
Open Problems in Testability Transformation

Mark Harman
CREST: The Centre for Research on Evolution, Search and Testing,

King’s College London, Strand, London, WC2R 2LS.

Abstract
Testability transformation (tetra) seeks to transform a

program in order to make it easier to generate test data.
The test data is generated from the transformed version of
the program, but it is applied to the original version for
testing purposes. A transformation is a testability transfor-
mation with respect to a test adequacy criterion if all test
data that is adequate for the transformed program is also
adequate for the untransformed program.

Testability transformation has been shown to be effective
at improving coverage for search–based test data genera-
tion. However, there are many interesting open problems.
This paper presents some of these open problems. The aim
is to show how testability transformation can be applied to
a wide range of testing scenarios.

1 Introduction
Automating test data generation is hard, but vitally im-

portant to reduce the cost of testing. One of the reasons
this is such a hard problem lies in the astonishing variety
of programs and test adequacy criteria for which test data
generation must be applied. Testability transformation aims
to attack this problem head on by transforming both pro-
grams and test adequate criteria into forms more amenable
to automated test data generation. The approach has proved
successful for several problems in search based testing.

The purpose of this paper is to demonstrate that it can
be far more widely applied and to suggest some of the open
problems. Many of these open problems would make ideal
topics for programmes of doctoral study or for the more ad-
venturous masters student seeking a project that combines
program transformation and software testing.

Traditional program transformation [14, 52] refers to the
automated process of altering a program’s syntax without
changing its semantics. The term ‘semantics’ is typically
taken to refer to the functional properties of the program.
Traditionally, transformation is permitted to change non-
functional properties, such as speed of execution and re-
source consumption but it is not permitted to alter the input–

output relation denoted by the original (untransformed) pro-
gram.

Testability transformation is very different. The goal of
the transformation is to ease the generation of test data.
Though the test data is to be applied to the original program,
it is generated from the transformed version. Therefore, the
important semantic (and, indeed, also non-functional) prop-
erties to be preserved are contained, not in the input-output
relation of the program, but in the goals of the testing pro-
cess.

Typically, these goals are captured by a test adequacy
criterion. The transformed program may denote any input
output relation, not necessarily that of the original. The test
data generated from the transformed program will be ap-
plied to the original, so changes in traditional input–output
semantics will be irrelevant. However, the transformation
must guarantee that any adequate set of test data generated
from the transformed program, will also be adequate for the
original program.

This difference in the properties to be preserved by the
transformation process has profound implications for the
nature of the transformation, making testability transforma-
tion theoretically interesting from a program transformation
standpoint.

However, from the practical testing standpoint, it is more
important that the application of testability transformation
can improve test data generation techniques. It may im-
prove either the efficiency or effectiveness of test data gen-
eration (or both). Testability transformation has been ap-
plied to several problems in search based testing, notably
the flag problem [3, 4, 7, 26] and the nested predicate prob-
lem [41, 42].

To illustrate the startling non–functional properties of
testability transformation, consider the scenario in which
a program is to be tested to generate branch adequate test
data. Suppose there is some computation along a predicate–
free path in the program that affects the output produced but
not the subsequent paths followed. For example, a sequence
of side-effect free output statements that do not affect the
subsequent path traversed.

1

Such a sequence of statements can be removed. Testabil-
ity transformation allows this removal because any test data
generated for branch coverage of the transformed program
will also achieve the same level of branch coverage for the
original program. Though the transformed program will not
have the correct output, its branch execution behaviour re-
mains invariant.

Why one would want to perform such a ‘crazy’ transfor-
mation? The answer lies in the behaviour of the automated
test data generation system. Automated test data genera-
tion is computationally expensive and technically difficult.
It is computationally expensive because it typically involves
many trial executions of the program under test. It is tech-
nically complex because (at least for structural testing) it is
necessary to account for many subtle possible behaviours.
By removing parts of the program we may make the testa-
bility transformed program execute faster, thereby improv-
ing the efficiency of test data generation. By replacing se-
mantically intricate behaviour with simpler behaviour we
may be able to guide the test data generation algorithm to-
wards more valuable test cases.

It might appear that testability transformation can only
be applied to structural test adequacy criteria; surely trans-
formation is inherently ‘white box’? While it is true that the
technique requires the source code of the program in order
to perform the transformation, this does not mean that the
goal of the process necessarily involves a white box testing
process.

For example, consider the problem of generating test
data for worst cases execution time, for which search based
techniques have been applied [46]. Suppose there is a large
constant-time computational task that is always performed
at the end of the execution of the program under test. Since
the task is constant-time in all executions, and it is always
executed, it may be removed.

This will clearly change the behaviour of the program
under test, but it will perfectly preserve the partial order we
are interested in. That is, the rank order of each possible in-
put to the program (ordered by the execution time they de-
note) will remain unchanged. However, all execution times
will be reduced, thereby improving the performance of the
test data generation technique.

As can be seen, the transformation possibilities of testa-
bility transformation are wide and varied. This paper
presents some of the open problems in testability transfor-
mation, indicating some possible lines for research that may
lead to extensions and improvements in the theory and prac-
tice of testability transformation.

