‘undiscovered continertkploration can help students to become fluent with the most
However, above a certain ‘critical mass’ (or perhaps aiticcommon of software engineering tasks; reading and evolving
complexity of interactions between code elements) it bezdmother engineers’ code. In this regard, the agenda that speak
impossible to completely characterize the code. of ‘analysis for the sake of analysis’ is not entirely withou

| am not referring merely to undiscovered bugs, but aspegisactical application.
of behaviour which are simply unanticipated (and will often However, it is not merely in the classroom that ‘analysis
not necessarily be localised). It has been known for sorfar its own sake’ is potentially valuable. Researchers azah a
time that software systems develop their own dynamics sisould be involved in the process of exploratory analysis
they grow and evolve [61], [62]. | am taking this view toof source code. If we are honest with ourselves, many of
its logical conclusion. That is, we should accept that sonwair techniques originate in such speculative and explorato
of the properties that source code will exhibit are not thosmalysis: we notice a trend or pattern in the code, formwdate
intentionally placed there by the designer. They will only bhypothesis, develop tools to investigate and then, ocaalio
discovered by exploratory experimental investigation. are pleased to confirm our hypothesis.

The SCAM conference satisfies a need for a conferenceThe strictures of academic discourse then render our dis-
in which those interested in source code analysis and mangpveries in reverse chronological order in a publicatian. |
ulation can meet, unfettered by the constraints imposed isyusually inefficient for other scientists to read our work
the constraints imposed by specific applications. This s ntottom up’. The reader of a scientific paper does not always
to say that these applications are unimportant; they arg vavant to retrace the author’s steps along their voyage of
important. However, there is a need for a forum for discussialiscovery. However, our approach to scientific writing tesa
of tools, techniques, theory and algorithms, for analysid aan unrealistic and unrepresentative view of the process of

scientific discovery and can adversely influence the manner ,u,

in which future students of a discipline attempt to practice 2250 ”\
their subject. 4% ;f\\\

% s

0% ‘ = . ‘ =i e N
VIl. SOME RESULTS FROMMY OWN VOYAGE IN SOURCE oo E 30 40 50 B0 0 B0 80 100

CODE ANALYSIS)
(a) All Slices
| should like to take the opportunity, afforded to me by
this keynote invitation, to illustrate ‘source code analyas 0% I
an exploratory voyage of discovery’ by presenting the tssul | % |
of some of my own collaborative work with colleagues. | will | % M_
take the liberty of presenting this work in the ‘wrong academ 0% ‘ - ‘ ‘ ‘ ‘ - ‘ : ‘
a 10 20 30 40 50 80 70 80 90 100

