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Abstract—Experimental work in software testing has gener-
ally focused on evaluating the effectiveness and efficiency on
various source code programs. However, an important issue of
testing efficiency on the model level has not been sufficiently
addressed, and hitherto, no empirical studies exist. This paper
presents an automated test data generation system for feasible
transition paths (FTP) on Extended Finite State Machines
(EFSM) models and investigates the statistical properties of
testing efficiency using statistical tests for correlation and
formalisation according to the test data generated by applying
the system on four widely used EFSM models. An important
and encouraging finding is a close positive correlation between
test generation cost and the number of numerical equal
operators in conditions (NNEOC) on a FTP. In addition, as
the NNEOC increases, there is a raising correlation between
the test generation cost and the length of path with events
variables (LPEV) or the number of numerical event variables
on a path (NNEV), and NNEV increases linearly with the
LPEV. Furthermore, empirical study shows that there is very
strong exponential relationship between test generation cost
and NNEV or LPEV only when NNEOC is considerable.
The results provide a significant guide to predict the testing
efficiency for EFSM models.
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I. INTRODUCTION

Testing from formal specifications offers a simpler and
more rigorous approach to the development of functional
testing than standard testing techniques. Finite-state ma-
chines (FSMs) and extended finite-state machines (EFSMs)
are among the most popular formal specifications. They are
widely used in a number of industrially significant specifica-
tion techniques, such as SDL, Estelle, Statecharts, UML, and
so on. Although automated test sequence generation methods
made substantial contributions toward test generation on
systems specified as FSMs [6], [9], [13], [16], [21], [27], test
generation for the EFSM models remains an open research
problem. The difficulty of automating test generation for the
EFSM models arises from the fact that, in general, an EFSM
model contains infeasible paths due to the existence of the
context variables. Moreover, finding a set of test data to
trigger a given feasible path in an EFSM is a hard task,
too [18]. Many techniques producing a set of paths for
generating test sequences from an EFSM have already been
reported in the literature [5], [7], [8], [10], [18]. However,
there is comparatively little work on producing real test data
for feasible paths in EFSMs.

On the other hand, experimental work in software testing
has generally focused on comparing and evaluating the
effectiveness and efficiency of different coverage criteria
on various source code levels [3], [12], [15], [17], [19].
Gallagher et al. [14] reported the factors, the number of test

data variables being generated and the length of test path,
which affect the performance of the test data generator for
Ada software system. However, the paucity of the efficiency
analysis on test data generation at the model level of ab-
straction means that the software tester has little knowledge
on potential factors that affecting the efficiency of test data
generation in EFSM models.

Thus, this paper first aims to develop the infrastructure of
automatic test data generation for EFSM models that pro-
duce real data to trigger feasible transition paths. Secondly,
this paper provides empirical results on efficiency analysis
of test data generation for a set of state-based models to
address the following questions:

• Which factors affect the performance of test data gen-
eration in EFSM models?

• Which is a decisive factor?
• What correlation exists between the test generation

efficiency and these factors?
• Which underlying regression model is better for pre-

dicting, linear or exponential?

The primary contributions of the paper are as follows:

1) The paper presents a genetic algorithm-based test
data generation system for feasible transition paths in
EFSM models, and empirically validates the efficiency
of the system by applying the system to a set of EFSM
models, with or without an EXIT state.

2) The paper also empirically confirms that the number
of numerical equal operators in conditions (NNEOC)
plays a key effect on the efficiency of test data gen-
eration. Furthermore, empirical study shows that there
is a very strong linear correlation between the number
of numerical event variables (NNEV) and the length
of path with event variables (LPEV) on a feasible
transition path, and the test generation cost grows
exponentially along with the increasing of LPEV or
NNEV when NNEOC is considerable.

The remainder of this paper is organized as follows.
Section II defines two types of complete path, and introduces
the main principle of test data generation algorithm using



GA on EFSM models. Section III briefly describes the test
generation implementation, and gives some metrics used
in test generation efficiency analysis. Section IV reports
the experimental results and discussion. Section V reviews
related work. Finally, conclusions and future work are given
in Section VI.

II. TEST DATA GENERATION ON EFSM MODEL

One of the challenges with testing EFSM models is how
to correctly account for path. This is because EFSM models
can be non-terminating (i.e. without an EXIT state), which
breaks traditional path used in testing.