Testability transformation is not the first instance of non-
traditional meaning-preserving transformation. Previous
examples include Weiser’s slicing [59] and the “evolution
transforms” of Dershowitz and Manna [16] and Feather
[18]. However, both slicing and evolution transforms do

preserve some projection of traditional meaning of the pro-
gram under transformation and so they are less of a radical
departure, compared to testability transformation.

For instance, it is possible to conceive of a formula-
tion of both slicing and of evolution transforms in terms of
abstract interpretation [11, 12], since both are projection–
preserving. However, there are testability transformations
that preserve a semantics that is neither more abstract nor
more concrete than the original programs from which they
are constructed. There are formulations of testability trans-
formation for which the allowable transformations are nei-
ther subsets nor supersets of the transformations allowed by
standard semantics. For instance, the program

if (x>y) ; else ;

can be transformed to the empty program, while pre-
serving conventional semantics, but this simple optimiza-
tion transformation is not permitted as a branch–adequacy–
preserving testability transformation. This means that testa-
bility transformation does not preserve a more abstract se-
mantics than conventional transformation.

However, the program

if (x>y) x=1; else x=2;

can be (branch–coverage–preserving) testability trans-
formed to

if (x>y) ; else ;

but this transformation clearly does not preserve the con-
ventional semantics of the program. Therefore, testabil-
ity transformation is not more concrete than conventional
transformation.

This example reveals that testability transformation can-
not be explained by abstract interpretation; it is neither
an abstract interpretation of conventional semantics, nor is
conventional semantics an abstraction of it. Rather, testabil-
ity transformation preserves an entirely new form of mean-
ing, derived from the need to improve test data generation
rather than the need to improve the program itself.

Testability transformation was first introduced by Har-
man et al. [26, 27]. Since then it has been applied to a num-
ber of problems in search based testing [3, 22, 28, 37, 41].
The primary purpose of this paper to demonstrate that there
remain many interesting open problems in testability trans-
formation that remain to be tackled in the literature.

Section 2 provides some basic definitions, making the
paper self–contained. The remainder of the paper provides
a set of open problems in different areas of testing. For
some of these, there is merely a statement of the problem
in broadest terms. For others, there are some examples of
possible solutions.

2

2 Definitions
This section briefly reviews definitions of a testability

transformation, in sufficient detail to make the paper self
contained. Additional details and examples of successful
applications of testability transformation can be found else-
where [27].

Definition 1 (Testing-Oriented Transformation)
Let P be a set of programs and C be a set of test adequacy
criteria1. A program transformation is a partial function in
P→ P. A Testing-Oriented Transformation is a partial func-
tion in (P × C)→ (P × C).

The test adequacy criterion, C is any criterion to be sat-
isfied during testing. In this paper, C is used to refer to
the overall criterion, which may be composed of a set of
instances. Instances will be denoted by lower case c. For
instance, branch coverage is a possible choice for C, while
a particular instance, c, might be the set of branches to be
covered in some program p.

Definition 2 (Testability Transformation)
A Testing-Oriented Transformation, τ is a Testability Trans-
formation iff for all programs p, and criteria c, if τ(p, c) =
(p′, c′) then for all test sets T , T is adequate for p according
to c if T is adequate for p′ according to c′.

For some criterion, c, a c–preserving testability transfor-
mation guarantees that the transformed program is suitable
for testing with respect to the original criterion.

Definition 3 (c–Preserving Testability Transformation)
Let τ be a testability transformation. If, for some criterion,
c, for all programs p, there exists some program p′ such that
τ(p, c) = (p′, c), then τ is called a c–preserving testability
transformation.

For example, consider the program

x=1; y=z;
if (y>3) x=x+1;

else x=x-1;

This program can be transformed to

if (z>3) ;
else ;

Such a transformation does not preserve the effect of the
original program on the variables x and y. However, it does
preserve the set of sets of inputs that cover all branches. It
also preserves the set of sets of inputs that achieve state-
ment coverage. Therefore, the transformation is a branch–
adequacy preserving testability transformation. It is also a
statement–adequacy preserving testability transformation.

1The precise structure of an adequacy criterion is deliberately left un-
specified. Each adequacy criterion might, for example, consist of one or
more sub-criteria, each of which have to be met.

3 Exception Raising
Search based testing has been applied to the problem of

raising exceptions. This work was pioneered by John Clark
and his colleagues at the University of York [55, 56]. The
idea is similar to that for branch coverage. The target is
to raise an exception. Conceptually, this can be thought of
as modifying the program to guard the exception–raising
statement with a predicate and then attempting to cover the
branch, the traversal of which leads to the exception being
raised.

Indeed, such a ‘little tweak’ is an instance of a testability
transformation itself. That is, we can reformulate excep-
tion raising as branch coverage, thereby allowing existing
techniques (for branch coverage) to be applied to the new
problem of exception raising.

However, the applications of exception raising are rather
different to those of branch coverage and this raises some
interesting open problems and possibilities.

3.1 Can we transform a program so that inputs
that form near neighbours to exception raising
cases also raise exceptions?

Exceptions may be hard to raise. After all, they are, by
their very nature, conditions that are exceptional and, there-
fore, unlikely to occur. This means that there may be very
few inputs that raise an exception, making the task of auto-
matically identifying such inputs rather difficult.

