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Abstract—This paper1 makes a case for Source Code Analysis
and Manipulation. The paper argues that it will not only remain
important, but that its importance will continue to grow. Th is
argument is partly based on the ‘law’ of tendency to executability,
which the paper introduces. The paper also makes a case for
Source Code Analysis purely for the sake of analysis. Analysis
for its own sake may not be merely indulgent introspection. The
paper argues that it may ultimately prove to be hugely important
as source code gradually gathers together all aspects of human
socioeconomic and governmental processes and systems.

I. I NTRODUCTION

Source Code Analysis and Manipulation is important. It
will always be important and its importance will increase.
The argument for the longevity of Source Code Analysis and
Manipulation is based on the observation that all notationstend
to become executable. This means that every new notation,
whether lower level (and therefore already source code) or
higher level (and therefore seeking, initially to escape the code
level) will ultimately become source code. This is the ‘law of
tendency towards execution’.

Because source code is, in the words of the SCAM con-
ference’s own call for papers ‘the only precise descriptionof
the behaviour of the system’ its analysis and manipulation will
always be important and will always throw up new challenges.
Perhaps this much is uncontroversial.

However, a little more controversially, I argue that Source
Code Analysis and Manipulation will become ever more
important, because source code will increasingly find its way
into the socioeconomic, legal and governmental fabric of our
interconnected world. This is not necessarily a universally
good thing. As software drives the trend for rapid change,
typified by ever shorter cycle time between conception, devel-
opment and adoption we face new dangers.

There is a consensus that this trend has many positive
effects. Nonetheless, it draws engineers and users into a spiral
of increasing complexity and scale. Increasing automation
creates a potentially pernicious trap, into which we are at risk
of falling as humans and systems are become ever more fixed
into a global Carbon-Software Skin.

This skin of interconnected systems, processes and people
may soon come to resemble more the inflexible mesh of
entrapment if we do not develop ways to make the systems

1The paper is a written to accompany the author’s keynote presentation
at the10th International Working Conference on Source Code Analysis and
Manipulation (SCAM 2010). As such, the body of the paper adopts a polemic,
first person singular prose style and takes the form of an extended position
paper.

more flexible, responsive and adaptive to the pace of change
that they, themselves engender. I will argue that source code
will come to be seen to be one of the most fundamental and
pivotal materials with which humankind has ever worked. As
a result, its analysis and manipulation are paramount concerns.

In the technical part of the paper (Section VII), I will
consider the definition of source code, of analysis and of
manipulation, adopted by the community over the ten years
since the founding of this conference, bringing a sharper
technical focus to the claims, in this introduction, that source
code lies at the heart of socioeconomic interaction, government
and even our very biology. The analysis and the manipulation
of source code are interwoven; both can and should be used to
yield insight into the properties, characteristics and behaviour
of the code.

Section II, reviews the definition of source code and
explains why all descriptions will tend towards executability,
guaranteeing the study of source code analysis and manipula-
tion and seat at the table of discourse in perpetuity. Section III
presents a very brief history of computation, source code and
source code analysis from Stonehenge to Ada Lovelace and
the very first ever paper on Source Code Analysis. Section IV
develops this historical perspective to look towards the future
development of source code and, with it, the future of Source
Code Analysis and Manipulation. The section argues that
Source Code Analysis will be essential and may just rescue
humankind from the jaws of a ghastly, yet banal source–code–
controlled dystopia. Section V shifts back to a more down-
to-earth and technical treatment of two of the conference’s
widely studied source code manipulation techniques: slicing
and transformation. It shows that both are closely–related
special cases of manipulation, formalizing this observation
within the projection framework. Section VI argues that source
code manipulation can be used for source code analysis. It
also makes the case for source code analysis for its own
sake, illustrating in Section VII with some personal experience
of Source Code Analysis and Manipulation as a ‘voyage of
discovery’.

II. W HAT IS SOURCE CODE AND WHY IS IT GUARANTEED

TO BE ALWAYS IMPORTANT?

Definition 1 gives the SCAM call for papers’ definition
of source code. The definition focuses on the way in which
source code fully describes the execution of the system. This
was intended to be a general definition. It would appear to
have served the community well because there has been no
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change to the definition over the decade since the conference’s
inception. Also, there have been no protracted discussionsof
the form ‘what is source code?’ during any of the previous
nine instances of the conference over the years.

Definition 1 (Source Code):For the purpose of clarity
‘source code’ is taken to mean any fully executable description
of a software system. It is therefore so construed as to include
machine code, very high level languages and executable graph-
ical representations of systems.

One obvious reason why source code analysis and manip-
ulation will always be important derives from the prevalence
of source code. As we try to escape its clutches we are drawn
back into its embrace. For instance, early attempts to move
away from source code to higher level languages led to a
natural inclination towards specification languages such as Z
[75] and VDM [53]. However, this was shortly followed by a
retrenchment to what were termed ‘executable specifications’.
According to the SCAM definition of source code, since an
‘executable specification’ is executable, it is,ipso facto, source
code.

More recently there has been a migration from lower level
code towards models. Model Driven Development has a lot
to offer. The use of UML, for instance, is undoubtedly an
engineering advance. However, it is inevitable that we shall
seek to compile as much as possible of the UML design of
a system into executable code. As soon as we can compile
it to an executable code it simply becomes the new ‘high
level language’. This is certainly progress, but we must not
lose sight of the fact that it means that UML will have
become ‘source code’ too. Already, there is work on analysis
and manipulation of aspects of the UML using, for example,
slicing [1], [56]. This should not be seen as a descent to some
low level compromise by adherents of the UML. It is a natural
evolution of the notation. I believe it might even be called a
law:

“Descriptions tend towards executability”.
That is, no matter how we try to abstract away from what

we may uncharitably describe as ‘low level’ code to ‘higher’
levels, we shall soon find that we are writing some form of
source code. This is a natural progressive characteristic,that
can be thought of as a law in the same sense as Lehman’s laws
of software evolution [61]. We are compelled by the human
desire to master and control our environment. This entails
making descriptions executable: If our higher, more abstract,
notations are any use to us, then why would we not want to
automate the process of transforming them into some lower
level executable code? Why would we want to undertake that
effort ourselves, and thereby be forced to descend back down
to the lower levels? As soon as we have fully automated the
process of transformation from our higher levels of abstraction
to executable code, we have invented a new form of source
code. Perhaps it will be a better source code, but it will be
source code, nevertheless.