writing style’: informal and bottom up. | am sure my experi-
ence is similar to that of many in our community and within
the wider scientific and engineering research community an
so perhaps it is useful, once in a while, to admit this and to| z% A
uncover just a little of this personal ‘voyage of discovery’ Ej |
The rest of this section reviews the way we arrived at| & \
some of the results we have previously published on sourcg 0%
code analysis manipulation by just such a process of exper
imentation and discovery. This work has been conducted in
collaboration with Dave Binkley, Keith Gallagher, Nicolas
Gold and Jens Krinke, all of whom | gratefully acknowledge _ o
. . . Fig. 3. Forward (faint) and Backward (bold) slice size disttions over all
for allowing me to present our work in the following mannereieria [11]
In 2002, Dave Binkley and | started to use the emerging
robust industrial strength slicing tool CodeSurfer fromafar
matech [38] for slicing what we thought of at the time as a selice sizes) and the strange jumps in the monotonic order of
of large real world programs. Our goal was simply to assess télice sizes. | would like to (re)present these results irtthe li
size of program slices [13], [15]. In order to construct thee more technical detail since | believe that they illustratg m
number of slices required, Dave needed to develop sevetida of source code analysis and manipulation as an uneertai
novel slice efficiency techniques, which led to some po#digti voyage of experimental discovery, rather than a detertignis
valuable developments in efficient slice computation thettew pre-determined top down analysis from hypotheses to cenclu
published in this conference series [16], and subsequently sion.
extended form, in TOPLAS [18]. In theory, forward and backward slicing are simply duals of
At the same time | was developing a different line obne-another and so there appears to be little point in stgdyi
research in Search based Software Engineering (SBSE) [#bth. Results for forward slicing should be merely a mirror—
and applying this to software testing [6] and so Dave arithage of results for backward slicing. After all, we are siynp
| started to consider the way dependence might influeniamking ‘the opposite way’ along the dependence arrows.
testability; the more parameters a predicate depended, uporit is true that theaveragesize of a set of forward slices of
the larger the search space for the test data generator anghre@edure or program will be identical to the average sigtsof
the harder, so we thought, would be the search for branighckward slices. However the distributions of these slares
adequate test data. very different [11]. Forward slices are typically much steal
Having obtained the results of an analysis of predicatkan backward slices. That is, there is typically a largeo$et
dependence, we noticed a statistically significant trend feery small forward slices and a few extremely large forward
functions with larger numbers of formal parameters to ddpeslices. By contrast, there are few exceptionally large iach
upon smaller proportions of these parameters. This was stites, but also fewer very small backward slices.
the result we set out to find, but it was the most interesting It took us quite a while to realize that this phenomenon is
finding to come from the work, which was subsequentlg product of the structured nature of most of the code studied
published with only a glancing mention of the originallyand the way in which control dependence influences slice
intended application to testing [14], [17]. The visualisas size. After several failed attempts to get the work publikhe
we used to explain our results proved useful in analysiidave realised that the reason for the difference was entirel
programs for DaimlerChrysler in some (sadly rather raré) padown to the difference between control dependence and data
consultancy work. This work for DaimlerChrysler concernedependence and the fact that most programs are relatively
the application of source code analysis to find problemastructured. We then set about investigating this by comisige
dependence features [10]. ‘data only’ and ‘control only’ slices of programs to explore
As we analysed more programs, we noticed two phenomehe difference.
that we could not initially explain. These phenomenarelabe Figure 3a shows the size distributions over all slices (nor-
the distribution of forward slice sizes (compared to badkivamalized as a percentage of the procedure from which they are

(b) Control Dependence Only Slices

0 10 20 30 40 50 60 70 80 a0 100

(c) Data Dependence Only Slices

10

100% clusters, ultimately leading to a joint paper on the topic in

75% TOPLAS [41]. We were surprised that, once we had noticed
50% ed this phenomenon, it seemed that almalitthe programs we
2822 studied possessed large dependence clusters.

To give the reader some data to back this claim, Figure 5
(from the TOPLAS paper) shows a count of programs with
large dependence clusters for variolasgeness thresholds
Fig. 4. Monotonic Slice size Graph of the open source progeam It is immediately clear from looking at this figure just how

prevalent these large clusters are. For instance, if wehset t

threshold for ‘largeness’ at 10% all but 5 of the 45 programs
taken), while Figures 3b and Figure 3c show the results fare studied have large dependence clusters.
all possible slices using, respectively, only control defence | think that if 10% of my program were to lie in one
and only data dependence. Backward slice distributions al@ster of dependence then that is something | ought to know
shown in bold; forward slice distributions unboldened. Arpo about and would have to take into account in almost any other
at (z,y) on one of these graphs indicates th@b of the analysis of the program. If the reader thinks that a threshol
distribution of slices consist of slices which includ&6 of of 10% is not large enough to be a cause for concern, then
the procedures from which they are constructed. Notice thaidifferent threshold can be chosen and the resulting number
the forward and backward slice size distributions for dataf programs with large dependence clusters according o thi
only slices are almost identical, but the forward and backwamore stringent criterion for ‘largeness’ can be read ofirfro
distributions for control only slices are markedly diffatdn Figure5.
the paper [11] we provide a more detailed analysis. Since this discovery, we have found that all our empirical