One solution (applicable to any search based approach)
would be to transform the program so that inputs that are
near neighbours of those that raise exceptions will also raise
exceptions. Notice that it is not necessary to know, at com-
pile time, what these inputs are in order to transform a pro-
gram such that near neighbours also raise exceptions.

This is one of the strengths of the testability transforma-
tion approach; it is possible to transform a program to make
it behave in a desired manner, without knowing precisely
how that behaviour would manifest itself, nor the inputs that
would cause the manifestation to occur.

Having made near neighbours exception–raisers, the
program will be more amenable to search. For example,
we could use global search to locate inputs that raise some
exceptions, possibly those that we introduced ourselves in
the testability transformation. Having located these, we can
then use a local search to try to identify the test inputs that
raise the exception for which we were originally concerned.

3.2 Can we decompose hard exception conditions
into a series of easier conditions?

Exceptions may be hard to raise because inputs cannot be
found that make them occur. A decompositional approach
could be adopted. Suppose the condition is re-written in
Conjunctive Normal Form (CNF).

3

This may lead to a set of conjuncts all of which capture
necessary conditions to raise the exception. Now each of
these can form a separate program, from which we seek to
find an input that raises the condition. Rather than simply
attempting to generate a single input that raises the condi-
tion captured by each conjunct, we shall seek to find a set
of such inputs.

One key measure of the hardness of a test data genera-
tion problem is the number of inputs that cause the desired
behaviour to occur, or perhaps, more accurately, the ratio
of the number of behaviour–causing inputs to the number
of behaviour–avoiding inputs; the domain–to–range ratio of
Voas [57].

By definition of CNF, each conjunct will be satisfied by
at least as many inputs as the original exception condition,
so we cannot produce a harder test data generation problem
by this testability transformation. Therefore, by forming the
CNF of the exception condition, we will have decomposed
a hard test data generation problem into a set of potentially
easier problems.

After we have generated a set of test inputs that raise
each of the conjuncts, we can now see whether there is
an intersection. Where there is, we have a solution to the
original problem. Even partial overlap between these sets
denotes a partial solution to our original problem and may
provide valuable information to the tester. Furthermore, we
can use the inputs in any partial intersection as seeds for
further searches to satisfy the remaining unsatisfied condi-
tions.

Testing for exception raising is also complicated by the
fact that we may be attempting the impossible. That is, we
may be attempting to raise an exception that captures a state
to which the program should not arrive; defensive program-
ming may have been used to check for such a rogue state
and to raise an exception should it be reached. It may be
that the program cannot reach this state; the testing process
is being used to provide a measure of confidence in correct
behaviour. In this situation the testability transformation to
CNF can provide more feedback and insight to the tester.
For instance, the tester can see which of the necessary con-
ditions can be satisfied. These may indicate potential weak-
nesses that may materialize as failures should the code be
re–used in a different context.

Of course, CNF is only one possible decomposition. An-
other natural candidate would be a transformation of the ex-
ception condition to be raised into Disjunctive Normal Form
(DNF). In this way, we obtain a set of sufficient conditions
in order to raise the original exception. We could then try
separate searches using each disjunct, safe in the knowledge
that should any produce a solution, then that solution would
be sufficient to cause the original exception to be raised.
This is, in essence, the idea behind the ‘species per path’
approach to evolutionary test data generation [43].

4 Temporal Testing
Temporal testing seeks to locate test cases with worst or

best cases execution time. This is important for systems
with hard timing constraints, for example real time and em-
bedded systems. There has been work on search based tech-
niques for finding test cases with worst case execution time
[46]. This work requires many repeated executions of the
software under test in order to locate worst and best cases.

4.1 Can we transform a program to linearly de-
crease the execution time for all inputs?

To help with temporal testing, we seek transformations
that may reduce execution time. The testability transforma-
tion framework admits far greater flexibility than existing
efficiency optimization transformations [1] would permit,
because it allows programs to be transformed in ways that
do not preserve functional equivalence.

Indeed, existing optimization transformations may be in-
applicable in many cases, since they may not linearly re-
duce execution time across all inputs. That is, a transforma-
tion ‘linearly’ affects execution time iff the execution time
of the transformed program is a linear function of that for
the untransformed program for every input. It is a linear
reduction iff it is a linear transformation that reduces execu-
tion time in every case. Linear temporal testability transfor-
mation preserves the ordering of execution times for each
input.

Such transformations may not be easy to construct, but it
may be possible to find them in some domains. If we could
locate such linear execution time reduction transformations,
this would help to improve the efficiency of test data gen-
eration for temporal testing. Reducing execution time by a
constant factor across all inputs would allow for faster gen-
eration of test cases for worst case execution time and best
case execution time alike. The effect of this transformation
is depicted schematically in Figure 1(a), in which the grey
execution time profile is produced from black profile by the
application of a linear transformation on execution times.

4.2 Can we use static analysis to rule out certain
paths guaranteed not to be worst/best case?

Static analysis can be used to identify paths that are guar-
anteed not to lead to worst/best case execution time [21].
For these paths, the transformed version of the program can
be aborted, thereby reducing its execution time. Hitherto,
the literature has yet to report on experiments with such a
mixed static/dynamic approach. It may form an attractive
example of a blended analysis [17]. The effect of this trans-
formation is depicted schematically in Figure 1(b), which
is produced from the execution time profile in Figure 1(a)
by the application of a linear transformation on execution
times.