III. T HE BEGINNINGS OFSOURCE CODE AND ITS

ANALYSIS AND MANIPULATION

There is much debate as to the origins of computation
and claims and counter claims as to originality permeate the

literature on the history of computing [63]. I shall adopt a
parochial view and follow the story primarily from an English
perspective, starting with what might be the world’s first
computer. Though now obsolete, the remains of this computer
can still be seen on Salisbury Plain in Wiltshire in England.It
is known as ‘Stonehenge’ [3]. This vast stone age computer
was one of the world’s first timepieces, arguably a forerunner
of today’s GPS–enabled, time–and–position aware applets.
Though its origins and precise purpose remain partly mysteri-
ous, it is clear that it allowed primitive date computationsto be
made, including predicting the summer and winter solstices.

The first incarnation, built in 3,100 BC was constructed
from earth, augmented in 3,000BC by a structure in wood.
This proved to be a rather poor material from which to build
the computers of the day and so, around 2,600BC, a re-
implementation was constructed in stone. This much more
costly undertaking was accompanied by what might be termed
one of the world’s first known ‘bug fixes’. It was found that
the position of the northeastern entrance was not quite accurate
and this was corrected by the stone re-implementation. The
bug fix consisted of widening this northeastern entrance [3],
[69].

Of course, this early computer was built without the one key
ingredient that makes computation so astonishingly powerful
and all-embracing:source code. This could be contrasted with
the other early computational device, dating to 2,700BC, the
abacus [51]. With the abacus, one can perform manydifferent
computations, based on a prescription for how to move the
beads of the device. If these prescriptions for how to move
the beads are written down then they become a form of
source code, albeit one that denotes a sub-Turing language of
computation. Without source code, the computation performed
cannot change and so the implementation remains, perhaps
reliable, but inherently inflexible.

The most significant early landmark in the history of source
code was reached with the work of Charles Babbage and Ada
Augusta Lovelace in their work on the Analytical Engine2.
This was an entirely different machine from the earlier at-
tempt by Babbage, with the Difference Engine, to replace
‘human computers’; clerks who were trained in arithmetic and
who labouriously performed mundane computations, entirely
without the aid of automation. The analytical engine was, to
all intents and purposes, conceived entirely like a present-
day computer; its punched–card source code had versions of
assignments, conditionals and loops. The analytical engine that
was to execute this source code was to be built of brass, rather
than earth, wood or stone. Crucially it was to beautomated,
replacing potentially fault-prone human computers with auto-
mated computation. This automation was to be powered by
steam rather than electricity, which was only available from
primitive zinc–copper batteries at the time.

2As other authors have found, it is hard to provide a reliable and precise
citation for this crucially important piece of work. Lovelace’s comments
appeared in her English translation of an article, originally written in Italian,
by Menabrae: ‘Sketch of Analytical Engine Invented by Charles Babbage’.
Lovelace added a commentary of seven entries, labelled ‘Note A’ to ‘Note
G’ to the translation and initialed each her entries ‘A.A.L’. The full trans-
lation and commentary are available on the web at the time of writing:
http://www.fourmilab.ch/babbage/sketch.html.
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It is truly astonishing for any researcher in Source Code
Analysis and Manipulation to read Lovelace’s account of the
the coding of the engine, which is by far the larger part of
the article at approximately 75% of the overall article length.
In her seven prescient notes she on the one hand, recognises
the practical importance of loops, optimization and debugging,
while on the other she speculates on theoretical aspects such as
artificial intelligence. All this, written in 1842: over a century
beforeany form of source code would ever be executed by a
computer.

At the heart of the Analytical Engine approach wasau-
tomation. Automation is impossible without a source code
that defines the process to be automated. Ada Lovelace, the
daughter of a mathematician and a poet, wrote eloquently
about the manner in which the source code inscribed on
punched cards was to be used to program the Analytical
Engine:

“The distinctive characteristic of the Analytical En-
gine, and that which has rendered it possible to
endow mechanism with such extensive faculties as
bid fair to make this engine the executive right-hand
of abstract algebra, is the introduction into it of
the principle which Jacquard devised for regulating,
by means of punched cards, the most complicated
patterns in the fabrication of brocaded stuffs. It is in
this that the distinction between the two engines lies.
Nothing of the sort exists in the Difference Engine.
We may say most aptly, that the Analytical Engine
weaves algebraical patterns just as the Jacquard-
loom weaves flowers and leaves.” Extract from Ada
Lovelace’s ‘Note A’ to her translation of Menabrae’s
manuscript.

This was more than an analogy: the inspiration for the
‘punched cards’ of the analytical engine came from the cards
used in Joseph Jacquard’s looms, the automation of which
revolutionised the clothing industry. Jacquard’s punchedcards
were the equivalent of straight line code; configurable, but
ultimately producing the same garment on each rendition. In
the same way, a musical box is constrained to identically re-
perform the piece inscribed by its metal teeth. In computing
nomenclature, Jacquard’s loom could be thought of as a Visual
Display Unit, fashioned out of fabric, with the punch cards de-
scribing a kind of vector image, translated into a ‘bit map’ on
cloth by execution on the loom. As source code, the language
was clearly not Turing complete. What Babbage and Lovelace
had in mind for the analytical engine was a flexible code
capable of capturing arbitrary arithmetic computation and,
thereby, essentially a Turing complete programming language
in the sense that we would now understand it.

According to the SCAM definition of source code (Defini-
tion 1) the punched cards of the Analytical Engine do indeed
inscribe source code. Even Jaquard’s punch cards are source
code according to the SCAM definition, with the loom as
computer in exactly the same way that Lovelace describes
it. Lovelace clearly recognised the profound significance of
the advent of source code and made the first remarks about
its analysis and manipulation in her note on the Analytical

Engine. For example, she realised the need to analyze source
code to find the most efficient expression of computational
intent from those available:

“The order in which the operations shall be per-
formed in every particular case is a very interesting
and curious question, on which our space does not
permit us fully to enter. In almost every computation
a great variety of arrangements for the succession of
the processes is possible, and various considerations
must influence the selection amongst them for the
purposes of a Calculating Engine. One essential
object is to choose that arrangement which shall
tend to reduce to a minimum the time necessary
for completing the calculation.” Extract from Ada
Lovelace’s ‘Note D’ to her translation of Menabrae’s
manuscript.