As we analysed the results we were getting from the setwbrk that uses any kind of dependence analysis must first take
all slices of the programs we were collecting, we noticed iato account whether a program has large dependence duster
strange pattern in many of the graphs. When we plotted tbe not. Programs with very large clusters tend to produce
size of slices in a monotonically increasing order, thereewevery different results for all the other kinds of analysis we
‘shelves’; the plot of the size of the slices would suddenlyave performed. Other researchers who find themselves-exper
‘fall off a cliff drop’. An example can be seen in Figure 4,imentally exploring the impact of some form of dependence—
which shows a graph of the set of all slices of the prograralated analysis might want to check their experimentat sub
ed ordered by size. We called this graph a ‘Monotonic Slicects for the presence of very large clusters. If one simply
size Graph’ (MSG). The MSG foed shows a very dramatic applies a dependence—based technique to a set of programs, a
example of the ‘cliff drop’ phenomena. The slicesedt fall potentially promising technique might be abandoned bexaus
into two categories: a large number of enormous slices all @ performance or behaviour is adversely affected by very
the same size and a few very small slices. It seemed végyge dependence clusters. Fortunately, a simple chechean
curious that a program would (or even could) have so mapgrformed by plotting the MSG and checking for the tell-tale
large slices and counter-intuitive that they would all taut ‘shelves’ that Dave Binkley initially noticed.
to have the same size. We noticed that more and more of the pelieve that the discovery of large dependence clusters
programs we studied possessed MSGs with this charaaterigii source code, if replicated, may turn out to be important
‘shelf’. We started to try to explain it. because of the importance of dependence analysis and the far

We realised that the shelves on the MSGs indicated the presaching implications of such large tight knots of depermgen
ence of dependence clusters; sets of statements all of whigiey will clearly impact in comprehension, testing and main
depend upon one another. We realised that if slices weretghance activities and research work on these topics thts re
identical size, then they were likely to have identical @t upon dependence analysis. Of course, | cannot claim that suc
We experimented with this and found that it was, indeed, thi@dings will have any further bearing beyond the source code
case. It was only then that we formed the hypothesis th@talysis and manipulation community itself. Nonetheldss,
programs may contain large dependence clusters and usedhiige that this section has illustrated how source code sisaly
MSG as a mechanism for identifying them quickly by eyesan be something of an uncertain journey of discovery and
In our first paper on the topic we demonstrated, empiricalljaat there are interesting structures and relationshipbeto
that MSGs are a good approximation with which to find larggiscovered ‘out there’ in the growing corpus of source code
dependence clusters by eye (two non-trivial slices of theesaavailable. | believe that as source code reaches furthetfiet
size are likely to be the same slice) and we looked at wagsbric of our global financial and governmental organisaio
to re-factor programs that had large dependence clusiecg, sand processes, the discoveries yet to be made may have far

such clusters seemed to be a generally ‘bad’ phenomenon [Igkater significance than those | have outlined in this secti
When Dave and | discussed these results with Jens Krinke

and Keith Gallagher, we found that they had made similar
observations and so we set about a combined effort to analyse
the results for more programs. Nicolas Gold attacked thbpro In the 1970s, the prevailing view in computer science
lem with Formal Concept Analysis and we had many excitingsearch literature regarded software as a purely matiesghat
and interesting discussions about the nature of dependenbgect that was to be entirely the subject of mathematical

0% 20% 40% 60% 80% 100%

VIII. CONCLUSION

11

50

= 40

3

o

O 30

§

5 20

e

% 10

I L T —
0 10 20 30 40 50 60 70 80 90 100

Largness Threshold

Fig. 5. The number of the 45 programs having large clustarsvddous largeness thresholds [41].

reasoning and understanding [30], [48]. This view point has escape this fate. If we fail to understand source code we
been important, not least because it has led to practich} teare destined to be controlled by it. The understanding wé sha

nologies for verification; at first merely for small programsneed will go far beyond the business and engineering coacern
but more recently non-trivial subsystems and componentd.our present interest in ‘program comprehension’.

For example, it has been demonstrated that device drivers of
approximately 10,000 lines of code can be proved free from