4

Input space of values

E
x
e
c
u
ti
o
n
 t
im
e

(a) Linear reduction

Input space of values

E
x
e
c
u
ti
o
n
 t
im
e

(b) Truncation with blended analysis

Input space of values

E
x
e
c
u
ti
o
n
 t
im
e

(c) Input Domain Reduction

Input space of values

E
x
e
c
u
ti
o
n
 t
im
e

(d) Smoothed landscape

Figure 1. Transforming temporal properties. The dark lines indicate the original execution profile. The grey lines in parts (a),(b)
and (d) denote the execution profile of the transformed program. The grey shaded areas in part (c) indicate the reduced area in which
the search will take place after domain reduction.

Static analysis can also be used to determine parts of the
input space that cannot contribute to computations that lead
to the extremes of execution times. In this way, it is pos-
sible to reduce the size of the search space; to reduce the
domain in which the search is performed, thereby improv-
ing its performance. Domain reduction has been applied to
structural testing [24], where it has been shown to improve
the efficiency of structural test data generation. There is no
reason why it cannot also be applied to temporal testing.
The effect of this transformation is depicted schematically
in Figure 1(c), in which only the greyed out regions of the
search space are searched in the reduced version of the pro-
gram.

4.3 Can we apply transformations to smooth exe-
cution time?

Unlike many test objectives, the fitness function for tem-
poral testing leads to highly ‘jagged’ search landscapes; a
small change in input can lead to a dramatic change in ex-
ecution time. Since we seek the worst case, any execution
times which are not worst, could be ‘smoothed’ to create
a better guide towards the most optimal case. The effect of
this transformation is depicted schematically in Figure 1(d),
in which the grey execution time profile is the smoothed
version of the black execution profile.

5 Mutation Testing
A mutant is produced by a syntactic change that mimics

the effect of a fault. The idea is both to generate and also to
assess test data. Test data is mutation adequate if it kills all
mutants generated. A mutant is killed by a test case if the
mutant behaves differently when executed on the test case
compared to the original.

A test set that is mutation adequate is able to find each
and every one of the faults seeded by each of the mutants

and that, therefore, it would also be good at finding real
faults. This observation can be used to assess a test set (how
many mutants can it kill?) or to generate one (seeking to kill
as many as possible).

Mutation testing has been studied for many years [2, 10,
15, 35, 36, 50, 60]. The technique is theoretically strong be-
cause it is able to subsume other test adequacy approaches.
It has also been found, empirically, to be effective at delim-
iting test suites that are as good or better at finding faults
than other techniques [49].

However despite its theoretical power and practical ap-
peal, mutation testing suffers from two problems that, hith-
erto, have left it largely unapplied in industry. There are
a large number of possible mutants, making the technique
expensive. There is also the problem of equivalent mu-
tants; mutants that are syntactically different but semanti-
cally identical to the original program. The problem of the
large number of mutants has largely been addressed by tech-
niques for smarter generation of mutants, such as selective
mutation [8, 48], but the equivalent mutant problem remains
unsolved.

The equivalent mutant problem is particularly pernicious
because it is not possible to define an algorithm to remove
from consideration, all equivalent mutants. The problem
of determining whether a mutant is equivalent is sadly re-
ducible to the functional equivalence problem, which is
known to be undecidable. There are techniques based on
static analysis [32, 47] that seek to detect equivalent mu-
tants. However, there will always remain some possibility
that some of the mutants that are currently unkilled are sim-
ply unkillable because they are equivalent and have gone
undetected as such.

This means that we must either weed out equivalent mu-
tants by hand, with all the expense that this labour–intensive
approach would entail, or try to avoid generating them in

5

the first place. Most of the existing work on the equivalent
mutant problem has started from the assumption that equiv-
alent mutants will be created and that, therefore, we need
techniques to detect them.

Testability transformation offers an alternative approach;
we can seek to transform the program so that it is less likely
that some targeted mutation testing algorithm will generate
equivalent mutants in the first place. We can also seek trans-
formations that produce transformed programs from which
is it simply not possible to create certain forms of equiva-
lent mutant. The next two subsections consider these two
possibilities in a little more detail.

5.1 Can a program be transformed so that it is
less likely to produce equivalent mutants?

The ABS mutation operator takes an arithmetic expres-
sion and applies the unary abs function to it. The abs
function returns the absolute value of the expression to
which it is applied. Naturally, this will lead to an equivalent
mutant if it is applied to an expression that always takes
a non–negative value in every possible execution. Sadly,
there are very many program expressions that are, indeed,
never negative and so the ABS mutation operator is one of
the operators that tends to generate a large number of equiv-
alent mutants. An archetypal expression is y=x*x, which
is guaranteed to be non–negative.

Testability transformation may prove to be applicable to
this problem. Perhaps some occurrences of assignments of
such always–positive expressions can be replaced with ex-
pressions that are transformed to be possibly negative. Care
will then be required to transform the uses of such trans-
formed assignments so that they behave identically with re-
spect to mutation adequacy. Perhaps only some occurrences
of always–positive values can be removed, while others
must be retained to ensure mutation adequacy preservation.

