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Abstract

This paper introduces the concept of test suite latency.
The more latent a test suite, the more it is possible to
repeatedly select subsets that achieve a test goal (such as
coverage) without re-applying test cases. Where a test case
is re-applied it cannot reveal new information. The more a
test suite is forced to re-apply already applied test cases in
order to achieve the test goal, the more it has become ‘worn
out’. Test suite latency is the flipside of wear out; the more
latent a test suite, the less prone it is to wear out. The paper
introduces a theory of test suite latency. It presents results
from the empirical study of latency, highlighting the need for
latency enhancement. The paper also introduces a strategy
and algorithms for improving latency and an empirical study
of their effectiveness. The results show that local search is
effective at improving the latency of a test suite.

1. Introduction
Test suite minimization aims to reduce the number of

test cases that need to be applied, while retaining identical
or near-identical satisfaction of a chosen test adequacy
criterion. Test suite minimization is increasingly important,
because of the tendency for test suite size to grow over
time [7]. This growth in test suite size comes from a
variety of sources, including the use of capture replay
tools, improvements in test data generation techniques and
procedures for capturing customer—created test cases arising
from their use of deployed software. Test suite minimization
provides a mechanism for managing the size of the test suite
when there are insufficient resources available to apply all
available test cases during a period of testing activity.

For example, a large IBM middleware product has a test
suite of 20,000 test cases which take 10 days to run. IBM
has an automatic regression test selection mechanism that
chooses, for each regression test, a subset of the test cases
to run. The algorithm first determines the relevant tests given
the code that was changed. However, it then needs to further
minimize within these selected test cases in order to achieve
a test set that can be executed within the time available
(which is normally eight to twelve hours).

Typically, the test adequacy criterion that minimization
seeks to maintain is code coverage. That is, the minimized
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test suite aims to achieve the same, or nearly the same
coverage as the original test suite, but with a reduced number
of test cases. This paper also adopts coverage as the test
adequacy criterion, but the techniques and results presented
here can be adapted to apply to other test adequacy criteria.

IBM’s experience with repeated application of test suite
minimization for multiple iterations revealed a problem:
minimized test suites have a tendency to ‘wear out’. That
is, some of the test cases execute parts of the code that
have not changed (as well as parts that have). However,
for deterministic software systems, repeated execution of
unchanged sections of code with the same input cannot, by
definition, reveal any new faults provided that the rest of
the environment do not change. As the number of previously
used test cases increases, the test suite ‘wears out’ its ability
to reveal additional faults. The more a test suite contains test
cases that have already been executed on previous versions
of the system, the less the test suite is likely to reveal.

In order to avoid wear out, minimization strategies can be
adapted to select different subsets of the test pool to form
a new test suite to be applied at each regression cycle. It
is trivial to adapt test minimization algorithms to avoid re-
selection of previously used test cases, thereby yielding a
novel minimized test suite on each iteration. However, at
each iteration, the algorithm may achieve lower coverage
because it cannot re-use test cases that have already been
executed. Some parts of the system may have very few
available test cases that are able to cover them. This raises an
important question: How many times can a test pool allow
repeated reduction that results in a novel set of test cases?

This paper introduces the term latency to capture this
property. The more a test suite allows for selection of novel
minimized test suites, the higher is its latency. The use of
word ‘latency’ is overloaded in computer science, imbuing
it with possible assiciations that are unwanted in the context
of this work. The dictionary definition of the word is the
one intended in this paper:

Latent('leitont) a. Hidden, concealed; present or existing,
but not manifest, exhibited, or developed [1].



This paper addresses the issue of test suite latency. The
paper introduces a theoretical foundation that forms the basis
of an empirical investigation of real world test suites. Some
of the test suites for the programs studied show surprisingly
low latency. In order to repair test suites with low latency,
the paper introduces a novel strategy for enhancing the
latency of test suites. The strategy combines use of test suite
reduction techniques and test data generation techniques.
Three algorithms are presented in order to implement the
strategy. The three algorithms are studied for their perfor-
mance and efficiency.

The primary contributions of the paper are as follows:

1) The paper introduces a theoretical formulation of the
concept of latency of a test suite. The theory supports
investigation of formal properties of test suite reduction. For
example, it is shown that repeated application of greedy test
suite reduction results in monotonically decreasing statement
coverage.