This is probably the first statement ever made in print
regarding Source Code Analysis and Manipulation.

Looking back over 176 years since she wrote these words
we can see the astonishing manner in which source code
touches fundamental aspects of intellectual creativity, with
profound practical ramifications. The ambit of source code
has continued to widen: through computability source code
encompasses mathematics, logic and philosophy. Work on
evolutionary metaphors of computation bring it into contact
with concepts of natural selection and evolution. In time,
Sociology, Economics and even Political Science will all
submit to source code, the analysis of which will yield insights
into socioeconomic and political systems and processes.

IV. T HE DEVELOPING IMPORTANCE OFSOURCE CODE

AND ANOTHER REASON WHY IT WILL CONTINUE TO

GROW IN IMPORTANCE

In Section II, I argued that source code analysis and
manipulation will always be important because source code
will always be important; as long as there is computation,
there will always be new notations that will be used as
source code. This argument is, I believe, uncontroversial:A
cursory review of the development of programming languages
will reveal a continuous cycle of invention, innovation and
development. With each new concept in the expression of
computational abstraction comes a concomitant need for re-
search in analysis and manipulation. Each change in platform
and implementation brings associated issues for the practice of
source code analysis and manipulation. In this section, I would
like to advance a potentially more controversial argument
regarding what I believe will be a dramatic growth in the future
importance of source code analysis and manipulation.

In 1948, Alan Turing wrote a paper (sometimes overlooked
by comparison to his other groundbreaking work) entitled
‘Checking a large routine’ [78]. So what was this ‘large
routine’, for which Turing sought a checking method and,
in so doing, produced possibly the earliest work on software
verification and testing? It is interesting to speculate on what
might have constituted a large routine in 1948. In his short
paper, Turning does not elaborate on the size he had in
mind. The example Turing used to illustrate his ideas was
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multiplication by repeated addition. Turing makes it clear
that this is merely an illustrative example. This simple loop
was sufficient for him to be able to tease out issues such as
the separation of tester and developer, the use of embedded
assertions and the distinction between partial correctness and
total correctness.

In the same year, Eric Blair, under the pen name George
Orwell, was speculating about how government might evolve.
In order to compute a date for his book’s title, it is widely
believed that he took the simple expedient of transposing the
two last digits of the date the manuscript was completed
(December 1948), yielding the now famous title ‘Nineteen
Eighty–Four’ [71]. In the software development community
we have had some problems of our own with two digit date
fields [72]. Transposing the last two digits of the present date
will not move us forward. Instead, let us allow ourselves to
speculate about the development of source code over a similar
time frame. Let us move our focus, first from 1948 to 2010
and then, from 2010 to 2072.

In 1948, the structure of DNA was still, as yet, unknown.
Social, financial and governmental processes were entirely
mediated by humans. A ‘data base’ was still the term most
likely used to refer to a collection of papers. By this time
there were, of course, electrical calculating machines andeven
primitive computers. However, the idea of a ‘computer’ might,
in the public mind, still refer equally well to the human
operator as it might to the machine. Looking forward by the
same amount of time, what will we think of as a ‘large routine’
in 2072?

Having unlocked the source code that underlies the charac-
teristics of our own biological systems, is it likely, perhaps
inevitable, that we might move from analysis of this new
source code to manipulation. Humans will become the first
species on earth to perform self-modifying code. As a research
and practitioner community working on Source Code Analysis
and Manipulation we are only too well aware of the possibil-
ities this creates, for good and ill. I believe that the idea of
our programming our own source code will not be science
fiction in 2072. We had better start to prepare for this: who
knows what the consequences of implementation bugs and
misunderstood requirements will be in this new source code?
We shall also have to contend with the feature interaction
problems and other unintended consequences.

It is a tired analogy that describes DNA as ‘the source code
of life’. Nonetheless, worn though this observation may seem,
it continues to inspire and confound. I am simply taking the
analogy to its logical conclusion. It is not inconceivable that
this new source code may become a ‘programming language’
in its own right. This year, there have been credible claims that
the first steps towards the programming language ‘DNA++’
have already been taken [36].

Currently, the term ‘bioinformatics’ is used to refer to
the use of computers and the algorithms they implement
to analyze the vast databases of DNA and other biological
sequences available to us. It is a subject in its infancy. What
will another 62 years of the development of bioinformatics
research produce? Perhaps, by 2072, the notion of computers
as analyzers of DNA will seem quaint, essentially mundane

and faintly ridiculous. This is our present day impression
of the Victorian vision of a bank of ‘computers’, busily
consulting their logarithmic tables and inscribing the fruits of
their labours in indian ink.

Governmental treaties such as the Maastricht Treaty [79]
are famous, perhaps infamous, for their complexity, with
the result that such treaties are themselves the subject of
analysis in the literature on ‘political science’ [86]. Debates
rage among member states of the European Union about the
degree to which the rules and regulations of such treaties
are followed. Might we start to use computers to check
these ‘large routines’? After all, they are rule based systems.
It would be a reckless optimist who would predict future
simplification of the rules that govern our social, economic
and intergovernmental interactions. It seems far more realistic
to presume that the complexity of these systems will become
ever higher. Indeed, I would argue that is is precisely because
we have large digital databases and automated computation
and networked connectivity that we are able to countenance
the existing complexity. As such, technology is not a passive
witness, recording and adapting to complexity increase, but is
an active driver of the very complexity it records.

Consider again, the SCAM definition of source code (Defi-
nition 1). Depending on how one chooses to define ‘execution’
it is possible to see how this definition could equally well
apply for the code that defines the behaviour (execution) of
a cell or an entire organism for which the source code is
located in the DNA. It also captures, as source code, the
rules and regulations that delimit governmental interactions,
social networking, bureaucratic rules and economic transaction
protocols. Humans and systems constructed of part human,
part machines are the executors of this source code.

With this view of source code in mind, it would appear
that the concept of source code is gradually spreading out
from its foundation within computers, to almost all spheresof
human activity. Biological organisms, financial systems and
governments have all been compared to systems or machines,
and so it should not be surprising that the rules that govern
their behaviour could (and perhaps should) be thought of as
source code.