pointer violations through automated analysis [87], whileer

more ‘partial’ approaches may scale significantly [22].STisi | am grateful to many colleagues for discussions that
work of exceptional importance. contributed to the ideas developed and reviewed in thisrpape
However, by the 1990s it was already becoming clear thgpace does not permit a full list and | apologise to those | may
any hope of proving correct all real world software was iRave neglected to mention. The ideas presented here have bee
serious doubt [47]. The size of the body of source code wighaped by discussions with Giulio Antoniol, Dave Binkley,
which we have to deal is simply growing at a much fasteviark Bishop, Sue Black, Edmund Burke, Gerardo Canfora,
rate than any ability we have to completely master it akhn Clark, Jim Cordy, Sebastian Danicic, Andrea De Lucia,
a formal mathematical object. | see no evidence to suggesx Di Penta, Chris Fox, Keith Gallagher, Nicolas Gold, Fibo
that this trend will change; engineering practice will ajga Gyimothy, Kathy Harman, Robert Hierons, Mike Holcombe,
outstrip formal scientific ability. Experimental and exgtory John Howroyd, Akos Kiss, Bogdan Korel, Jens Krinke, Arun
techniques will always be needed, as a complement to margkhotia, Bill Langdon, Phil McMinn, Malcolm Munro, Jeff
rigorous formal techniques. Offutt, Peter O’Hearn, Mark Priestley, Marc Roper, Harry
Increasing inter-connectedness, concurrent executiod, é&need, Paolo Tonella, Xin Yao and Martin Ward.
faster cycles of development, innovation and re-develome
will increase, dramatically, the size of the global softevar
project with which we shall need to grapple. | have arguet tha
it is inevitable that within current lifetimes, source codédl [1] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tta‘Con-
have drawn in biological, social, economic and governnienta trol dependence for extended finite state machines Fimdamental
processes. To some extent, it already has done so. | believe Gf(?rg;‘r:i*r‘]‘ése S N %%%'nggf‘%l(gf%%. O%I. 5503. York,
we shall soon reach a point at which we can ‘understand thegg p. . atkinson and W. G. Griswold, “Implementation tedtes for
processes’ through source code analysis. Indeed, it maye o0 efficient data-flow analysis of large programs,” IBEE International
only hopeof understanding them, since the source code will ~Conference on Software Maintenance (ICSM01) Los Alamitos,
have become, in the words of the SCAM call for papers ‘th% California, USA: IEEE Computer Society Press, Nov. 2001, §-61.
] R. J. C. Atkinson,Stonehenge Penguin Books, 1956.
only precise description of the behaviour of the system’. A$4] L. Aversano, L. Cerulo, and M. Di Penta, “Relating the leition of
such, this promises an exceptionally interesting futurétfose design patterns and crosscutting concerns Pioceedings of tha*"

Ki th Ivsi d ioulati f d IEEE International Working Conference on Source Code Asialgnd
working on the analysis and manipulation or source code. Manipulation Paris, France: IEEE Computer Society, 2007, pp. 180—

However, as | have also argued, | believe that we are 192.

increasingly governed by source code, some of which takd¥ F- Baimas, “Using dependence graphs as a support to demtipro-
. . grams,” in Proceedings of the™® IEEE International Workshop on
forms we do not readily recognise as such. If we do not ggyrce code Analysis and Manipulation Montreal, Canada: IEEE

recognise that our treaties, rules, processes and pragedur Computer Society, 2002, pp. 145-154.

and possibly, even our own biology are gradually becomin{f] A- Baresel, D. W. Binkley, M. Harman, and B. Korel, “Evdienary
testing in the presence of loop—assigned flags: A testaliilénsfor-

source code, then. we ”?k a tEChnomg'Cal tyranny. 89urde CO mation approach,” innternational Symposium on Software Testing and
analysis and manipulation has a crucial role to play in mgjpi Analysis (ISSTA 2004yul. 2004, pp. 108-118.

IX. ACKNOWLEDGEMENTS

REFERENCES

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Beszédes and T. Gyimothy, “Union slices for the appmation
of the precise slice,” iNEEE International Conference on Software
Maintenance Los Alamitos, California, USA: IEEE Computer Society [27]
Press, Oct. 2002, pp. 12—20.

D. Binkley, S. Danicic, T. Gyimothy, M. Harman, A. Kisand L. Ouar-
bya, “Formalizing executable dynamic and forward slicingy, 4t
International Workshop on Source Code Analysis and Maaimn
(SCAM 04) Los Alamitos, California, USA: IEEE Computer Society
Press, Sep. 2004, pp. 43-52. [29]
D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. ToagllTool-
supported refactoring of existing object-oriented codt iaspects,”
IEEE Transactions on Software Engineeringl. 32, no. 9, pp. 698-717,
2006.

D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, and J.&fener,
“Dependence anti patterns,” #f" International ERCIM Workshop on
Software Evolution and Evolvability (Evol'08)'Aquila, Italy, Septem-
ber 2008, pp. 25-34.