In this section, we first introduce the syntax of EFSM
models. Then we define complete transition path and po-
tential feasible path which are used in the research reported
in this paper. Finally, we describe how to generate test data
using genetic algorithm for a feasible transition path from
EFSM model.

A. Extended Finite State Model

An extended finite state machine (EFSM) is a 6-tuple
(S, V, I, O, T, s0), where S is a nonempty finite set of states,
V is a nonempty set of internal/context variables, I is a
nonempty set of input interactions, O is a nonempty set
of output interactions, T is a nonempty set of transitions,
and s0 is an initial state [18]. Each member of I is
expressed as event(inputlist) meaning the interaction of
event occurs with a list of input parameters inputlist, which
is disjointed from V . Each member of O is expressed
as action(outlist) meaning action occurs with a formal
list of parameters outlist. Each parameter in outlist can be
replaced by a suitable variable from V , an input interaction
parameter, or a constant. Each element t of T is a 5-tuple
t(source, target, input, condition, action). Here, source
and target are the states in S representing the source state
and the target state of t, respectively. input is either an event
from I or empty. condition is a predicate as a set of logical
expressions in terms of the variables in V , the parameters of
the event and some constants. action is a sequence of actions
which consists of statements such as output statements and
assignment statements and so on (we assume a standard
expression language including assignments). All parts of a
t are optional.

A state transition t occurs when one of the machine’s
transitions is taken. If a transition t has a condition c on
the internal variables and input parameters, then c must be
satisfied in order for t to be taken. A self-looping transition
is a transition t where the source of t is the same as the
target of t. A set of distinct transitions may have an identical
source and an identical target. A final transition is one whose
target is an EXIT state that has no outgoing transitions in a
terminating EFSM model, or is one whose target is a START
state in a non-terminating EFSM model.

B. Complete Paths in EFSM Model

A path is usually presented as a sequence of nodes
or edges. By path of an EFSM we mean a sequence of
adjacent transitions of an EFSM. Because EFSM can be non-
terminating, this has led to following two types of complete
path definitions.

Definition 1 (Complete transition path). A complete

transition path is any path π = t1t2 · · · ti · · · tn
that source(t1)=START state, target(tn)=EXIT state and

target(ti) = source(ti+1) (1 ≤ i < n) in a terminating

EFSM model.

Definition 2 (K Complete transition path). A K com-

plete transition path is any path π = t1t2 · · · ti · · · tn
that source(t1)=START state, target(tn)=START, too and

target(ti) = source(ti+1) in a non-terminating EFSM

model, and there is K − 1 transition te in path π whose

target(te)=START state (1 ≤ i, e < n).

Definition 3 (Condition conflict). A transition may not be

traversed if there are conflicting conditions in the paths. A

given path has a condition conflict if there exists a variable

v and a pair of transition (ti, tj), such that the current

values of the variable v makes the condition of ti to be

True(False), but results False(True) in the condition of

tj .

Definition 4 (Potential feasible path). A path that is free of

condition conflict is called a potential feasible path.

C. GA based Test Data Generation

Genetic Algorithms work with populations of candidate
solutions to a problem. Our specific problem is to use a
genetic algorithm to search a set of input data that can
traverse a potential (K) complete FTP in EFSM models.
More generally, given a particular (K) complete path π in an

EFSM, π = s1
e1[c1]/a1

−−−−−−→ s2
e2[c2]/a2

−−−−−−→ s3 · · · sm
em[cm]/am

−−−−−−−→
sm+1, where ei is an event, ci is a condition, and ai

is a sequence of actions, an individual is a list of input
values, x = (x1, x2, · · · , xn), corresponding to all param-
eters of the events e1, e2, · · · , em in the order they appear.
If the sequence of events, having the parameter values
x1, x2, · · · , xn, determines the transitions on the path π and
validates the condition ci of each transition, then x is a
solution for path π. This means that each reached restrictions
imposed by the path must be solved and previous predicates
must remain solved, despite the changes on input values
in the search process. Figure 1 shows a simple transition
path with three transitions. The test input is the sequence
of (e1(a, b), e2, e3), where the variable a and b are replaced
by real values. For example, (e1(2, 3), e2, e3) is a validated
test data that can traverse the path while (e1(−1, 3), e2, e3)
is not, as the condition on T2 is failed. Therefore, (2, 3) and
(−1, 3) are individuals but only (2, 3) is a solution for this
example.