I believe that the law of ‘tendency to executability’ de-
scribed in Section II also applies to other rules and processes
that humans create for themselves and for which we create
systematic descriptions. We seek to ‘execute’ these procedures
and processes in all aspects of our lives; in companies, in
voluntary oganisations, in government, in laws and in treaties.
There are two ways in which this law of execution manifests
itself. The first, and longer–established, is the implementation
of processes and procedures by the humans we sometimes
disparagingly refer to as bureaucrats. Long before the advent
of digital technology, humans served the role of computer,
implementing the execution of these descriptions.

Franz Kafka noticed this apparently inherent human impulse
towards executability and its potential to enmesh the human
spirit in a bureaucratic cage [55]. He takes the unfortunate
consequences of inflexible ‘governmental source code’ to a
gruesome conclusion. In his novel The Trial, bureaucratic
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execution of procedures leads to wrongful execution of an
innocent victim.

The second and more recent example of the law of execution
comes from our ability to replace the human bureaucrat with a
cheaper, faster and more reliable software–centric equivalent.
The idea that laws and treaties might be coded as source
code is not new. Indeed, 25 years ago, there was already
work on executable descriptions of laws. One notable example
was the source codification of the British Nationality Act as
a program in Prolog[73]. Partly because of the doctrine of
binding precedent and partly as a result of humans’ natural
propensity for augmentation laws have increasingly become
more numerous and more complex. The same applies to
the procedures and processes that exist within and between
organisations. As a result we can expect more automation of
these processes through source codification.

Authors have begun to consider the implications of so-
called ‘e-government’ and the potentially pernicious aspects
of automation that accompany this trend [54]. At present,
systems are restricted to merely electronic data capture; the
bureaucrats’ forms are now implemented in javascript rather
than folded paper. However this opens a door to greater
automation.

Automation speeds up processes and, it is often claimed,
reduces costs. As engineers, we seek ever faster cheaper
solutions. However, a side effect of this speed up is the gradual
extinction of human decision making and the surrender of
human sovereignty over aspects of the increasingly automated
process.

We might speak figuratively of our world increasingly being
‘governed by source code’. We should be careful we do not
sleepwalk into an Orwellian world that really isgoverned
by source code. In his novel ‘nineteen eighty–four’, Orwell
envisioned the ‘party’ controlling every aspect of human
existence, including language and through it, thought itself.
I am surely neither the first nor the last author to raise
the dystopian spectre of automation and its dehumanising
potential. However, previous concerns have focussed on the
legacy of Henry Ford and the mundane deadening of repetitive
manual tasks [50]. There are also potentially pernicious effects
of control of the intellectual space by a monster entirely of
our own making. It may not be an ‘Orwellian party’ but ‘the
source code’ that evermore controls our thought processes and
mediates what can and cannot be done. Even without our
intending it, perhaps this banal source code monster may come
to control that which can be expressed.

In this future world of automated socioeconomic and gov-
ernmental processes, it seems clear that the full and proper
understanding of the source code that captures the processes
will be a paramount concern. At present our aims to manage
the complexity of the source code of software have presented
great challenges. In future, we may have to raise our game to
meet the challenge of world in which everything that matters
to the human enterprise is, in one way or another, captured
by some form of ‘source code’. In this emergent paradigm
of automated socioeconomic and governmental interaction,
‘understanding the source code’ will take on a new significance
and urgency.

As source code comes to define the actions in which people
and organisations may engage we will need new kinds of
source code analysis. Source code will increasingly capture,
delimit, prescribe and proscribe the permissible forms of
communication between organisations and states and between
states and their peoples. We currently rightly, but primarily,
think of type theory [65] and abstract interpretation [27],[28]
as routes to program correctness. When we reach the point
where source code defines the parameters that may be ex-
changed between governmental bodies and their citizens, how
much more important will be the lattice of types that describe
these exchanges? Organisations and even states may have
properties in their interactions that can only be understood
in terms of source code, because of the (possibly unintended)
high level effects of lower level automaton in code. In such
a world, how much more important will it be to have precise
yet efficient means of abstracting out these properties fromthe
code?

For this reason, if for no other, I believe that source code
analysis and manipulation will continue to grow in importance,
but the goals of our analysis will move up the abstraction
chain, as source code itself does the same. For our part, as
a primarily engineering and scientific community, we cannot
alone grapple with the social, ethical, legal and moral issues
raised by the growing significance of source code. It is not
for us to dictate the response required to the fundamental
questions this raises. However, through source code analysis
and manipulation we may hope to better understand the effects
and influences of source code.

I hope that the community will extend outwards from
analysis and manipulation of purely software source code,
to embrace a wider conception of source code that includes
‘socioeconomic and governmental source code’ and even ‘bio
source code’. We have already seen that source code analysis
can help us to understand the business rules of organisations
[74]. This work draws on the central ‘SCAM observation’
that source code ‘contains the only precise description of the
behaviour of the system’. If an organisation relies heavilyon
source code, then it may not matter what the organisational
documents prescribe nor what the managers believe about
organisational rules; the source code knows better. It is the
source code that implements these rules and, therefore, the
source code that ‘decides’ precisely what are the rules.

Our response as a source code analysis and manipulation
community has been to analyse the source code to extract
business rules [74]. We have already seen that this is necessary
for organisations that have lost sight of their business process.
Such organisations are bound to turn to software engineers
to extract the business logic from source code logic. My
argument is that it is inevitable that we will increasingly
have to adopt this form of post-hoc extraction and analysis
in order to discover exactly what is going on in our source
code governed world.

However, having allowed myself the luxury of considering
the nature of what I believe will prove to be one of the great
challenges of the 21st century, I must now turn to the relatively
meagre technical contributions of this present position paper.
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V. SLICING AND TRANSFORMATION: TWO IDENTICAL

FORMS OFSOURCE CODE MANIPULATIONS

In considering the relationship between analysis and ma-
nipulation it is helpful to review the SCAM conference’s
own definition of ‘analysis’ and ‘manipulation’ as captured
in Definition 2 below. Like the definition of source code
(Definition 1 above), it has remained unchanged in the call
for papers for 10 years.

Definition 2 (Analysis and Manipulation):The term ‘anal-
ysis’ is taken to mean any automated or semi automated
procedure which takes source code and yields insight into its
meaning. The term ‘manipulation’ is taken to mean any auto-
mated or semi-automated procedure which takes and returns
source code.