2) The paper presents an empirical study of latency for real
world test suites. The results show that the coverage decrease
is surprisingly severe for some programs, for example, the
widely studied program: space.

3) The paper reports on the effect of allowing overlapping
test suite reduction on the test suite latency. The empirical
results show that even allowing 70% of the selected test
cases to be reused (i.e. 70% overlap) fails to noticeably
enhance the test suite’s latency.

4) The paper shows how test suite enhancement can improve
latency in a test suite. The paper uses our existing hill
climbing algorithm [28] and compares its results to those
obtained from an estimation of distribution algorithm. The
paper presents an empirical study of the proposed latency
enhancement strategy on four simple benchmark programs.
The statistical analysis of the results shows that the hill
climbing algorithm performs significantly better than both
the estimation of distribution algorithm and random test data
generation.

The rest of the paper is organised as follows. Section 2
presents formal definitions and theoretical results that un-
derpin the subsequent empirical studies. Section 3 presents
an empirical study of test suite latency for open source
programs. Section 4 introduces the strategy and algorithms
for combining test suite reduction and generation, which is
evaluated in Section 5. Section 6 discusses related work and
Section 7 concludes.

2. Problem Statement
Test suite reduction is the problem of selecting a subset

of a given test suite in order to reduce the effort required
to execute the test cases [15]. In this paper, the remaining
unselected test cases are referred to as the ‘retained’ set,
since they may be retained for subsequent selections. Some
test suite quality metrics, for example structural code cover-
age, monotonically decrease as the number of retained test

cases decreases. A test suite reduction technique is said to be
monotonically decreasing with respect to a quality metric, if
the repeated application of the reduction technique results in
monotonically decreasing values of the quality metric. The
latency of a test suite is defined as the maximum number of
times a reduction technique can be applied to the retained
portion of the test suite before the quality metric falls below
a predefined threshold level. The definitions below formalise
these concepts, facilitating theoretical study of monotonicity
and latency.

Let S be the initial test suite available for testing. Let .S
be the set of all subsets of S.

Definition 1 7Test Suite Reduction Procedure

A test suite reduction procedure T is a relation in S
(S x8) such that s T (a,r) = aUr = s. If additionally V's.
s 7 (a,7) = anNr =0, then T is said to be non-overlapping.

Thus, a reduction procedure 7 is a relation, where s 7
(a,r) means that when procedure 7 is applied to a test suite
s, the subset a of s is applied to the program under test,
while the set r is retained for subsequent regression testing.
If aNr # O then some of the selected test cases will be
reused in subsequent selections.

Definition 2 Applied Test Cases
App is a function in (S — S x S) — (S — S) such that
s App(1) a & s 7 (a,r)

Definition 3 Retained Test Cases
Ret is a function in (S < S x S) — (S — S) such that
s Ret(r) r < s 7 (a,r)

App(7) is the projection of a procedure 7 onto the used
portion of the test suite; Ret(7) is the projection of a
procedure 7 onto the retained portion of the test suite.

Definition 4 Repeated Reduction
Repeated reduction from s using T over n times (n > 1) is
denoted by ™" and defined as follows:

V=T

s ™ (a,r) iff s ™ (a',r") and v T (a,7)

Repeated reduction is an iterative procedure of applying
a reduction technique 7 to the retained portion of the test
suite from the previous reduction.

Definition 5 Quality Metric

A quality metric p is a function in S — R that measures
the quality of a set of test cases. If additionally Vs' C s.
w(s") < pu(s), then p is said to be monotonically decreasing.



Definition 6 p-Optimality
A test suite reduction T is p-optimal if and only if
Vs. u(App(r(s))) = maz{u(s")|s' C s}.

Proposition 1 If i is monotonically decreasing then a non-
overlapping p-optimal T is guaranteed to be monotonically
decreasing with respect to y, that is,

u(App(t"t1(s))) < p(App(T™(s))).

proof Let a and r be sets of test cases such that s 7"
(a,r). By definition of 7, App(r"*+1(s)) = App(r(r)) and
App(m™(s)) = App(7(a U r)). By definition of monoton-
ically decreasing p, » C aUr = u(r) < plaUr).
By definition of p-optimality, u(App(7(r))) = p(r) and
1(App(7(aUr))) = p(aUr). Therefore u(App(r™*1(s))) <
1(App(1™(s))).