S1 S2 S3

e1(a,b)/sum=0 e2[a>0]/sum=a+b

S4

e3[sum>0]/output(sum)

T1 T2 T3

Figure 1. Example of test data

The genetic algorithm evaluates each individual by exe-
cuting each transition on a potentially complete FTP with the
values encoded in the chromosome’s genes. A fitness func-

tion, assigning a score (fitness) to each chromosome in the
current population, is used to compare the individuals and to
differentiate their performance in each population. The fitter
individuals are the ones which follow more transitions from
the given path.

III. EXPERIMENTAL SETUP

The experimental approach is straightforward. Firstly,
potentially complete feasible paths with different lengths,
varying from 3 to 50 depending on EFSM models, are
produced by employing Breadth-First search. Secondly, for
each path length, 5 paths are picked up to develop test data.
For each path, ten test cases are generated by applying the
GA. Finally, the test generation efficiency is analyzed in
detail by using the statistical analysis tool SPSS.

A. Subjects

The study concerns 4 EFSM models which come from
previous model-based studies [1], [20]. Each model has
two versions. One includes EXIT state and other is free
of EXIT state, denoted by the corresponding model name
following noexit. Table I presents summary information
concerning the subjects, including the model’s size in terms
of the number of states, the number of transitions and a brief
description.

Table I
EXPERIMENTAL MODELS

Number of EXIT
Models States Transitions State Description

ATM 9 23 Yes Automated
ATM noexit 9 24 No Teller Machine
Cashier 12 21 Yes Cashier
Cashier noexit 12 22 No Machine
CruiseControl 5 17 Yes Cruise Control
CruiseControl noexit 5 18 No System
FuelPump 13 25 Yes Fuel Pump
FuelPump noexit 13 26 No System

B. Test generation system

In order to achieve the automatic test data generation
and evaluate the efficiency for feasible transition paths in
EFSM models, we develop a test data generation system
for EFSM models using GA. The system supports not only
the test generation of integer and real data types, but also
non-numerical types such as Boolean and characters types.

Figure 2 shows the test data generation algorithm using
GA. The implementation consists of two steps.

TestGeneration(efsm, popsize, Imax, Pc, Pm):
Input : efsm: EFSM model to be tested

popsize: Population size
Imax: Maximum iteration number
Pc: Crossover probability
Pm: Mutation probability

Output: a set of test data for efsm
Create feasible transition paths
Randomly generate initial population popu
repeatfitness ← evaluate(popu)

popu ← select(popu, fitness)
popu ← crossover(popu, fitness, Pc)
popu ← mutate(popu, fitness, Pm)
fitness ← evaluate(popu)
popu ← survive(popu, fitness)

until success or iterationnumber > Imax

Figure 2. Test data generation algorithm

Step 1: generate complete transition paths

First, complete paths with a variety of lengths are created
according to breadth-first search technique, and potential
feasible paths are produced by deleting the paths where
condition conflicts exist. The path varies in length from 3
to 50. For each potential feasible path, a sequence of events
that triggers all transitions in order is extracted and the types
of input parameters of the events are identified.

Step 2: test data generation using GA

In this step, for each potential feasible path, find the
input parameter values that trigger the path by applying
GA. The initial population is generated randomly depending
on their data types. The chromosomes are real-encoded,
each gene representing one input parameter. Each individual
is evaluated by a fitness function. A recent survey on
search-based test data generation [24] suggests the notion of
approach level and branch distance in order to construct a
fitness function. The approach level will evaluate how close a
chromosome is to the given path. The branch distance will
measure how close is the first unsatisfied pre-condition to
being true. So, in our research ,the following fitness function
is applied.

fitness = approach level + norm(d)
norm(d) = 1 − 1.001d

Where d is a branch distance, and norm(d) is the branch
distance value scaled between [0, 1].