Consider the widely studied source code manipulation tech-
nique of program slicing [85]. Harman et al. [42] introduced
a theoretical framework called the ‘projection framework’, for
formalizing and comparing definitions of slicing as a pair of
relations, containing an equivalence and an ordering relation.
The idea is very simple: The equivalence relation captures
the property that slicing seeks to preserve, while the ordering
relation captures that property that slicing seeks to improve.
If s is to be a slice of a programp then s and p should be
equivalent according to the equivalence relation ands should
be no worse thanp according to the ordering relation. More
formally, this s captured in the three definitions below (taken
from the 2003 JSS paper [42]).

Definition 3 (Ordering):
A syntactic ordering, denoted by<∼, is any computable tran-
sitive reflexive relation on programs.

Definition 4 (Equivalence):
A semantic equivalence, denoted by≈, is an equivalence
relation on a projection of program semantics.

Definition 5 ((<∼,≈) Projection):
Given syntactic ordering<∼ and semantic equivalence≈,

Programp is a (<
∼

,≈) projectionof programq ⇔ p<
∼

q ∧ p≈q

Traditionally [42], this framework was instantiated with
Weiser’s trajectory semantics for the equivalence relation
and syntactic statement inclusion for the ordering so as to
capture Weiser’s 1984 definition of static program slicing
[85]. Several authors have studied the way this framework
can be instantiated to capture other forms of slicing, such
as dynamic, conditioned and amorphous forms of slicing [8],
[42]. Other authors have also addressed semantic questions
about the meaning of slicing [35], [82].

One such work by Ward and Zedan [83] pointed out that
the original 2003 interpretation of equivalence and ordering
was flawed because it requires that semantic properties are
captured by the equivalence relation, while syntactic properties
are captured by the ordering relation. This interpretationfails
to cater adequately for the manner in which a slice could be
more defined than the original from which it was constructed;
a slice may introduce termination though it may not remove it.
Termination is clearly a ‘semantic’ property. However, because
a traditional slice must be more defined than the program from

Fig. 1. Numbers of papers on Slicing and Transformation at SCAM over the
years. The left hand bar of each pair shows the number of papers purely on
transformation, while the right hand bar shows the number ofpapers purely
on slicing.

which it is constructed, semantic termination has to form part
of the ordering relation.

In order to cater for this observation, I will, in the remainder
of this section, drop the requirement that the equivalence
relation should capture semantic properties, while the ordering
should capture syntactic properties. Rather, I will allow either
relation to capture either form of property. In this way, the
projection framework simply says that slicing must hold some
properties of the program constant and faithful to the original
while changing some other properties (hopefully improving
upon them in some way).

Over the 10 years of its history, the SCAM symposium
has published 30 papers (about one sixth of all papers) on
slicing and 31 (a further one sixth of all papers) on trans-
formation. Figure 1 shows the numbers of papers on slicing
and transformation over the years. In arriving at the figures, I
made a (somewhat imprecise) assessment of whether a paper
was primarily about slicing, primarily about transformation or
primarily about neither.

The figures are not intended to be rigorous in any way and
should be treated with a high degree of caution. In arriving at
these figures I adopted the well-known source code analysis
and manipulation principle of ‘conservative approximation’: I
excluded papers that were notclearly about one of these two
topics. For instance papers about the SDG [49] are clearly
relatedto dependence analysis and, thereby, slicing. However,
if a paper concerned with the SDG did not have a significant
degree of work onslicing from the SDG it was not counted
as a slicing paper. Similarly, there are many source code
manipulations, such as refactoring, that could be thought of
as forms of transformation. However, if the paper did not
explicitly present itself as a transformation paper, then it was
not counted as such.

My conservative analysis of the last nine years is that
roughly one third of all papers at the conference concern one
or other of these two topics (in roughly equal measures). In the
discussions at the symposium there have been several debates
about the relative merits of the two techniques.

However, using the projection framework, we can see that
it is possible to consider traditional transformation as a special
case of slicing. Those working on program transformation may
be pleased to hear that it is also possible to consider slicing
as a special case of transformation. As such I believe that
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these are both examples of the same thing:manipulation. I
think discussions about relative merits are a distraction and
we should consider all forms of manipulation of source code
to be equally valuable. Indeed, I believe that we should include
refactoring and any other techniques that take source code and
return source code to be equivalently part of the same category
of ‘source code manipulation’.

Let us consider the two relations in the projection frame-
work in turn. A transformation is a slice in which the equiv-
alence relation is functional equivalence. That is, traditionally
speaking, since its inception in the 1970s [29] a transformation
has been viewed as a function from programs to programs
that must be ‘meaning preserving’. For slicing, on the other
hand, the equivalence relation is more restricted, so that only
a projection of the meaning of the original program need be
preserved during slicing. In this sense, a transformation is
a specific case of slicing, in which the equivalence relation
is the smallest possible and therefore the most restrictive.
Slicing merely relaxes this to consider programs equivalent
‘with respect to a slicing criterion’.

More formally, letE(x,n) denote equivalence with respect to
some set of variablesx at some set of program pointsn and let
V denote the set of all variables andN the set of all possible
program points. For transformation, the equivalence relation
is E(V,N), whereas for slicing, it isE(i,{p}) for some set of
variablesi and some program pointn. The pair(i, n) is merely
a parametercalled the slicing criterion. The slicing criterion
relaxed the traditional transformation view of equivalence,
allowing it to capture many forms of projected meaning, while
retaining the ability to capture traditional transformation as a
special case. In this way, transformation is a special case of
slicing.

Now let us turn our attention to the ordering relation.
Traditionally [85], slices are constructed by statement deletion,
so that a slice is a syntactic subset of the program from which
it was constructed. This is more restrictive than transforma-
tion, which allows any change of syntax that preserves the
meaning of the original. In program transformation the goalof
transformation is left unspecified [26]. It may be, as Lovelace
originally envisioned, that transformation is performed to
improve the execution speed of the source code. However,
other authors have used transformation, in its broadest sense,
for many other purposes, including refactoring [33], [9], [46],
[66], restructuring [39], [60], [80], reuse [24], testability [40],
[44], [67], and migration [81]. In this sense a slice has a more
restrictive ordering relation than transformation, whichcan use
many different orderings depending upon the application.