D. Binkley and M. Harman, “Forward slices are smallearttoackward
slices,” in 5" |IEEE International Workshop on Source Code Analysi
and Manipulation Los Alamitos, California, USA: IEEE Computer
Society Press, 2005, pp. 15-24.

, “Locating dependence clusters and dependenceutioil” in
215t |EEE International Conference on Software Maintenancé.os
Alamitos, California, USA: IEEE Computer Society Pressp20pp.
177-186.

D. W. Binkley, N. Gold, and M. Harman, “An empirical styaf static
program slice size;ACM Transactions on Software Engineering and
Methodology vol. 16, no. 2, pp. 1-32, 2007. [35]
D. W. Binkley and M. Harman, “An empirical study of predie
dependence levels and trends,”26t" IEEE International Conference
and Software Engineering (ICSE 2003)os Alamitos, California, USA:
IEEE Computer Society Press, May 2003, pp. 330-339.

——, “A large-scale empirical study of forward and backd static
slice size and context sensitivity,” EEE International Conference on
Software MaintenancelLos Alamitos, California, USA: IEEE Computer
Society Press, Sep. 2003, pp. 44-53.

——, “Results from a large—scale study of performancéinogation
techniques for source code analyses based on graph rdighalgo-
rithms,” in IEEE International Workshop on Source Code Analysis anf7]
Manipulation (SCAM 2003) Los Alamitos, California, USA: |IEEE
Computer Society Press, Sep. 2003, pp. 203-212.

——, “Analysis and visualization of predicate dependeron formal
parameters and global variable$ZEE Transactions on Software Engi- [38]
neering vol. 30, no. 11, pp. 715-735, 2004.

D. W. Binkley, M. Harman, and J. Krinke, “Empirical stydf optimiza-
tion techniques for massive slicing®CM Transactions on Programming
Languages and Systemsl. 30, pp. 3:1-3:33, 2007.

D. W. Binkley, M. Harman, L. R. Raszewski, and C. Smithn“em-
pirical study of amorphous slicing as a program compreloensupport
tool,” in 8t" IEEE International Workshop on Program Comprehension
Los Alamitos, California, USA: IEEE Computer Society Presan.
2000, pp. 161-170.

C. Boogerd and L. Moonen, “Prioritizing software insfien results
using static profiling,” inProceedings of thest” IEEE International
Workshop on Source Code Analysis and ManipulatioRhiladelphia,
USA: IEEE Computer Society Press, Sep. 2006, pp. 149-158.

M. Bruntink and A. Deursen, “Predicting class testipilising object-
oriented metrics,” inProceedings of thet” IEEE International Work-
shop on Source Code Analysis and ManipulatiolChicago, IL, USA:
IEEE Computer Society Press, Sep. 2004, pp. 36 — 145.

C. Calcagno, D. Distefano, P. W. O’'Hearn, and H. Yangptiositional
shape analysis by means of bi-abduction,”Proceedings of th&6t”
ACM SIGPLAN-SIGACT Symposium on Principles of Programmin
Languages (POPL 2009f. Shao and B. C. Pierce, Eds. Savannaf{%
GA, USA: ACM, 2009, pp. 289-300.

G. Canfora, A. Cimitile, A. De Lucia, and G. A. D. LuccaS6ftware
salvaging based on conditions,” international Conference on Software [45]
Maintenance Los Alamitos, California, USA: IEEE Computer Society
Press, Sep. 1994, pp. 424-433.

W. C. Chu, P. Luker, and H. Yang, “Code understandinguigh program [46]
transformation for reusable component identification” 5ff* IEEE
International Workshop on Program Comprenhesion (IWPE'97L0s
Alamitos, California, USA: IEEE Computer Society Press,yM®97.

C. Cifuentes and A. Fraboulet, “Intraprocedural staicing of binary
executables,” InNlEEE International Conference on Software Mainte-
nance (ICSM'97) Los Alamitos, California, USA: IEEE Computer
Society Press, 1997, pp. 188-195.