In selection procedure select(population, fitness), the
parents are chosen according to their fitness values. This
guarantees that the chromosomes with a higher fitness value
have a higher likelihood of being selected. In crossover pro-
cedure crossover(population, fitness, Pc), we produce



new offsprings selected by crossover rate Pc based on
following computing inspired from [22].

y1 = |0.05 × (x1 − x2) + x1|
y2 = |0.05 × (x2 − x1) + x2|

Where x1 and x2 are the chosen parent individuals, y1, y2

are new individuals after applying the crossover operation,
and a fixed 0.05 is chosen since it supplies a better score
than other values randomly selected. In mutation procedure
mutate(population, fitness, Pm), an individual is chosen
by mutation rate Pm, and a new gene will be generated
randomly according its data type to substitute the original.
After these procedures, population will be evaluated again,
and a basic survive procedure survive(popu, fitness) is
employed to pick up certain individuals of the offspring into
the next generation according to their fitness which means
that better individuals (higher fitness) have a better chance
of being chosen.

In the test data generation for EFSM models using GA,
the below arguments are set as follows:

Crossover probability Pc = 0.7
Mutation probability Pm = 0.08
Survival probability Ps = 0.8
Population Size popuSize = 20
Maximum iteration number Imax = 5000000

GA-based test data generation is an heuristic process. When
a new input is created, the EFSM model under the test has
to be executed again in order to evaluate its fitness value.
The cost of test generation algorithm depends mainly on
the number of times the fitness function must be evaluated,
i.e., the number of times the EFSM model is executed.
In addition, the empirical experiments were done on two
PCs and a SUN SPARC station, the time of test data
generation varied with the different computers. Therefore,
only the number of evaluation (NE) of fitness function
during generating a test case for a FTP is considered as the
cost of test generation. Thus, in this paper, the efficiency of
the test data generation system is examined by the number
of evaluations of the fitness function.

C. Metrics

In order to investigate which factors affect the perfor-
mance of test data generation in EFSM, the following
metrics are considered in this paper.

1) Length of path (LP): The number of transitions in a
path.

2) Number of variables (NV): The number of variables
defined or used in a path, including variables used
as input parameters (defined) in events, defined in
actions, used in conditions or actions on the path.

3) Number of variables defined in event (NVDE): The
number of variables appeared as input parameters in

event sequence within a path. These variables also are
called event variables.

4) Number of variables defined in actions (NVDA): The
number of variables defined in actions within a path.

5) Number of variables used in conditions (NVUC): The
number of variables used in conditions within a path.

6) Number of variables used in actions (NVUA): The
number of variables used in actions within a path.

7) Number of variables defined in event and used in
conditions (NVDEUC): The number of variables de-
fined in events of transition ti, used in conditions of
transition ti or tj within a path, and there are no other
definitions with respect to the variables from transition
ti to tj if used in tj .

8) Number of variables defined in actions and used in
conditions (NVDAUC) : The number of variables
defined in actions of transition ti, used in conditions
of transition tj within a path, and there are no other
definitions with respect to the variables from transition
ti to tj .

9) Number of conditions (NC): The number of nonempty
conditions in a path.

10) Number of sub-conditions (NSC): The number of sub-
conditions in a path.

11) Number of equal operators in conditions (NEOC):
The number of equal operators in conditions within
a path, including logical equal and numerical equal.
Logical equal implies equalling to True or False,
and numerical equal means equal in integer, real or
character value, not in logical value.

12) Number of numerical equal operator in conditions
(NNEOC): The number of numerical equal operators
in conditions within a path.

13) Length of path with event variables (LPEV): The
number of transitions whose event is provided with
nonempty input parameters within a path.

14) Number of numerical variables (NNV): The number
of numerical variables defined or used in a path, in-
cluding variables defined in events or actions, used in
conditions or actions on the path. Numerical variables
imply that their data type is integer or real.

15) Number of numerical event variables (NNEV): The
number of numerical event variables within a path.

D. Data Collection and Description

In order to investigate and illustrate the effectiveness of
the test data generation system for EFSM models, we have
conducted a substantial number of experiments for the 8
EFSM subjects presented in Table I. For each subject, test
cases are generated for potential (K) complete FTPs with
different lengths. If test generation fail on a path within
maximum iteration number, another path with the same
length is chosen. In addition, corresponding numbers of
evaluation of the fitness function as well as above metrics



are recorded during the test generation. Considering the
randomicity of initial population in GA, we delete the
highest and lowest number of the evaluation in the test cases
for a path. Table II provides the summary statistics of 7
factors from the above metrics due to the limitation of page
space.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we examine the association between
the number of evaluations and above metrics by using
correlation analysis to identify which factors affect test
generation efficiency for EFSM models. Then, we inspect
the potential relationship between test generation efficiency
and the factors by applying linear or nonlinear regression
analysis. Finally, the empirical results are discussed.