More formally, using the projection framework, a slice is
a (<∼ ,≈) Projection in which<∼ is restricted to program size
and ≈ is arbitrary. A transformation is a(<∼ ,≈) Projection
in which <

∼ is arbitrary and≈ is restricted to functional
equivalence. Each is a special case of a more general(<

∼
,≈)

Projection for which neither<∼ nor ≈ is restricted. Such a
more general projection is, in SCAM terms, a source code
manipulation. That is, in its most general form, we want all
source code manipulations to hold some properties invariant
according to a chosen equivalence relation while improving
on others according to some chosen ordering relation.

Fig. 2. Trend in papers on Analysis and Manipulation at SCAM.Upper bar
shows percentage of papers on manipulation; lower bar showspercentage of
papers on analysis.

At the time of writing, the developed and developing world
are collectively entering into a period of austerity unprece-
dented in living memory, brought about by the global financial
crisis of 2008. Many governments are asking themselves and
their citizens the question: ‘on what areas of government activ-
ity should we cut back our spending?’. The application of the
‘cuts’ is crude and imprecise. It has uncertain consequences
and potentially unexpected side effects. However, suppose,
after the next economic meltdown, source code has continued
its present trend to the point where it has permeated every
aspect of the government and economy of the world. Might we
not be able to apply dependence analysis in order to discover
potential effects (and otherwise unforeseen side effects)of
governmental actions? Instead of ‘cutting back’ in a crude
and imprecise manner, might our governments be able to use
source code analysis and manipulation to ‘slice back’?

VI. A NALYSIS PURELY FOR THESAKE OF ANALYSIS

In recent years, the SCAM conference has shown an in-
creasing trend for papers on Analysis over Manipulation (see
Figure 2). In this section I want to make a case for source code
analysis purely for its own sake. I also seek to argue that we
can use Source Code Manipulation for Source Code Analysis.
Those authors working on Source Code Manipulation who are
alarmed by the trend towards analysis, therefore need not be
concerned; manipulation is another way to do analysis.

The need to always seek an application before embarking on
research in source code analysis is worthy. Should it become
mandatory then it would become a tyranny. I wish to argue:

“it is valuable to use Source Code Analysis and
Manipulation purely and simply in order to discover
that which may be there to be discovered”.

In the longer term, this unconstrained analysis for its own
sake may have profound and important applications. However,
it is not always possible topredict the application at the outset
of analysis and so this should not bede rigueur, nor should
it be a pre–requisite for publication.

Of course, we often do use source code analysis and
manipulation techniques with a purpose in mind. These ap-
plications lead to a prevalence of analysis and manipulation
papers in conferences such as those concerned with Program
Comprehension [19], [37], [57], [64], [70], Maintenance [2],
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[7], [23], [25], [31], [59] and Reverse Engineering [32], [43],
[68].

However, there is value in what might be termed ‘analysis
for the sake of analysis’. That is, the pursuit of analysis asa
voyage of discovery with an uncertain destination. With this
approach, we treat source code more like a ‘naturally occurring
phenomenon’; one that we seek to understand by experimental
investigation. We seek to understand and expose structuresand
relationships in source code that occur almost as the economist
might seek to explain the structures and relationships thatoc-
cur in economic systems. Both are concerned with systems that
are entirely created by humans but which exhibit behaviour
for which those involved cannot have planned. Since we aim
to identify unplanned outcomes, we cannot know that which
we seek, we can only hope to recognise anything interesting
and potentially important when we stumble across it. I believe
that this trend in the evolution of source code will force us to
consider it as having properties with an emergent character.
This will drive us towards analysis that treats source code
more like a naturally occurring phenomenon and less like a
human-constructed artefact.

At the time of writing the economist has no ‘source code’
that can form a basis for economic analysis and must therefore
rely upon simulations instead. How long will it be before
source code is a viable mechanism for understanding and
investigating world economic structures? How much more
complex will computer software become before there is a
need for not just models, butsimulationsthat abstract from
the detail in order to examine and predict the bahaviour of
software systems?

The two worlds of economics and software are becoming
increasingly interwoven. Therefore, we may as well try to
understand software in a more exploratory manner that accepts
that it will possess unintended, but nonetheless interesting,
structures and relationships.

For small programs, this does not make sense; we can be
sure that the purpose, effects and characteristics are largely
those the designer intended and so there is no need to treat
the source code as some sort of ‘undiscovered continent’.
However, above a certain ‘critical mass’ (or perhaps critical
complexity of interactions between code elements) it becomes
impossible to completely characterize the code.

I am not referring merely to undiscovered bugs, but aspects
of behaviour which are simply unanticipated (and will often
not necessarily be localised). It has been known for some
time that software systems develop their own dynamics as
they grow and evolve [61], [62]. I am taking this view to
its logical conclusion. That is, we should accept that some
of the properties that source code will exhibit are not those
intentionally placed there by the designer. They will only be
discovered by exploratory experimental investigation.

The SCAM conference satisfies a need for a conference
in which those interested in source code analysis and manip-
ulation can meet, unfettered by the constraints imposed by
the constraints imposed by specific applications. This is not
to say that these applications are unimportant; they are very
important. However, there is a need for a forum for discussion
of tools, techniques, theory and algorithms, for analysis and

manipulation thatdoes nottarget any particular application. In
the words of the SCAM call for papers:

“While much attention in the wider software en-
gineering community is properly directed towards
other aspects of systems development and evolution,
such as specification, design and requirements engi-
neering, it is the source code that contains the only
precise description of the behaviour of the system.
The analysis and manipulation of source code thus
remains a pressing concern.”

This is not to say that the work that has appeared in
the conference has not been applied; it has. Space does
not permit a comprehensive list of all the applications that
have been addressed in the conference proceedings. As an
indication of the breadth covered, a chronological list of
applications from the past ten years of the Working Conference
on Source Code Analysis and Manipulation includes Security
[84], Documentation [5], Re-engineering [58], Prediction[21],
Change Management [34], Inspections [20], Design Patterns
[4], Testing [52], Clone Detection [77] and Evolution [76].

I am not making a case for application–free research. What I
propose is that we should continue to allow space for analysis
and manipulation that yields interesting results, but for which
we cannot, at present, discern a definite application. Source
code analysis is anend in itselfand we should not be afraid
to say so.