Some expressions may be replaced by more complex
equivalent expressions, in which all subexpressions are
guaranteed to have the ability to take negative values. While
the overall expression is still always positive (and will there-
fore lead to an equivalent mutant), the ratio of equivalent
mutants to non–equivalent mutants will be reduced.

A bolder approach would be to seek to eradicate the pos-
sibility that an equivalent mutant could be created. This pro-
duces an appealing transformation based route out of ‘Tur-
ing’s swamp’ of undecidability. While the detection of all
equivalent mutants is undecidable, it may still be possible
to produce a transformed program from which only non-
equivalent mutants will be constructed.

Notice that such a transformation–based approach does
not reduce to the halting problem because it may be con-
servative; it may transform parts of the program that cannot
possibly lead to equivalent mutants. This would mean that it
could not necessarily be used to detect equivalent mutants,

assign

kill

use use

use

print

kill

Figure 2. Schematic representation of an example where
mutation of the assignment statement at the top of the CFG
will be an equivalent mutant. Any path that leads to a
pint cannot retain the value assigned because of interven-
ing kills.

but only a superset of mutants that contains all equivalent
mutants. Such a superset could be arbitrarily large and, in
the worst case, may therefore yield no information regard-
ing the set of mutants that are definitely equivalent.

Though this means that the approach cannot be reduced
to the detection problem (which is known to be undecid-
able) it would not harm the applicability to mutation testing
so long as the transformation is mutantion-adequacy pre-
serving and the overall effect is to render equivalent mutants
impossible. This remains a hard, but exciting possibility.
Even partial fulfillment of such an ambitious goal could be
extremely valuable.

5.2 Can a program be transformed so that certain
equivalent mutants are avoided?

Another common cause of equivalent mutants is a muta-
tion to a variable, the value of which is subsequently over-
written before the value is output. Such a mutant cannot
cause a change that will lead to the mutant being killed, be-
cause any value assigned at the mutant point is overwritten
before it has a chance to influence the output. A schematic
illustration of this situation is depicted in Figure 2. Notice
that this kind of equivalent mutant is killed by week muta-
tion, but not by strong. Mutants that are equivalent even for
weak mutation (such as those considered in Section 5.1) are
much easier for a human to detect, because they only require
consideration of local before and after states. Therefore, it
is these weakly killable equivalent mutants that we should
really concentrate upon.

In previous work, Hierons et al. [32] showed that pro-
gram dependence analysis can be used to detect some equiv-
alent mutants created in this manner. The approach could

6

be extended to form a simple testability transformation that
would remove parts of the program that could potentially
lead to equivalent mutants. This can be achieved using slic-
ing [6, 25, 54], so there exists relatively mature technology
that can be used to achieve such a testability transformation.

That is, a simultaneous slice should be constructed for
the set of slicing criteria that include all output statements.
Any code removed by this slicing process will be code that,
when mutated, will have no effect of the output and that
will, therefore, be guaranteed to produce an equivalent mu-
tant. Because the slice preserves all code required to per-
form the output of the original program, the slice will be a
mutation–adequacy preserving testability transformation.

There are also situations where traditional slicing may be
insufficiently powerful to remove the code that could lead
to an equivalent mutant. For these programs, a testability
transformation, specifically tailored to removing the possi-
bility for equivalent mutants will be required.

For example, consider the fragment below:

if (p)
{ x=x+1;

y=x*2;
q=1; }

else
{ y=x-1;

q=0;
}

/* the original value of x is lost */
x = 1;
if (q==1)

print(x);
else
print(y);

The first assignment in this program, x=x+1, does not
affect the output, but it will be included in any slice on the
output, because slicing algorithms cannot determine that the
assignment cannot influence the output. There are many
similar examples; one can construct programs with assign-
ments to local variables in which it can be proved that these
assignments do not affect the output, but for which slicing
will not remove them; the semantics are simply too subtle
to be captured.

Any attempt to define tools able to reason at this detailed
semantic level is likely to lead to tools that are computa-
tionally very expensive. However, it is not necessary for a
testability transformation algorithm to be able to detect such
equivalent–mutant–causing statements. All the algorithm
has to do is to remove any potential candidates through
transformation; if some non-candidates are removed in the
process, then this is fine, so long as any such removal is
mutation–adequacy preserving. Defining such transforma-
tion algorithms is far easier than developing approaches for

the detection of equivalent mutants.
For instance, examples such as the one above can be ad-

dressed using amorphous slicing [23], which attempts to
transform a program to reduce its size, by substituting the
effects of assignments. Amorphous slicing with respect to
output statements will have the effect of reducing the size of
the program (thereby reducing the number of mutants cre-
ated). It will also have the (extremely attractive) spin–off
benefit that assignments to local variables will be ‘rolled
into’ the assignments which follow them, thereby reducing
the potential for the creation of equivalent mutants. Apply-
ing this to the program fragment above (slicing at the two
output statements) produces:

if (p)
{ y=(x+1)*2;
q=1; }

else
{ y=x-1;
q=0;

}
if (q==1)

print(1);
else
print(y);

The amorphous slicing process has removed the assign-
ment x=x+1 (folding it into the assignment to y which
follows). It is not possible to generate equivalent mutants
from this assignment, because it is no longer present in the
transformed program. Furthermore, notice how amorphous
slicing substitutes the constant value assigned to x into the
predicate that uses it. This reduces the number of mutants
created (from the transformed program compared to the
original). However, it does not affect mutation adequacy,
because any mutation of x=1 in the original would be cou-
pled to another mutant to the output statement print(x).