A. Key factors identification

As displayed in Table II, the largest set is provided
with 1917 data, and the smallest is 619 for all 8 EFSM
models. The number of data points in each dataset is limited,
and Spearman’s correlation coefficient that is more robust
to atypical values and to non-linearity of the underlying
relationship, is used in this study.

In Section III-C, we introduced 15 metrics that are poten-
tial factors on affecting performance of test data generation.
However, correlation may exist between these factors. For
example, a longer path that contains more transitions may
have more variables in the events and more conditions.
Therefore, we first investigate the correlation between these
metrics. Table III and Table IV list the correlation coef-
ficients quantifying the strength of the interaction among
the metrics in ATM and CruiseControl model, respectively.
All of the values, except ones with + (meaning there is no
significant correlation at 0.01 and 0.05 significant level) and
- (denoting the correlation coefficients cannot be computed
because NNEOC is constant) in Table III, are significant at
α = 0.01 level (2-tailed). The bold-face values representing
the correlation coefficient are very high (larger than 0.9),
implying there is a strong relationship between factors.
In Table IV, most of metrics in CruiseControl model are
significantly correlated with each other indicated by many
bold-face values. However, this is not shown in Table III of
ATM model, where there are few bold-face values.

To investigate the relationship between the number of
evaluations (NE) during test generation and these metrics,
the correlation coefficients are computed and shown in the
last line in Table III and Table IV. It can be seen that there
are strong correlations between NE and various metrics ex-
cept NVDA, NVDAUC, NEOC and NNEOC (about 0.668)
in CruiseControl. Again this is not shown in ATM where
the coefficient is about 0.363, because of the low correlation
between the metrics.

Matthew et al. [14] suggested that the length of path
affects the performance of test generation for Ada software

system. It is interesting to investigate whether does it exist
in EFSMs. Figure 3 and Figure 4 display the relationships
between NE and LP on 4 models with EXIT state and
4 models without EXIT state, respectively. It is observed,
from Figure 3.(d) and Figure 4.(d), that there are no distinct
relationships between NE and LP for FuelPump exit/noexit

models. However, Figure 3.(c) and Figure 4.(c) indicate
that NE increases approximately exponentially with LP
for CruiseControl exit/noexit models. It can also be ob-
served that NE increases in fluctuation as LP enlarges
for other models. To obtain a more detailed insight, we
analyze carefully the experimental results, and find that
the number of numerical equal operators in the conditions
(NNEOC) of FuelPump exit/noexit, ATM exit, Cashier exit,
ATM noexit, Cashier noexit, CruiseControl noexit and
CruiseControl exit model, is 0, 0, 1, 1, 2, 2, 3 and 4, respec-
tively. The corresponding correlation coefficients between
NE and LP are -0.013+, 0.030+, 0.404, 0.323, 0.580, 0.676,
0.890 and 0.951, respectively. It suggests that the correlation
between the NE and LP rises along with the growing of
NNEOC.

On the other hand, when NNEOC is considerable, such as
CruiseControl exit/noexit model, there is a close relationship
between NE and LP, and most of the other metrics strongly
associated with LP (see the second column of Table IV).
It seems to indicate that NNEOC has an important effect
on EV. However, this is not explored by the analysis of
the correlation between NE and NNEOC. Further inspection
of the data reveals that NNEOC may be too small and
insignificant to demonstrate the relationship. As shown in
Figure 5, NE increases along with the growth of NNEOC
on all models whose NNEOC is larger than 1. In addition,
we especially create some complete paths on ATM noexit

model to improve NNEOC by paying special attention to
transition T4 where a numerical equal operator is required.
The largest NNEOC is equal 8 in the paths, and the correla-
tion coefficients between NE and all metrics are displayed in
Table V. It is obvious that NNEOC is significantly correlated
with EV, holding the coefficient 0.887 close to the largest
0.899.