For a test suite reduction procedure 7 that is monoton-
ically decreasing with respect to a quality metric u, the
latency of a given test suite, s, against 7 is defined as follows.

Definition 7 Latency
A latency measure, ), is a function in

(S—2R)—=R— (S« (§%x8)—-S—>N
Apats = largest n such that p(Ret(T)"s) > «

That is, the latency AuaTts of a test suite s with respect
to a quality metric x4 and threshold quality for adequacy «
and a test suite reduction procedure 7 is the largest number
of times the procedure 7 can be repeatedly applied to the
retained portion of s before the quality (as measured by p)
falls below «. Higher A value of a test suite means that the
test suite is capable of providing multiple disjoint subsets of
test cases with a quality metric value above the threshold,
which makes the test suite more latent. If a test suite satisfies
its given testing requirements (such as full branch coverage),
then its measured latency should be at least 1. However, it
would be advantageous to achieve A\ value of 2 or higher
so that the tester can have multiple test case subsets that
achieve the same testing requirements.

3. Monotonicity & Overlap Study

The research questions for the monotonicity and overlap
empirical study are: RQ1. Monotonicity Measurement:
Are there test suites with poor latency? How does the mono-
tonically decreasing property of quality metrics manifest
itself in real world programs and their test suites? RQ2.
Overlap Effect: How much increase in latency can be
achieved by loosening the non-overlapping constraint so that
some test cases are allowed to be reused across consecutive
test suite reductions?

The ideal criterion for test suite reduction is the highest
possible fault detection capability. However, the fault detec-
tion information is not available before the testing finishes.

As a result, structural code coverage is often used as a
readily available surrogate. Each test case is said to cover
different parts of the program, e.g., statements, branches or
blocks, that it executes.

Proposition 2 Structural code coverage is a monotonically
decreasing quality metric. The proof is trivial in this case:
it is not possible to increase the code coverage achieved by
a test suite by removing a test case.

From Section 2, coverage is a monotonically decreas-
ing quality metric. This means that any non-overlapping
coverage-optimal test suite reduction technique also yields
a monotonically decreasing coverage quality metric.

The paper uses the widely studied additional greedy
algorithm as the test suite reduction technique [5], [6], [11],
[17]. Maximising coverage achieved by testing is a set cover
problem. The goal of test suite reduction is to have the
smallest set of test cases that covers the entire program.

Greedy algorithms are known to be efficient, producing
solutions to set cover problems of size n that are within Inn
of the global optimum [9].

Proposition 3 The additional greedy algorithm is a non-
overlapping p-optimal test suite reduction procedure when
wu(s) is the coverage achieved by s.
proof: The non-overlapping property of the additional
greedy algorithm is obvious by the definition of the al-
gorithm. For the p-optimality, assume the contrary, that
is, s’ C s.u(s’) > u(App(r(s))). Since code coverage
is monotonically decreasing, s’ C s = pu(s’) < wu(s).
Therefore p(App(7(s))) < w(s’) < wu(s), which means
that there exists a test case, t, such that ¢t € s,t ¢
App(1(s)), p(App(7(s))) < p({t} U App(7(s))). However,
such ¢ cannot exist if 7 is the additional greedy algorithm;
otherwise the algorithm would have chosen ¢ after choosing
the subset App(7(s)). Therefore, the additional greedy algo-
rithm must be p-optimal when p measures code coverage.
Note that other non-greedy reduction techniques may not
be monotonically decreasing. While repeated application of
any reduction approach to a finite test suite must ultimately
result in zero coverage, this does not mean that coverage
will necessarily decrease monotonically.

3.1. Experimental Design

Six program test suites have been analysed for their level
of latency. The programs were retrieved from Software-
artifact Infrastructure Repository(SIR) along with test suites
for each program [4]. The size of programs and test suites
are shown in Table 1.

The programs are analysed for levels of latency against
the greedy test suite reduction. The quality metric pu of
the selected subsets is the statement coverage that each
selected subset achieves, since this is one of the weakest
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Figure 1. Latency Analysis with No Overlap. The greedy test suite reduction technique is repeatedly applied to test suites,
with no overlap between repeated reductions. Notice that only 4 reductions are possible for the program space and that coverage

drops dramatically for all test suites considered.