6 State Variable Problems
State variables are variables whose value exists outside

a single call to the system under test. For instance, a static
variable has a value that persists after the conclusion of a
function call. Consider the Search Based Testing (SBT)
technique used by Wegener et al. [58]. For this tech-
nique, calling a function under test will not be able to cover
branches that are controlled by predicates, the outcome of
which is dependent upon a static variable. This is because
such SBT approaches call the function once only, and with
the (implicit) assumption that there exists a combination of
the parameters’ values that will cause execution of any cho-
sen target branch.

7

This implicit assumption is invalid in the presence of
static variables. However, merely recognising that a static
variable forms a part of the search space is insufficient to
solve the problem. It is not possible to choose (at call time)
the value to be assigned to a static variable in the same way
that it is possible to choose values for the parameters to the
call. The static variable’s value may only be assigned in-
directly, by calling functions that assign it a value. In this
way, the problem is to determine which functions to call,
how many calls to make and with which parameters in or-
der to cause the desired predicate to receive the values that
cause it to traverse the, as yet, uncovered branch of interest.

The problem of state variables has been addressed by
several authors [44, 45, 61]. This section considers the way
in which the problem could be formulated as a testability
transformation problem. Hitherto, this possibility remains
unexplored in the literature on the state variable problem.

6.1 Can a program with state variables be trans-
formed into an equivalent without?

The problem of catering for behaviour controlled by state
variables can be handled directly using testability transfor-
mation. A simple example will serve to show how the prob-
lem of determining the number of calls and associated pa-
rameters required for a testing problem can be transformed
into a problem of determining inputs to a more traditional
testing problem involving loops. The transformation is not
complex and could easily be automated. The result is a
more tractable testing problem.

The transformation also renders the problem in a form
expressed in terms of loops. Since many of the problems
in test data generation involve determination of loop invari-
ants, bounds and constraints, it is likely that this will be the
topic of much research.

It makes sense to convert all test data generation prob-
lems into canonical forms, wherever possible, so that re-
search on solutions can focus on simple archetypal ex-
amples, in the knowledge that the techniques developed
will be widely applicable. This argument is nothing more
than Landin’s argument concerning programming language
‘syntactic sugar’, adapted for test data generation [39].

Consider the simple state variable problem below:

static int x = 0;

void foo() {x=x+1;}

void bar()
{ foo();
if (x > threshold)

/* target */ ;
}

In this program, the value of Threshold is some (com-
pile time unknown) constant. Calling the function bar()
will not necessarily execute the target branch. Indeed, it is
unlikely to do so. All irrelevant details not pertinent to the
state variable problem have been removed to create this (ar-
tificial, illustrative) example. The program has no input, so
there is no input space to search. The only factor under the
tester’s control is the number of times the function bar()
is called. The function affects a static variable through calls
to foo() and the tester cannot know how many times the
function needs to be called in order to achieve the value that
will cause the target to be executed.

This is the simplest illustration of the state variable prob-
lem. The variable x plays the role of state variable. In more
complex examples, the function bar() would need to be
called several times, and perhaps with particular parame-
ters. However, these more complex examples of the state
variable problem could also be addressed using the testabil-
ity transformation approach outlined below.

Suppose we transform this program to more conven-
tional test data generation scenario, in which the problem of
determining the number calls to bar() becomes, instead,
a problem of determining the value of a variable, i:

static int x = 0;
int targethitflag ;

void foo() {x=x+1;}

void bar’()
{ foo();
if (x > threshold)

/* target */ targethitflag = 1;
}

void main()
{ int i = 0;

targethitflag = 0;

while (i<MAX && !(targethitflag))
{ bar’(); i = i+1; }

}

In this transformed program, MAX is some resource con-
straint limit that prevents the test data generation algorithm
from taking too long on this particular test data generation
problem; it can be set to an arbitrarily large value. Notice
that the transformed program transforms the search prob-
lem to one that, in this simple case, automatically finds the
correct value for the number of calls required to bar().

Of course, a more complex example would involve pa-
rameters as well as state variables. Let us now turn to such
a more complex example. Consider the slightly more com-
plex version of the program under test below

8

static int x = 0;

void foo(int z) {if (z>0) x=x+1;}

void bar(int v)
{ foo(v+1);

if (x > threshold)
/* target */ ;

}

In this version of the problem, the test data generation
algorithm has to recognise that it needs to call bar suffi-
ciently many times, but also that on each occasion bar is
called, it needs to pass a value that is greater than 1. This
program would be transformed into an imperative test data
generation problem with an input space of unknown length;
the unknown number of calls to bar is essentially trans-
formed into an unknown input length.