Table V
CORRELATION ON T4 IN ATM

Metric LP NV NVDE NVDA NVUC
NE 0.841 0.890 0.899 0.311 0.755

Metric NVUA NVDEUC NVDAUC NC NSC
NE 0.311 0.838 0.276 0.821 0.746

Metric NEOC NNEOC LPEV NNV NNEV
NE 0.840 0.887 0.880 0.890 0.881

How about the number of equal operators in the condi-
tions? Does it affects the efficiency of test generation for
EFSM models? To address these questions, we analyze the
NEOC on all EFSM models, and find there is little con-
nection between NE and NEOC. This is easy to understand



Table II
DESCRIPTIVE STATISTICS OF DATA

LP LPEV NV NNEV NEOC NNEOC NE
Models N Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

ATM 833 4 30 2 9 5 13 4 11 1 12 1 1 8 2505
Cashier 1007 4 30 1 15 2 20 1 17 1 9 1 1 115 175281
CruiseControl 663 3 20 1 18 6 30 3 25 2 8 0 3 2 542810
FuelPump 1917 11 50 2 2 8 8 5 5 2 2 0 0 1 1446

ATM noexit 1008 4 30 2 9 5 15 4 13 1 11 1 2 12 70901
Cashier noexit 960 5 30 1 13 2 20 1 17 1 7 1 2 6 8805
CruiseControl noexit 619 3 20 1 15 6 30 3 25 2 11 0 2 1 43907
FuelPump noexit 1773 12 50 2 4 8 13 5 10 2 3 0 0 1 1470

Table III
CORRELATION ANALYSIS OF ATM MODEL

NVD NVD NN
Metrics LP NV NVDE NVDA NVUC NVUA EUC AUC NC NSC NEOC EOC LPEV NNV NNEV

LP 1
NV 0.614 1
NVDE 0.616 0.999 1
NVDA 0.787 0.702 0.700 1
NVUC 0.327 0.835 0.831 0.466 1
NVUA 0.838 0.876 0.878 0.835 0.573 1
NVDEUC 0.056+ 0.667 0.660 0.190 0.880 0.315 1
NVDAUC 0.703 0.658 0.635 0.786 0.633 0.738 0.280 1
NC 0.825 0.771 0.769 0.783 0.568 0.888 0.332 0.724 1
NSC 0.765 0.825 0.822 0.740 0.670 0.871 0.465 0.691 0.986 1
NEOC 0.861 0.682 0.683 0.795 0.429 0.877 0.144 0.721 0.979 0.934 1
NNEOC - - - - - - - - - - - -
LPEV 0.616 0.999 1 0.700 0.831 0.878 0.660 0.653 0.769 0.822 0.683 - 1
NNV 0.614 1 0.999 0.702 0.835 0.876 0.667 0.658 0.771 0.825 0.682 - 0.999 1
NNEV 0.616 1 1 0.700 0.831 0.878 0.660 0.653 0.769 0.822 0.683 - 1 0.999 1

NE 0.404 0.363 0.365 0.364 0.242 0.405 0.124 0.339 0.393 0.384 0.390 - 0.365 0.363 0.365
Correlation is significant at the 0.01 level. +Correlation is not significant at the 0.01 and 0.05 level. -Cannot be computed because NNEOC is constant.

Table IV
CORRELATION ANALYSIS OF CRUISECONTROL MODEL

NVD NVD NN
Metrics LP NV NVDE NVDA NVUC NVUA EUC AUC NC NSC NEOC EOC LPEV NNV NNEV

LP 1
NV 0.995 1
NVDE 0.994 0.998 1
NVDA 0.825 0.836 0.814 1
NVUC 0.993 0.992 0.990 0.834 1
NVUA 0.994 0.988 0.984 0.841 0.989 1
NVDEUC 0.995 0.992 0.991 0.828 0.999 0.989 1
NVDAUC 0.676 0.692 0.666 0.726 0.705 0.688 0.679 1
NC 0.995 0.988 0.986 0.832 0.992 0.997 0.993 0.686 1
NSC 0.990 0.989 0.987 0.830 0.997 0.983 0.997 0.693 0.987 1
NEOC 0.641 0.643 0.658 0.383 0.660 0.600 0.665 0.465 0.615 0.669 1
NNEOC 0.689 0.670 0.679 0.433 0.681 0.675 0.684 0.560 0.686 0.674 0.884 1
LPEV 1 0.995 0.994 0.825 0.993 0.994 0.995 0.676 0.995 0.990 0.641 0.689 1
NNV 0.992 0.986 0.980 0.852 0.990 0.997 0.990 0.699 0.998 0.985 0.592 0.667 0.992 1
NNEV 0.995 0.988 0.986 0.832 0.992 0.997 0.993 0.686 1 0.987 0.615 0.686 0.995 0.998 1