[26]

(28]
[30]
(31]

[32]

fa3)

[34]

[36]

[39]

[40]

[41]

[42]

[43]

[47]

12

J. R. Cordy, “The TXL source transformation languag8gience of
Computer Programmingvol. 61, no. 3, pp. 190-210, 2006.

P. Cousot and R. Cousot, “Abstract Interpretation: Aifléd Lattice
Model for Static Analysis of Programs by Construction or Appma-
tion of Fixpoints,” in4t" Principles Of Programming Languages (POPL
1977) Los Angeles, CA, Jan. 1977, pp. 238-252.

——, “Abstract interpretation frameworksJournal of Logic and Com-
putation vol. 2, no. 4, pp. 511-547, Aug. 1992.

J. Darlington and R. M. Burstall, “A system which autdmally
improves programs,Acta Informatica vol. 6, pp. 41-60, 1976.

E. W. Dijkstra, A discipline of programming Prentice Hall, 1972.

T. Eisenbarth, R. Koschke, and D. Simon, “Locating fieas in source
code,”|IEEE Transactions on Software Engineeringl. 29, no. 3, 2003,
special issue on ICSM 2001.

T. Eisenbarth, R. Koschke, and G. Vogel, “Static trag&agtion,” in
IEEE Working Conference on Reverse Engineering.os Alamitos,
California, USA: IEEE Computer Society Press, Oct. 2002, 138—
137.

R. Ettinger and M. Verbaere, “Untangling: a slice egtian refactoring,”
in AOSD '04: Proceedings of the 3rd international conferenneAspect-
oriented software development New York, NY, USA: ACM Press,
2004, pp. 93-101.

B. Fluri, H. Gall, and M. Pinzger, “Fine-grained anal/of change
couplings,” inProceedings of th&*” IEEE International Workshop on
Source Code Analysis and Manipulation Budapest, hungary: IEEE
Computer Society, 2005, pp. 66—74.

R. Giacobazzi and I. Mastroeni, “Non-standard sencarfior program
slicing,” Higher-Order and Symbolic Computatiomol. 16, no. 4, pp.
297-339, 2003, special issue on Partial Evalution and SecsaBased
Program Manipulation.

D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R.Ghuang,
M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M.
Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assat:ia,
C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z.-Q. Qi, H.
Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. H. Ill, H.Snith,
and J. C. Venter, “Creation of a bacterial cell controlledabghemically
synthesized genomeScience 2010.

N. E. Gold and K. H. Bennett, “A flexible method for segrntetion in
concept assignment,” iat” IEEE International Workshop on Program
Comprehension Los Alamitos, California, USA: IEEE Computer
Society Press, May 2001, pp. 135-144.

Grammatech Inc., “The codesurfer slicing system,” 2000nline].
Available: www.grammatech.com

W. G. Griswold and D. Notkin, “Automated assistence fmogram
restructuring,” Department of Computer Science and Ermging, Uni-
versity of California, Sand Diego, Technical Report CS@2L2Jan.
1993.

M. Harman, “Open problems in testability transformoati(keynote),”
in 1st International Workshop on Search Based Testing (SBB)200
Lillehammer, Norway, 2008.

M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. K& “De-
pendence clusters in source coddCM Transactions on Programming
Languages and Systemml. 32, no. 1, Oct. 2009, article 1.

M. Harman, D. W. Binkley, and S. Danicic, “Amorphous pgram
slicing,” Journal of Systems and Softwanl. 68, no. 1, pp. 45-64,
Oct. 2003.

M. Harman, N. Gold, R. M. Hierons, and D. W. Binkley, “Cad
extraction algorithms which unify slicing and concept gasient,” in
IEEE Working Conference on Reverse Engineering (WCRE 2008%
Alamitos, California, USA: IEEE Computer Society Presst.G002,
pp. 11 — 21.

] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer,Bare-

sel, and M. Roper, “Testability transformatiodEEE Transactions on
Software Engineeringvol. 30, no. 1, pp. 3-16, Jan. 2004.

M. Harman and B. F. Jones, “Search based software esgig’
Information and Software Technolagyol. 43, no. 14, pp. 833-839,
Dec. 2001.

M. Harman and L. Tratt, “Pareto optimal search-basedctering at
the design level,” iNGECCO 2007: Proceedings of the#" annual
conference on Genetic and evolutionary computatio.ondon, UK:
ACM Press, Jul. 2007, pp. 1106 — 1113.

C. A. R. Hoare, “How did software get so reliable withopitoof?”
in IEEE International Conference on Software EngineeringSE?6)
Los Alamitos, California, USA: IEEE Computer Society Pre$996,
keynote talk.