In the future, we may hope that a software engineer would
be provided with a suite of tools for analysis and manipulation
of source code that encourages and facilitates this kind of ex-
ploratory investigation. This can have several benefits. Initially,
such an approach can be used to support computer science ed-
ucation. In the laboratory and the classroom, students would be
supported by an exploratory investigative approach to source
code. Lectures that teach programming from first principles
through necessarily small toy examples can be supported by
investigative, ‘browse and dig’ classes, in which the student
browses a large code base, occasionally using more in-depth
analysis to dig deeper when an interesting feature is noticed.
Exploration can help students to become fluent with the most
common of software engineering tasks; reading and evolving
other engineers’ code. In this regard, the agenda that speaks
of ‘analysis for the sake of analysis’ is not entirely without
practical application.

However, it is not merely in the classroom that ‘analysis
for its own sake’ is potentially valuable. Researchers can and
should be involved in the process of exploratory analysis
of source code. If we are honest with ourselves, many of
our techniques originate in such speculative and exploratory
analysis: we notice a trend or pattern in the code, formulatea
hypothesis, develop tools to investigate and then, occasionally,
are pleased to confirm our hypothesis.

The strictures of academic discourse then render our dis-
coveries in reverse chronological order in a publication. It
is usually inefficient for other scientists to read our work
‘bottom up’. The reader of a scientific paper does not always
want to retrace the author’s steps along their voyage of
discovery. However, our approach to scientific writing creates
an unrealistic and unrepresentative view of the process of
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scientific discovery and can adversely influence the manner
in which future students of a discipline attempt to practice
their subject.

VII. SOME RESULTS FROMMY OWN VOYAGE IN SOURCE

CODE ANALYSIS

I should like to take the opportunity, afforded to me by
this keynote invitation, to illustrate ‘source code analysis as
an exploratory voyage of discovery’ by presenting the results
of some of my own collaborative work with colleagues. I will
take the liberty of presenting this work in the ‘wrong academic
writing style’: informal and bottom up. I am sure my experi-
ence is similar to that of many in our community and within
the wider scientific and engineering research community and
so perhaps it is useful, once in a while, to admit this and to
uncover just a little of this personal ‘voyage of discovery’.

The rest of this section reviews the way we arrived at
some of the results we have previously published on source
code analysis manipulation by just such a process of exper-
imentation and discovery. This work has been conducted in
collaboration with Dave Binkley, Keith Gallagher, Nicolas
Gold and Jens Krinke, all of whom I gratefully acknowledge
for allowing me to present our work in the following manner.

In 2002, Dave Binkley and I started to use the emerging
robust industrial strength slicing tool CodeSurfer from Gram-
matech [38] for slicing what we thought of at the time as a set
of large real world programs. Our goal was simply to assess the
size of program slices [13], [15]. In order to construct the large
number of slices required, Dave needed to develop several
novel slice efficiency techniques, which led to some potentially
valuable developments in efficient slice computation that were
published in this conference series [16], and subsequently, in
extended form, in TOPLAS [18].

At the same time I was developing a different line of
research in Search based Software Engineering (SBSE) [45]
and applying this to software testing [6] and so Dave and
I started to consider the way dependence might influence
testability; the more parameters a predicate depended upon,
the larger the search space for the test data generator and so
the harder, so we thought, would be the search for branch
adequate test data.

Having obtained the results of an analysis of predicate
dependence, we noticed a statistically significant trend for
functions with larger numbers of formal parameters to depend
upon smaller proportions of these parameters. This was not
the result we set out to find, but it was the most interesting
finding to come from the work, which was subsequently
published with only a glancing mention of the originally
intended application to testing [14], [17]. The visualisations
we used to explain our results proved useful in analysing
programs for DaimlerChrysler in some (sadly rather rare) paid
consultancy work. This work for DaimlerChrysler concerned
the application of source code analysis to find problematic
dependence features [10].

As we analysed more programs, we noticed two phenomena
that we could not initially explain. These phenomena related to
the distribution of forward slice sizes (compared to backward

(a) All Slices

(b) Control Dependence Only Slices

(c) Data Dependence Only Slices

Fig. 3. Forward (faint) and Backward (bold) slice size distributions over all
criteria [11]

slice sizes) and the strange jumps in the monotonic order of
slice sizes. I would like to (re)present these results in a little
more technical detail since I believe that they illustrate my
idea of source code analysis and manipulation as an uncertain
voyage of experimental discovery, rather than a deterministic,
pre-determined top down analysis from hypotheses to conclu-
sion.

In theory, forward and backward slicing are simply duals of
one-another and so there appears to be little point in studying
both. Results for forward slicing should be merely a mirror–
image of results for backward slicing. After all, we are simply
looking ‘the opposite way’ along the dependence arrows.

It is true that theaveragesize of a set of forward slices of
procedure or program will be identical to the average size ofits
backward slices. However the distributions of these slicesare
very different [11]. Forward slices are typically much smaller
than backward slices. That is, there is typically a large setof
very small forward slices and a few extremely large forward
slices. By contrast, there are few exceptionally large backward
slices, but also fewer very small backward slices.

It took us quite a while to realize that this phenomenon is
a product of the structured nature of most of the code studied
and the way in which control dependence influences slice
size. After several failed attempts to get the work published,
Dave realised that the reason for the difference was entirely
down to the difference between control dependence and data
dependence and the fact that most programs are relatively
structured. We then set about investigating this by considering
‘data only’ and ‘control only’ slices of programs to explore
the difference.

Figure 3a shows the size distributions over all slices (nor-
malized as a percentage of the procedure from which they are



10

Fig. 4. Monotonic Slice size Graph of the open source programed

taken), while Figures 3b and Figure 3c show the results for
all possible slices using, respectively, only control dependence
and only data dependence. Backward slice distributions are
shown in bold; forward slice distributions unboldened. A point
at (x, y) on one of these graphs indicates thaty% of the
distribution of slices consist of slices which includex% of
the procedures from which they are constructed. Notice that
the forward and backward slice size distributions for data-
only slices are almost identical, but the forward and backward
distributions for control only slices are markedly different In
the paper [11] we provide a more detailed analysis.

As we analysed the results we were getting from the set of
all slices of the programs we were collecting, we noticed a
strange pattern in many of the graphs. When we plotted the
size of slices in a monotonically increasing order, there were
‘shelves’; the plot of the size of the slices would suddenly
‘fall off a cliff drop’. An example can be seen in Figure 4,
which shows a graph of the set of all slices of the program
ed ordered by size. We called this graph a ‘Monotonic Slice
size Graph’ (MSG). The MSG fored shows a very dramatic
example of the ‘cliff drop’ phenomena. The slices ofed fall
into two categories: a large number of enormous slices all of
the same size and a few very small slices. It seemed very
curious that a program would (or even could) have so many
large slices and counter-intuitive that they would all turnout
to have the same size. We noticed that more and more of the
programs we studied possessed MSGs with this characteristic
‘shelf’. We started to try to explain it.