NE 0.951 0.943 0.943 0.781 0.946 0.945 0.947 0.668 0.949 0.943 0.644 0.697 0.951 0.945 0.949
Correlation is significant at the 0.01 level

since logical equal operators are included in NEOC, which
requires little effort to meet. Consequently, a conclusion can
be drawn from the above analyses that NNEOC plays a key
effect on the number of evaluations during test generation.
That is to say, NNEOC of a path affects the performance of

test data generation decisively.

B. Regression models analysis

In Section IV-A we concluded that the number of the
evaluations has a close correlation with the number of
numerical equal operators in the conditions on feasible
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Figure 3. Relationship between NE and LP for models exit
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Figure 4. Relationship between NE and LP for models noexit

transition paths.

However, what is this relationship? Is there a constant
upward or downward trend that follows a straight-line pat-
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Figure 5. Relationship between NE and NNEOC for models with
NNEOC>1

tern or a curved pattern? How about the metrics, length of
path and number of variables in events? Are there similar
relationships with the number of evaluation in EFSM models
as in Ada software systems? To address these questions, we
apply a regression analysis to the data of all the 8 subjects.
The regression analysis on the correlation between EV and
NNEOC is illustrated in Figure 6 on all models that NNEOC
is larger than 1. It can be seen that the exponential coefficient
of determination R-Square improves from 0.330 to 0.751
when NNEOC increases from 2 to 8. That is to say, the
exponential regression model works better when NNEOC is
considerable.
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Figure 6. The regression analysis on NE and NNEOC on models with
NNEOC>1

Considering a test data required to traverse a FTP, the
number of transitions with event variables could be more
reasonable than the number of transitions in the efficiency
analysis of test generation. For example, the comparison LP
with LPEV with respect to NE is given in Figure 7(a) for
ATM model. It is evident that LPEV is more advisable. On
the other hand, it is easy to understand that the number
of numerical event variables is more reasonable than the
number of variables defined in events since NVDE includes
logical variables which are effortless to meet the test require-
ments. The advantage is clear in Figure 7(b), which displays
the comparison NVDE with NNEV with respect to NE for
CruiseControl noexit model. So, we use LPEV and NNEV,
instead of LP and NEV in following analysis.

In order to answer the question what relationship exists
between EV and LPEV as well as NNEV, we apply regres-
sion analysis to all the models. The results are shown in Fig-
ure 8, Figure 9 and Figure 10, respectively, according to their
NNEOC values. The scatterplot graphs exhibit a gradually
strong exponential relationship between EV and LPEV (see
the left hand side of the graphs) as well as NNEV (see the
right hand side) when NNEOC varies from 0 to 4 depending
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Figure 7. LP VS LPEV and NVDE VS NNVE

on models. The detailed coefficients of determination R-
Square about exponential, increase from 0.053 to 0.855,
and from 0.049 to 0.851 with respect to LPEV and NNEV,
respectively. At the same time, we compute their R-Square
by linear regression on corresponding models. It is further
observed that the R-Square of linear is obviously smaller
than that of the exponential on each corresponding model
except FuelPump noexit models, which NNEOC=0, shown
in Figure 8(a). Especially, for the CruiseControl model (see
the Figure 10(b)), their R-Square of exponential are 0.855
and 0.851, whereas R-Square of linear are 0.382 and 0.383,
with respect to LPEV and NNEV, respectively. That is to say,
the exponential regression models work well. As a result, we
can draw the conclusion that there exists strong exponential
relationships between EV and LPEV as well as NNEV when
NNEOC is sufficient.
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Figure 8. Regression analysis on models with NNEOC=0,1

It is distinctly different from Matthew’s finding that there
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Figure 9. Regression analysis on models with NNEOC=2
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Figure 10. Regression analysis on models with NNEOC=3,4

was an approximate linear relationship between NE with
NV generated in Ada software systems. In order to further
support our proposition that NNEV has an exponential
effect on NE, we plot the relationship between NNEV
and LPEV. As demonstrated in Fig 11, there is a very
strong linear relationship between NNEV and LPEV on
all models. Their coefficient of determination R-Square are
about 0.929 (92.9%), which is substantial, except Cashier
noexit model (about 0.792). Therefore, NNEV and LPEV
should maintain similar relationship with EV. That is, there
exists an exponential connection between NNEV and NE.