Program Lines of code | Test suite size
printtokens 726 17
flex 15,297 567
grep 15,633 806
gzip 8,889 213
sed 19,737 370
space 6,199 156

Table 1. Test suite size for programs studied

coverage criteria; if even statement coverage latency cannot
be achieved then clearly there is a need for latency im-
provement. Coverage information was obtained using gcov
profiler tool from gcc.

One potential method addressing coverage degradation
is to allow a certain level of test case overlap between
reductions. This allows consecutive reductions to share test
cases that may contribute to high quality metric value of
the selected subset. Test suites which can retain coverage
potency by allowing a degree of overlap can only be said
to be ‘weakly’ latent, because some test case re-use is
allowed, as determined by the overlap level. To explore
the degree to which overlap allows increased coverage,
four different levels of overlap are analysed, each allowing
{10%, 30%, 50%, 70%} reuse between test suite reductions.
The reusable test cases are determined randomly. The la-
tency analysis is performed 30 times for each test suite with
average results presented.

3.2. Results and Analysis )
Figure 1 shows the result of the latency analysis. As

the additional greedy algorithm is repeatedly applied to the
test suite, the maximum coverage achieved monotonically
decreases, providing an answer to RQ1. The rate of decrease
is generally higher in the region of early iterations, showing
that each test suite contains a small number of test cases
that cover the hard-to-reach regions of the programs.

Two programs in particular, printtokens and space,
show an interesting contrast to other programs. The very first

iteration on printtokens and space achieves over 94%
and 92% of coverage separately, which is higher than that
achieved for any of the other programs. This means that, as
long as the tester is concerned with obtaining only a single
set of test cases to execute, printtokens and space
have very satisfactory test suites. However, the coverage
of both programs deteriorates very quickly with repeated
reductions. Should the tester want more than a single ‘once
and for all’ test set, then each consecutive reduction from
the test suite will necessarily lead to the re-execution of a
great many test cases. This shows that even a test suite that
achieves high level of test adequacy can be vulnerable to
low latency.

Figure 1 showed that coverage drops dramatically as
repeated reductions are made. In this figure no overlap
was permitted, ensuring that each new reduction enjoys
an entirely fresh set of test cases. This requirement for
100% ‘freshness’ could be the cause of the dramatic drop in
coverage, suggesting that a more relaxed approach, allowing
some overlap, may improve coverage. This is the motivation
for RQ2 which concerns the effects (on coverage achievable)
of various levels of overlap allowance.

Figure 2 shows how the latency of test suites changes
when different percentages of the selected test cases are
allowed to be reused after each application of the reduction
technique. The results plotted in Figure 2 are average values
of coverage achieved by each of 30 executions. The al-
lowance of overlap affects the test suites of printtokens
and space positively, resulting in slower degradation of
coverage. However, it is interesting to observe that even
allowing 70% of the selected test cases to overlap between
reductions does not affect the latency of test suites for
other programs in any noticeable way. Overall, the results
from the overlapping formulation of the analysis show that
coverage decreases dramatically even when overlaps are
allowed, which provides an answer to RQ2.
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Figure 2. Weak Latency Analysis (With Overlapping Test Subsets Allowed). As more test cases are re-used by allowing
a higher level of overlapping, test suites of printtokens and space show some achievement of weak latency. However, even
allowing overlapping does not noticeably affect other programs. This can be seen because coverage profiles are almost identical

regardless of overlap allowance.

4. Latency Enhancement Strategy

The results in Section 3.2 show that even allowing high
levels of overlapping does not improve test suite latency
noticeably. This motivates the consideration of ways of
enhancing latency. In order to propose a simple and efficient
method of enhancing low latency of test suites, the present
paper raises the following question: if there are known test
cases that are effective at achieving coverage, are there dif-
ferent but similar test cases that achieve the same coverage?
More formally, given a set of test cases, a, such that s 7
(a,r) and p(a) satisfies the testing criteria, is it realistic to
assume that there may exist a’ such that ¢’ is similar to a
and pi(a’) = p(a)?