We realised that the shelves on the MSGs indicated the pres-
ence of dependence clusters; sets of statements all of which
depend upon one another. We realised that if slices were of
identical size, then they were likely to have identical content.
We experimented with this and found that it was, indeed, the
case. It was only then that we formed the hypothesis that
programs may contain large dependence clusters and used the
MSG as a mechanism for identifying them quickly by eye.
In our first paper on the topic we demonstrated, empirically,
that MSGs are a good approximation with which to find large
dependence clusters by eye (two non–trivial slices of the same
size are likely to be the same slice) and we looked at ways
to re-factor programs that had large dependence clusters, since
such clusters seemed to be a generally ‘bad’ phenomenon [12].

When Dave and I discussed these results with Jens Krinke
and Keith Gallagher, we found that they had made similar
observations and so we set about a combined effort to analyse
the results for more programs. Nicolas Gold attacked the prob-
lem with Formal Concept Analysis and we had many exciting
and interesting discussions about the nature of dependence

clusters, ultimately leading to a joint paper on the topic in
TOPLAS [41]. We were surprised that, once we had noticed
this phenomenon, it seemed that almostall the programs we
studied possessed large dependence clusters.

To give the reader some data to back this claim, Figure 5
(from the TOPLAS paper) shows a count of programs with
large dependence clusters for variouslargeness thresholds.
It is immediately clear from looking at this figure just how
prevalent these large clusters are. For instance, if we set the
threshold for ‘largeness’ at 10% all but 5 of the 45 programs
we studied have large dependence clusters.

I think that if 10% of my program were to lie in one
cluster of dependence then that is something I ought to know
about and would have to take into account in almost any other
analysis of the program. If the reader thinks that a threshold
of 10% is not large enough to be a cause for concern, then
a different threshold can be chosen and the resulting number
of programs with large dependence clusters according to this
more stringent criterion for ‘largeness’ can be read off from
Figure5.

Since this discovery, we have found that all our empirical
work that uses any kind of dependence analysis must first take
into account whether a program has large dependence clusters
or not. Programs with very large clusters tend to produce
very different results for all the other kinds of analysis we
have performed. Other researchers who find themselves exper-
imentally exploring the impact of some form of dependence–
related analysis might want to check their experimental sub-
jects for the presence of very large clusters. If one simply
applies a dependence–based technique to a set of programs, a
potentially promising technique might be abandoned because
its performance or behaviour is adversely affected by very
large dependence clusters. Fortunately, a simple check canbe
performed by plotting the MSG and checking for the tell–tale
‘shelves’ that Dave Binkley initially noticed.

I believe that the discovery of large dependence clusters
in source code, if replicated, may turn out to be important
because of the importance of dependence analysis and the far–
reaching implications of such large tight knots of dependence.
They will clearly impact in comprehension, testing and main-
tenance activities and research work on these topics that rests
upon dependence analysis. Of course, I cannot claim that such
findings will have any further bearing beyond the source code
analysis and manipulation community itself. Nonetheless,I
hope that this section has illustrated how source code analysis
can be something of an uncertain journey of discovery and
that there are interesting structures and relationships tobe
discovered ‘out there’ in the growing corpus of source code
available. I believe that as source code reaches further into the
fabric of our global financial and governmental organisations
and processes, the discoveries yet to be made may have far
greater significance than those I have outlined in this section.

VIII. C ONCLUSION

In the 1970s, the prevailing view in computer science
research literature regarded software as a purely mathematical
object that was to be entirely the subject of mathematical
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Fig. 5. The number of the 45 programs having large clusters for various largeness thresholds [41].

reasoning and understanding [30], [48]. This view point has
been important, not least because it has led to practical tech-
nologies for verification; at first merely for small programs,
but more recently non-trivial subsystems and components.
For example, it has been demonstrated that device drivers of
approximately 10,000 lines of code can be proved free from
pointer violations through automated analysis [87], whileother
more ‘partial’ approaches may scale significantly [22]. This is
work of exceptional importance.

However, by the 1990s it was already becoming clear that
any hope of proving correct all real world software was in
serious doubt [47]. The size of the body of source code with
which we have to deal is simply growing at a much faster
rate than any ability we have to completely master it as
a formal mathematical object. I see no evidence to suggest
that this trend will change; engineering practice will always
outstrip formal scientific ability. Experimental and exploratory
techniques will always be needed, as a complement to more
rigorous formal techniques.

Increasing inter-connectedness, concurrent execution, and
faster cycles of development, innovation and re-development
will increase, dramatically, the size of the global software
project with which we shall need to grapple. I have argued that
it is inevitable that within current lifetimes, source codewill
have drawn in biological, social, economic and governmental
processes. To some extent, it already has done so. I believe
we shall soon reach a point at which we can ‘understand these
processes’ through source code analysis. Indeed, it may be our
only hopeof understanding them, since the source code will
have become, in the words of the SCAM call for papers ‘the
only precise description of the behaviour of the system’. As
such, this promises an exceptionally interesting future for those
working on the analysis and manipulation of source code.

However, as I have also argued, I believe that we are
increasingly governed by source code, some of which takes
forms we do not readily recognise as such. If we do not
recognise that our treaties, rules, processes and procedures
and possibly, even our own biology are gradually becoming
source code, then we risk a technological tyranny. Source code
analysis and manipulation has a crucial role to play in helping

us escape this fate. If we fail to understand source code we
are destined to be controlled by it. The understanding we shall
need will go far beyond the business and engineering concerns
of our present interest in ‘program comprehension’.

IX. A CKNOWLEDGEMENTS

I am grateful to many colleagues for discussions that
contributed to the ideas developed and reviewed in this paper.
Space does not permit a full list and I apologise to those I may
have neglected to mention. The ideas presented here have been
shaped by discussions with Giulio Antoniol, Dave Binkley,
Mark Bishop, Sue Black, Edmund Burke, Gerardo Canfora,
John Clark, Jim Cordy, Sebastian Danicic, Andrea De Lucia,
Max Di Penta, Chris Fox, Keith Gallagher, Nicolas Gold, Tibor
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