V. RELATED WORK

Many test generation approaches had been studied in the
literature for systems modelled as EFSMs [4], [5], [7], [8],



0.792Linear

R SquareEquation

0.792Linear

R SquareEquation

(C)  Cashier Noexit Model

1.00Linear

R SquareEquation

1.00Linear

R SquareEquation

(a)  ATM Exit Model

0.990Linear

R SquareEquation

0.990Linear

R SquareEquation

(d) CuriseControl Exit Model

0.979Linear

R SquareEquation

0.979Linear

R SquareEquation

(e)  CuriseControl Noexit Model

0.929Linear

R SquareEquation

0.929Linear

R SquareEquation

(b)  ATM Noexit Model
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models

[10], [18], [23]. Most of them focus on the generation of
test sequences. Juhan et al. [10] presented a way to generate
test sequences from EFSM models using a guided model
checker. Duale et al. [8] introduced a method that overcomes
the feasibility problem in advance. The method converted
a class of EFSMs into consistent EFSMs in which all
transition paths were feasible. Derderian et al. [5] proposed a
GA approach to generate feasible paths from EFSM model.
The approach evaluates the feasibility of a given transition
path according to the number and the types of guards
found in that TP. Kalaji et al. [18] reported a fitness metric
to estimate the path’s feasibility and to direct the search
towards paths that are relatively easy to trigger. However,
the studies do not tackle the problem of generating input
test data to be used in testing the generated paths.

A number of comparisons and evaluations of testing
efficiency have been carried out by researchers [2], [11],
[12], [17], [25]. Ntafos [25] compared branch coverage,
random testing and required pair coverage with 14 FOR-
TRAN sub-routines. Frankl et al. [11], [12] conducted a
study which compared the all-edges criterion to the all-uses
criterion, and branch coverage and all-uses coverage criteria
for nine Pascal programs. Hutchins et al. [17] reported an
experimental study investigating the effectiveness of two
code-based test adequacy criteria for identifying sets of test
cases that detect faults. The all-edges and all-DUs coverage
criteria were applied to 130 faulty program versions derived
from seven moderate size base programs by seeding realistic
faults. Another study evaluated a complete set of test cases
to cover all possible paths in the code, for example mutation
test techniques [26] or genetic test algorithms [28]. Above
researches focus on comparing and evaluating the effective-
ness and efficiency of different coverage criteria on various
source code levels. It is clear that there is no similarity to our
empirical study on test generation and efficiency for EFSM
models.

VI. CONCLUSION AND FUTURE WORK

Testing from formal specifications offers a simpler and
more rigorous approach to developing test data. However,
current work in specification-based automatic testing has
been limited largely to FSM models in which context vari-
ables do not exist. It is hard to find a set of test data to trigger
a given feasible path in EFSM models if more variables
are used in the path and conditions are complex. Therefore,
in this paper, we have presented a GA-based system to
automatically generate test data for feasible transition paths
in EFSM models.

In order to investigate the effectiveness of our test gen-
eration approach and identify the key factors affecting the
efficiency of test generation in EFSM models, an empirical
study has been conducted on 8 EFSM models, and the
results were analyzed in detail using statistical analysis.
We conclude that NNEOC plays a very important role
in test generation efficiency. It is only when NNEOC is
considerable that NE grows exponentially along with the
increasing of NNEV or LPEV. Moreover, there is a very
strong linear relationship between NNEV and LPEV. The
results provide a significant guide to predict the testing
efficiency based on NNVE or LPEV on a FTP for EFSM
models.

Future research work on this topic will concentrate on the
problem of test data generation in EFSM models including
string, compound data types as well as function calls etc. The
questions such as what relationship exists between the test
generation cost and length of string, the number of string
variables, as well as the number of function calls will be
explored carefully.
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