(48]

[49]

[50]
[51]

[52]

[53]
[54]
[55]
[56]

[57]

(58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]
[72]

[73]

C. A. R. Hoare and N. Wirth, “An axiomatic definition ofdtprogram- [74]
ming language PascalActa Informatica vol. 2, no. 4, pp. 335-355,
Dec. 1973.

S. Horwitz, T. Reps, and D. W. Binkley, “Interprocedusdicing using [75]

dependence graphsACM Transactions on Programming Languages
and Systemsvol. 12, no. 1, pp. 2661, 1990. [76]
A. Huxley, Brave New World London, United Kingdom: Chatto and
Windus, 1932.

G. Ifrah, The Universal History of Computing: From the Abacus to the
Quantum Computer New York: John Wiley and Sons, 2001.

Y. Jia and M. Harman, “Constructing subtle faults usimgher order [77]
mutation testing,” in8th International Working Conference on Source
Code Analysis and Manipulation (SCAM’'08) Beijing, China: IEEE
Computer Society, 2008, pp. 249-258.

C. B. Jones,Systematic Software Development Using VOIWid ed.
Prentice Hall, 1990.

S. Jones and B. CroweTransformation not automation: The e-

[78]

government challenge London: Demos, 2001. [79]
F. Kafka, The Trial New York, NY, USA: Schloken Books, 1925.
H. H. Kagdi, J. I. Maletic, and A. Sutton, “Context-fredicing of [80]

UML class models,” ir21%? IEEE International Conference on Software
Maintenance |EEE Computer Society Press, 2005, pp. 635-638.

B. Korel and J. Rilling, “Dynamic program slicing in uadstanding of
program execution,” ir6" |IEEE International Workshop on Program [81]
Comprenhesion (IWPC'97) Los Alamitos, California, USA: IEEE
Computer Society Press, May 1997, pp. 80-89.

J. Kort and R. Lammel, “Parse-tree annotations meetngineering
concerns,” inProceedings of thg&”? IEEE International Workshop on [82]
Source Code Analysis and Manipulation Amsterdam, Netherlands:
IEEE Computer Society, 2003, pp. 161-170.

J. Krinke, “Evaluating context-sensitive slicing aodopping,” inlEEE
International Conference on Software MaintenanceLos Alamitos,
California, USA: IEEE Computer Society Press, Oct. 2002, 2#-31.
A. Lakhotia and J.-C. Deprez, “Restructuring prograims tucking
statements into functionsihformation and Software Technology Special[84]
Issue on Program Slicingvol. 40, no. 11 and 12, pp. 677-689, 1998.

M. M. Lehman, “On understanding laws, evolution and semation in

the large program life cycleJournal of Systems and Softwavel. 1(3),

(83]

pp. 213-221, 1980. [85]
——, “Software’s future: Managing evolution|EEE Softwarevol. 15,
no. 1, pp. 40-44, Jan. / Feb. 1998. [86]

M. Mahoney, “The history of computing in the history afchnology,”
Annals of the History of Computingol. 10, no. 2, pp. 113-125, 1988.
A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. @srev, “Static
techniques for concept location in object-oriented code,13t"* IEEE
International Workshop on Program Comprehension (IWPE'0EEEE
Computer Society Press, 2005, pp. 33-42.

P. Martin Lof, “Constructive mathematics and compyteogramming,”
in Mathematical Logic and Computer Programmjn@. A. R. Hoare
and J. C. Shepherdson, Eds. Prentice-Hall, 1984, pp. 147-18

K. Maruyama, “Automated method-extraction refaatgri by using
block-based slicing,” inSSR '01: Proceedings of the 2001 symposium
on Software reusability New York, NY, USA: ACM Press, 2001, pp.
31-40.

P. McMinn, “Search-based failure discovery using dbdgity trans-
formations to generate pseudo-oracles,”Genetic and Evolutionary
Computation Conference (GECCO 2009) Rothlauf, Ed. Montreal,
Québec, Canada: ACM, 2009, pp. 1689-1696.

T. Meyers and D. W. Binkley, “Slice-based cohesion restrand
software intervention,” inl1** IEEE Working Conference on Reverse
Engineering Los Alamitos, California, USA: IEEE Computer Society
Press, Nov. 2004, pp. 256—266.