If so, then the enhancement of low latency of a test suite
can benefit from knowledge of a. That is, the existing test
cases can be used to seed an automated search for additional
test cases that also satisfy the testing criteria. This approach
to latency enhancement uses the ‘test data augmentation’
technique of Yoo and Harman [28]. The paper considers
two search algorithms: a hill climbing algorithm, adapted
from Yoo and Harman [28] and an estimation of distribution
algorithm: and compares them to unguided random test data
generation. Hill climbing is a local search technique that will
seek solutions near to the existing test cases in the space
of possible test inputs. EDA (Estimation of Distribution
Algorithm) is a global search technique that will consider
solutions that are sampled from probabilistic distributions
centered around the existing test cases.

4.1. Combined Reduction & Generation Strategy

Figure 3 shows how test data generation techniques work
in conjunction with test suite reduction techniques in order
to enhance low latency of a test suite. A test suite reduction
technique selects the best subset according to a quality
metric p, which is set to branch coverage in the empirical
study present in the paper. This forces the enhancement
strategy to ‘work harder’ because branch coverage subsumes
statement coverage. These selected model test cases are
fed into a test data generation technique, which seeks to
generate new test cases that are different from the model
test cases but still achieve the same quality metric value.
The generated test cases are then added to the test suite for
the next iteration.

Input —»|  Reduction
M~
Output
A Model
Added Test
Cases
Input
New Test )
Cases Output —  Generation

Figure 3. Latency Enhancement Overview

A single fitness function is used to guide both search
algorithms, facilitating comparison. Let ¢ be the individual
test case the fitness of which is being measured, and ¢’ be the
original test case for which ¢ seeks to mimic the behaviour.
Let A,(t,t') be the difference in quality metrics between



two test cases, and Ay4(t,t') be the distance between the
input vectors of two test cases.

Au(t,t') = |p({t}) — p({t'})]

Ag(t,t') = distance(t,t")

The fitness value of the test case ¢, f(t), is defined as
follows [28]:

Ag(t,t')  if At t) =0AAg(t,t) >0
fH)y=¢ 0 if AL(t,t)=0AA4(tt)=0
—A, () i ALt t) > 0N Ag(t,t') >0

If t is the same as ¢, the fitness function returns O.
However, if t is different from ¢’ yet still achieves the
same quality metric (A, (¢,t") = 0), then ¢ is guaranteed
to receive a fitness value higher than 0, thereby encouraging
the solution to move farther away from ¢’. Finally, if ¢ is
different from ¢’ but has lower quality metric, ¢ is guaranteed
to receive a fitness value lower than O, but encouraged to
reduce the difference in quality metric.

It should be noted that, with this particular search prob-
lem, finding the global optimum is not as important as
finding as many qualifying solutions as possible. From the
definition of the fitness function, qualifying solutions will
be the test cases with fitness values higher than 3.

4.2. Hill Climbing

The hill climbing algorithm is one of the simplest local
search algorithms [18], which is shown in Algorithm 1. The
algorithm requires a definition of ‘neighbouring solutions’
for a given problem. The algorithm starts the search from
a random solution, and considers neighbouring solutions. If
a neighbour has higher fitness than the current position, the
algorithm climbs to the fitter neighbour. This is repeated until
there is no fitter neighbour, at which point the algorithm
has reached one of the local optima in the search space.
The steepest ascent hill climbing algorithm moves to the
neighbour with the highest fitness, whereas the first ascent
hill climbing algorithm moves to the first neighbour it
considers with higher fitness than the current solution.

Algorithm 1: Hill Climbing Algorithm

(1) x + a random solution
(2) while true

3) N «+ neighbours of x

4) if 32’ s.t. 2’ € N A fitness(z') > fitness(x)
5) T —z

(6) else

@) break

(8) return x

For the latency enhancement study, the algorithm is
modified to start from the known test case. Neighbouring
solutions are defined as test cases that contain a single input
variable that differs from the known test cases. These are
created by either adding or subtracting a predefined amount
to each input variable of the known test case, which results
in 2n neighbouring solutions for a test case with an input
vector of length n.

One way of escaping local optima is to restart the
algorithm with a different starting solution whenever the
algorithm reaches a local optimum. However, in the version
used in the paper, the starting solution is set to the known
test case in order to explore the input space near the known
test case. To avoid deterministic behaviour, the algorithm
used in the paper adopts a random first ascent; the algorithm
considers the neighbouring solutions in random order and
moves to the first neighbour with higher fitness, which
introduces randomness to the algorithm. Since the goal of the
search is to explore the search space around the known test
cases rather than finding the global optimum, the inability to
escape local optima is thought to be less critical so long as
the algorithm retains the ability to explore the neighbouring
solutions.