Unbounded input lengths can be handled using, for ex-
ample, a messy GA (for search based approaches [40]),
or by treating the input as a sequence data structure (for
CUTE/DART approaches [20, 53]). For search based test-
ing, the transformed program would be:

static int x = 0;
int targethitflag ;

void foo() {if (z>0) x=x+1;}

void bar’(int v)
{ foo(v+1);
if (x > threshold)

/* target */ targethitflag = 1;
}

void main()
{ int i = 0;

targethitflag = 0;
int v;

while (i<MAX && !(targethitflag))
{ scanf("%d",&v);

bar’(v); i = i+1; }
}

7 Subsumption Relations
There is a well-known subsumption hierarchy for test

data generation [5, 9]. For example, if a test set covers all
branches, then it certainly covers all statements: branch ad-
equacy is said to subsume statement adequacy. It would
be natural to speculate about the subsumption relationships
that exist between testability transformation formulations.
That is, the definition of an adequacy criterion delimits the

set of transformations that can be performed in testability
transformation. This set of transformations is different for
different criteria.

A natural way to define subsumption is in terms of the
sets of transformations that are permitted by each formula-
tion of an adequacy–preserving testability transformation.

Definition 4 (Allowable Mappings)
Let M(C) be the set of mappings (from programs to pro-
grams) that are allowed by some C–preserving testability
transformation τ . That is,

{m ∈M | m = (p, p′) ∧ ∃c ∈ C.∃τ.τ(p, c) = τ(p′, c)}

For example, if the test adequacy criterion C is branch
coverage, then one possible mapping in M(C) is the pair

(if (e) x = 1; else x = 2;, if (e); else;)

That is, the transformation that takes a program of two
branches that are themselves branch–free, and removes the
two branches. A test adequacy criterion C subsumes an-
other C ′ if C allows only a subset of the transformations
allowed by C ′. In this situation, we know that any trans-
formation that works for C will also work for C ′. More
formally

Definition 5 (Subsumption)
C subsumes C ′ iff M(C) ⊆M(C ′).

Interestingly, branch coverage neither subsumes nor is
subsumed by statement coverage according to Definition 5
above. To see that branch coverage does not subsume state-
ment coverage. Consider the transformation below.

if (x>y) x=1; else x=2; ⇔
if (x>y); else;

This is a branch–adequacy preserving testability trans-
formation, but it is not a statement-adequacy preserving
testability transformation. That is, the set of sets of inputs
that cover all branches in the transformed program contains
the set of sets of inputs that cover all branches in the orig-
inal program. Therefore, we can generate our test inputs
from the transformed program and yet apply the test set so–
generated to the original.

To see that statement coverage does not subsume branch
coverage, consider the transformation below:

if (x>y); else; ⇔ ;

This is a statement–adequacy preserving testability
transformation, but it is not a branch–adequacy preserving
testability transformation. That is, there are no statements
in the program under test and so any set of test cases covers

9

all statement. Indeed, even the empty set of test cases vac-
uously covers all statements. We can therefore transform
this program to any program. Such a transformation will
be a statement–adequacy preserving testability transforma-
tion. However, there are two branches in the program un-
der test and to achieve branch coverage a test set must con-
tain at least two test inputs. The set of programs to which
the program under test may be branch–adequacy preserving
testability transformed is therefore more restricted for this
program.

There exist several possible candidates for the formula-
tion of the subsumes relationship among testability trans-
formations. For instance, we could ask

“If a transformation preserves branch coverage,
are all branch adequate test sets generated from
it, also statement adequate for the original?”

We are checking whether the conventional testing sub-
sumes relationship also holds for test data generated from
testability transformed programs. More formally,

Definition 6 (Conventional Subsumption Preservation)
Let C1 and C2 be conventional test adequacy criteria, such
thatC1 subsumesC2. Let τ be anyC1 preserving testability
transformation. If, for all programs p, and instances, c1 of
C1. τ(p, c1) = (p′, c1) implies that the transformation from
(p, c2) to (p′, c2) is also a testability transformation, then
(C1,C2) will be referred to a ‘conventional’.

For this formulation of the subsumes relationship, all cri-
teria pairs are conventional. That is, for any possible ade-
quacy criteria C1 and C2, if C1 subsumes C2 then test data
adequate for C1, obtained from a C1 preserving testability
transformed program, will be adequate for C2 also. This
follows directly from the definitions of subsumes and C–
preserving testability transformation. Suppose p′ is a pro-
gram obtained from p by a C1 preserving testability trans-
formation and that T is a set of test data that satisfies C1

when applied to p′. By definition of C1–preserving testabil-
ity transformation, T must be C1 adequate for p and, since
C1 subsumes C2, T must also be C2 adequate for p.

8 Probabalistic Testability Transformation
Korel et al. [37] introduced a transformation that specu-

latively removes code from a program for which test data
generation has proved difficult. The test data generation
method in this case is the chaining method [19]. The in-
teresting aspect of this work is that the transformations are
not even truly testability transformations according to Def-
inition 2, because they do not necessarily preserve test ade-
quacy. McMinn et al [41] also speculatively remove control
flow in at attempt to improve search based testing in the
presence of predicate nesting.

In this case, the transformation is performed as a ‘last
hope’ attempt to generate test data to cover a hard–to–cover
branch, when all else has failed. From the transformed pro-
gram, it may be possible to generate test data that is branch
adequate for the transformed program, but which fails to be
equally branch adequate for the original.