R. S. Newall, “Stonehenge: A review&ntiquity, vol. 30, no. 119, 1956.
A. Orso, S. Sinha, and M. J. Harrold, “Effects of poissteon data
dependences,” i9t" IEEE International Workshop on Program Com-
prehension Los Alamitos, California, USA: IEEE Computer Society
Press, May 2001, pp. 39-49.

G. Orwell, Nineteen Eighty-four Penguin, 1949.

T. Reps, T. Ball, M. Das, and J. Larus, “The use of prograofiling
for software maintenance with applications to the Year 2pfifblem,”

in 6t" European Software Engineering Conference &fdt" ACM
SIGSOFT Symposium on the Foundations of Software Engieeri
(ESEC/FSE 97)Zurich, Switzerland, 1997, pp. 432-449, lecture Notes
in Computer Science, Volume 1301.

M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, Parmmond,
and H. T. Cory, “The British Nationality Act as a logic prognd
Communications of the ACMol. 29, no. 5, pp. 370-386, 1986.

[87]

13

H. M. Sneed and K. Erdds, “Extracting business rulesifisource code,”

in 4t* |IEEE Workshop on Program Comprehension (WPC /98rlin,
Germany: IEEE Computer Society, 1996, p. 240==247.

J. M. Spivey, The Z Notation: A Reference Manual Prentice Hall,
1989.

S. Thomas, B. Adams, A. E. Hassan, and D. Blostein, 84lhg the
use of topic models for software evolution,” Rroceedings of tha0t"
IEEE International Working Conference on Source Code Asialgnd
Manipulation Timisoara, Romania: IEEE Computer Society, 2010, p.
To appear (in this volume).

R. Tiarks, R. Koschke, and R. Falke, “An assessment pé+y clones
as detected by state-of-the-art tools,” Pmoceedings of th@*" IEEE
International Working Conference on Source Code Analysd Manip-
ulation. Edmonton, Canada: IEEE Computer Society, 2009, pp. 67-76.
A. M. Turing, “Checking a large routine,” ifReport of a Conference
on High Speed Automatic Calculating Machine€ambridge, England:
University Mathematical Laboratory, Jun. 1949, pp. 67-69.

E. Union, “The Maastrict Treaty,” 1992, available ondiat http://eur-
lex.europa.eu/en/treaties/.

A. van Deursen and T. Kuipers, “Identifying objects ngpicluster
and concept analysis,” Centrum voor Wiskunde en Inforraatic
(CWI), Tech. Rep. SEN-R9814, Sep. 1998. [Online]. Avagabl
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R9814.ps.Z

M. Ward, “Assembler to C migration using the FermaT sfammation
system,” in IEEE International Conference on Software Maintenance
(ICSM'99) Los Alamitos, California, USA: IEEE Computer Society
Press, Aug. 1999.

, “The formal approach to source code analysis andipogetion,”

in 1%t IEEE International Workshop on Source Code Analysis and
Manipulation Los Alamitos, California, USA: IEEE Computer Society
Press, 2001, pp. 185-193.

M. P. Ward and H. Zedan, “Deriving a slicing algorithmaviFermaT
transformations,”IEEE Transactions on Software Engineering. to
appear, 2010.

M. Weber, V. Shah, and C. Ren, “A case study in detectiafinare
security vulnerabilities using constraint optimizatiom Proceedings
of the 15 IEEE Workshop on Source Code Analysis and Manipulation
(SCAM 2001) Florence, Italy: IEEE Computer Society, 2001, pp. 3-13.
M. Weiser, “Program slicing,JEEE Transactions on Software Engineer-
ing, vol. 10, no. 4, pp. 352-357, 1984.

D. Wincott, “Federalism and the european union: Thepscand limits of
the treaty of Maastricht,international Political Science Reviewol. 17,

no. 4, pp. 403-415, 1996.

H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. &to, and

P. W. O'Hearn, “Scalable shape analysis for systems code20t"
International Conference on Computer Aided VerificatiorAYC2008)
ser. Lecture Notes in Computer Science, A. Gupta and S. Malis.,
vol. 5123. Princeton, NJ, USA: Springer, 2008, pp. 385-398.