4.3. Estimation of Distribution Algorithm

EDAs (Estimation of Distribution Algorithms) were first
introduced in the field by Miihlenbein and Paal3 [14]. They
have been previously applied to software test data gener-
ation [20], [19] by Sagarna et al. The biggest difference
between EDA and other evolutionary computation heuristics
is that EDA does not rely on cross-over and mutation oper-
ators in order to generate new individual solutions. Instead,
the individual solutions forming the population of the next
generation are generated from a sampling of probability
distribution, estimated from the previous generation.

Algorithm 2: Estimation of Distribution Algorithm

(1) Po «+ generate initial population randomly
(2) while stopping criterion is not met

3) S;_1 « select fitter individuals from P;_;
4) FE;_1 <« probability distribution of S;_1
5) P; «— sample E;_1

Algorithm 2 shows the top level view of EDA. The
algorithm starts by randomly generating the individual solu-
tions that form the initial population. During the following
iterations, the algorithm first selects fitter individual solu-
tions, guided by a predefined fitness function. Based on the
selected individual solutions, the algorithm then estimates
the probability distribution of the individuals. The next
generation of individual solutions are sampled from the
estimated probability distribution.

As in the case with the hill climbing algorithm, the
estimation of distribution algorithm is modified in order to
benefit from the knowledge of existing test cases. The initial
population is not generated randomly; instead, Gaussian
distributions are formed around the input variables of the
known test cases (with mean values equal to the known
values) and the initial population is sampled from these
Gaussian distributions. By controlling the variance in the
Gaussian distributions, it is possible to set the range of
exploration around the known test cases.



5. Enhancement & Efficiency Study

The research questions for the enhancement and efficiency
empirical study are: RQ3. Enhancing Latency: Can latency
be improved by algorithms that implement the proposed
combination of reduction and generation? RQ4. Assess-
ing Efficiency: How efficient is the proposed approach to
enhancing latency of test suites? Which search algorithm
performs best for the proposed approach?

5.1. Subject Programs
A set of well-known benchmark programs for structural

test data generation techniques is used. These are described
in Table 2.

Program Branches | Search Space
trianglel 20 296
triangle2 26 296
remainder 18 267
complexbranch 22 2192

Table 2. Subject programs for enhancement

Trianglel is an implementation of the widely used
program that determines whether the given three numeric
values, each representing the length of a segment, can form
a triangle. Trianglel is used by Michael and McGraw in
their study of test data generation [13]. Triangle?2 is an
alternative implementation of the same program by Sthamer
who also studied test data generation for remainder, a
program that calculates the remainder of the division of two
integer input [21]. Finally, complexbranch is a program
specifically created as a challenge for test data generation
techniques [24]. It contains several branches that are known
to be hard to cover. For all programs, the search space is
both large and non-trivial.

The initial test suites for the subject programs are gen-
erated such that 100% branch coverage is achieved. The
initial test suites for the studied programs were generated
by branch-by-branch approach. Programs were instrumented
for the measurement of branch coverage. For each branch in
the program, a single test case was generated to make the
predicates both true and false. This is standard practice
in search based test data generation [12].

5.2. Experimental Design
The comparison between the hill climbing algorithm and

EDA is performed by allowing both algorithms 3,000 fitness
evaluations. Both algorithms are also compared to random
test data generation technique, which generates 3,000 ran-
dom test cases. All three algorithms are executed 30 times
to factor out their inherent stochastic properties.

The fitness function described in Section 4.1 is used
for both algorithms in order to facilitate comparison. The
distance in quality metric for a single test case is measured
by the Hamming distance between two binary strings that
correspond to the code coverage of each test case. The
distance between two test cases is measured by simply taking
the Euclidean distance between two input vectors, which are
numeric for all programs studied.

Following Korel [10], the neighbours in the hill climbing
algorithm are generated by adding and subtracting 1 to each
input variable in the current test case. Since the fitness func-
tion encourages the solution to move farther away from the
original test case, it is possible that the algorithm exhausts
the given fitness evaluations while moving arbitrarily farther
away from the original test case. Therefore, the search is
restricted to 10 ascents from the original test case.

For the initial Gaussian distributions that are used for the
initialisation of EDA, the standard deviation values are set
to 3 for all input variables. The population size is set to
30. The algorithm terminates under two conclusions: 1) the
population converges; or 2) the total number of generations
processed exceeds 100.

5.3. Results and Analysis
Figure 4 shows the result of the attempts to enhance

low latency of test suites by generating additional test
cases with the algorithms described above. Each algorithm
is executed 30 times, resulting in 30 different enhanced
test suites. For each enhanced test suite, the additional
greedy algorithm is applied repeatedly in order to measure
the quality metric (the branch coverage), with the average
plotted in Figure 4. It should be noted that the latency rates,
A(coverage)(0)(greedy), are different at each execution of
EDA and the hill climbing algorithm due to their inherent
stochastic property. The results plotted in Figure 4 include
only up to min(A(coverage)(0)(greedy)) reductions indi-
cating worst case performance. On the other hand, the results
for the random test data generation are plotted only up to
50 reductions. The solid line with A represents the latency
of the original test suites.

The results from the hill climbing algorithm show that
the enhancement strategy has improved the latency for all
four programs, which answers RQ3. For remainder and
complexbranch, the hill climbing algorithm manages to
enhance the latency of test suites so that 100% branch
coverage is maintained across consecutive reductions. For
trianglel and triangle2, the enhanced test suites fail
to maintain 100% branch coverage but their coverage drops
much more slowly than both that of the original test suite
and those enhanced by other algorithms.

The reason why the hill climbing algorithm cannot
maintain 100% branch coverage for trianglel and
triangle?2 can be found in the semantics of the programs.
The program trianglel contains a branch that determines
whether the given 3 integers form an equilateral triangle.
The definition of the neighbours used in the hill climbing
algorithm prevents any generation of fitter neighbour for
this branch. This is because the algorithm changes only a
single input at a time to generate neighbouring solutions,
preventing itself from reproducing a test case that corre-
sponds to an equilateral triangle from another. However,
from the original test case that forms an equilateral triangle,
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Figure 4. Results of latency enhancement. Each algo-
rithm is given an identical budget of fitness evaluations for fair
comparison of results. This budget allows the random search
to produce suites that allow more reductions to be made for
a given budget. However, as can be seen, these suites are
not as latent as those produced by the Hill Climber. The EDA
can sometime outperform both Hill Climber and EDA in the
coverage achieved by the first few reductions, but it is the most
expensive of the approaches, and the latency of its suites
diminishes most rapidly.

EDA generates three Gaussian distributions with the same

mean value, which results in high probability of generating
another test case that forms an equilateral triangle.

The program triangle2 contains, apart from the
branch that determines an equilateral triangle, branches that
determine whether the triangle is a right-angled triangle or
not. Both algorithms will explore around the original test
case (a,b,c) such that a® + b*> = ¢?. Neither the Gaussian
distributions nor the neighbourhood definition used with
the hill climbing algorithm is appropriate for finding an
alternative test case that satisfies the condition.

The results for the program remainder are interest-
ing because the random test data generation manages to
maintain quality metric of 87.5% branch coverage. The
remaining 12.5% branch coverage is controlled by two
different predicates in the program that require either of the
two input variable (a, b) to be equal to 0. The hill climbing
algorithm shows the most successful performance because
the neighbours are generated by changing a single input
variable at a time, retaining the critical input value. On the
other hand, the results from EDA show that the algorithm
fails to retain the critical input value.

It is interesting to observe that the result of the random
test data generation technique forms a flat plateau at different
levels for different programs. This confirms findings of
previous studies that show random test data generation
can achieve a certain level of coverage, but cannot exceed
this [12].

It should be also noted that, being a population-based
evolutionary algorithm, EDA spends much larger amount of
fitness evaluations in order to produce a single test case. This
explains why the plotted lines for EDA are much shorter than
those of other algorithms.

Table 3 shows the statistical analysis of the results shown
in Figure 4. For each enhanced test suite s, the latency
of enhanced test suites are evaluated by measuring the
latency level A(coverage)(0.90)(greedy)s, which means
the largest number of times the additional greedy algorithm
can be applied to the enhanced test suites before the branch
coverage of the outcome of the additional greedy algorithm
falls below 90%.

The ) levels of three algorithms are compared pair-wise
using one-tailed Welch’s ¢-test with the significance level of
95%. Welch’s t-test is an adaptation of ¢-test for two samples
having different variance values. It tests the null hypothesis
that the means of two normally distributed groups are equal.
In the context of the paper, the null hypothesis is that the A
levels achieved by different algorithms are are equal to each
other. Three alternative hypothesis are formed as follows:
HI. A levels of EDA are greater than those of the random test
data generation; H2. X levels of the hill climbing algorithm
are greater than those of the random test data generation;
and H3. X levels of the hill climbing algorithm are greater
than those of EDA.



AEDA

Program Arandom | Orandom 0EDA | AHC | OHC PH1 PH2 PH3
trianglel 1.00 0.00 4.57 1.01 | 18.37 356 | <22e-16 | < 22e-16 | < 2.2e-16
triangle2 1.00 0.00 1.00 0.00 1.00 0.00 N/A N/A N/A
remainder 1.00 0.00 1.13 0.35 | 32.60 389 | < 2.2e-16 0.0217 | < 2.2e-16

complexbranch 1.00 0.00 1.00 0.00 | 20.67 2,66 | <2216 | <22e16 | < 22e-16

Table 3. Statistical analysis of latency enhancement strategy. The results of this analysis confirm statistically what can
be seen visually in Figure 4; that the Hill Climbing is the most effective at enhancing the latency of test suites to which it was
applied.

Apart from triangle?2 for which all three algorithms
fail to increase A\ above 1.0, the observed p-values for both
H2 and H3 are significant at the 95% confidence level,
confirming the alternative hypothesis that the A levels of
the hill climbing algorithm are higher than those of the
random test data generation. The observed p-values for H1
for trianglel and remainder are also significant at the
95% confidence level, confirming the alternative hypothesis
that the A levels of EDA are higher than those of the random
test data generation. Overall, the statistical analysis of the
results suggests that the hill climbing algorithm is the most
effective algorithm among the three algorithms studied. This
answers RQ4.

6. Related Work

The existing literature on test case management for re-
gression testing primarily concerns three major different
techniques: test suite reduction, test case selection and test
case prioritisation. Test case reduction (also called test suite
minimisation) techniques aim to reduce the size of a given
test suite by permanently eliminating some test cases from
the test suite. There are mixed observations on whether the
permanent reduction damages the fault-detecting capability
of the test suite [16], [25]. In the context of the present
paper, it is obvious that any permanent reduction of a given
test suite will result in reduced latency.

Test case selection techniques focus on selecting a subset
of the test suite that executes the modified part of the
program. Naturally these techniques rely on structural in-
formation about the program under test such as symbolic
execution [26], flow graph based [15] and dependence graph
based approaches [2], [3]. A test case selection technique is
said to be safe if the resulting subset of the test suite includes
all test cases that are modification-traversing (i.e. execute the
changed part of the program). Naturally, any safe test case
selection technique leaves the test suite vulnerable to low
latency because it exhausts the modification-traversing test
cases with its first application to the test suite.

Test case prioritisation techniques prioritise test cases in
an order that maximises earlier fault-detection. Since the
fault-detection information is not known at the time of
testing, it is often replaced with code coverage. Greedy
approaches are known to produce efficient prioritisation
results [5], [6], [11], [17] but other techniques including
meta-heuristic search have also been applied [22], [23], [27].

The present paper combines test suite reduction with test
data generation. Various meta-heuristic search techniques

have been applied to test data generation, including local
search [8], genetic algorithms [24] and estimation of distri-
bution algorithms [20], [19]. However the existing literature
on test data generation does not concern the use to which
the generated test data is put. The strategy introduced in
the present paper suggests that test data generation can be
improved to consider not only the structural coverage, but
other concerns in regression testing such as latency of test
suites.
7. Conclusion And Future Work

The paper introduces the concept of latency in test suites,
providing theoretical formulations and empirical results for
latency measurements and enhancement. In order to enhance
low latency of test suites, the paper introduces test data
generation technique based on the exploration of the search
space around existing selected test cases. The strategy com-
bines test data generation techniques with test suite reduction
techniques. The enhancement strategy study performed on
benchmark programs shows that the proposed approach is
capable of improving the latency of test suites. Future work
will consider wider range of subject programs and other
possible algorithms for test data generation.
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