However, there is a belief that it is likely that test data
generated from the transformed program has a better than
random chance of covering the desired branches. This prob-
abilistic argument remains implicit in the work of Korel et
al. There is no attempt to formalise, nor to reason about,
the probability that test data will be generated with a certain
likelihood. However, it is demonstrated empirically that the
approach does, indeed, lead to better performance, thereby
providing empirical evidence to support the suggestion that
the aggressive transformation does lead to greater probabil-
ity of test adequacy.

This work raises the possibility of relaxing the defini-
tion of a testability transformation. Instead of requiring the
transformation to contain the ‘adequacy semantics’ of the
original, we simply require it to mimic important aspects of
the original’s ‘adequacy semantics’ with a certain probabil-
ity.

In order to formalize this probabilistic testability trans-
formation it is helpful to define formal notation for the
boolean predicate test for adequacy:

Definition 7 (Adequacy)
Adequate(p, T, c) iff test set T is adequate for program p
according to test adequacy criterion c.

Definition 8 (Strong Probabilistic)
A Testing-Oriented Transformation, τ is a Strong Neu-
tral Probabilistic Testability Transformation with respect to
probability π (0 ≤ π ≤ 1) iff for all programs p, and criteria
c,

| T ′ ∩ T |
| T ′ |

≥ π

where τ(p, c) = (p′, c′), T = {T | Adequate(p, T, c)}
and T ′ = {T ′ | Adequate(p, T ′, c)}

This is the ‘neutral’ formulation of probabilistic testabil-
ity transformation because it makes no assumptions about
the techniques that will be used to generate test data. There-
fore it make a ‘neutral’ assumption that the test generation
technique is equally likely to generate any of the possible
test sets from all possible test sets that are adequate for the
transformed program.

Loosely speaking, it requires that there is at least a π
chance that test sets that are adequate for the transformed
program are also adequate for the original. Other non-
neutral formulations are possible, in which the test data gen-
eration technique is taken into account. Such an algorithm–

10

biased formulation would require that the transformation in-
creases the chances that the algorithm will generate an ad-
equate test set from the transformed program compared to
the original.

It is relatively easy to prove that this formulation of testa-
bility transformation is a relaxation of the standard defini-
tion (Definition 2). That is, suppose we choose π = 1. This
would yield the standard definition of testability transfor-
mation from Definition 8 of a Strong Neutral Probabilistic
Testability Transformation. The only way in which a trans-
formation could be a Strong Neutral Probabilistic Testabil-
ity Transformation with π = 1 is, by definition, if

| T ′ ∩ T |
| T ′ |

≥ 1

which means we must have T ′ ∩ T = T ′, so
T ′ ⊆ T . However, by definition, this means that
Adequate(p, T ′, c) ⇔ Adequate(p, T ′, c)}. So test data
which is adequate for the transformed program is adequate
for the original, so any Strong Neutral Probabilistic Testa-
bility Transformation for π = 1 is a testability transforma-
tion according to Definition 2.

The formulation above is also strong, in the sense that
it requires that the testability transformation increases the
probability of generating adequate test data from all pro-
grams. An alternative, weaker, formulation also exists. It
could be that the transformation is ‘weak’ in the sense that
it is targeted at a subset of all programs, only guaranteeing
to improve adequate test data generation chances for those
important programs for which it is designed.

Definition 9 (Weak Probabilistic)
A Testing-Oriented Transformation, τ is a Weak Neutral
Probabilistic Testability Transformation with respect to
probability π (0 ≤ π ≤ 1) iff there exists a non empty
set of programs P , such that for all p ∈ P , and criteria c,

| T ′ ∩ T |
| T ′ |

≥ π

where τ(p, c) = (p′, c′), T = {T | Adequate(p, T, c)}
and T ′ = {T ′ | Adequate(p, T ′, c)}

8.1 Can we find practical ways to exploit proba-
bilistic testability transformation?

Korel et al. [37] defined a testability transformation
that is able to increase the chances that the chaining rule
will generate test data that is adequate for branch cover-
age for hard–to–cover branches, but this was only demon-
strated empirically for a few cases. It remains a challenge
to develop a more provably correct approach to probabilis-
tic testability transformation. Such an approach should be
able to provide a definition of the probability that test ad-
equacy is more likely with the transformed program. This

may prove to be a hard goal, because of the subtle interplay
between the programming features possible, the adequacy
criteria and the test data generation algorithm.

In the absence of any formally proven probabilistic testa-
bility transformations, there remains the more empirical
problem of generating algorithms that can improve the
chances for adequate test data generation (at least infor-
mally). Given the inherent uncomputability of most test
data generation tasks, it seems likely that there would be
benefits in such a probabilistic approach.

9 Stress Testing
In stress testing, the goal is to reveal conditions under

which the software performance may degrade suddenly and
to find the values of input combinations that cause this. Due
to the emergent properties of some complex interactive dis-
tributed systems, it can happen that the search for such in-
puts is not merely a search for the level of use that causes
critical break down. It can be that certain properties of the
input (for relatively low load) can also cause critical break-
down in the level of service provided.

It is a hard problem to formulate a search criterion to cap-
ture these stress–causing inputs. However, there has been
work on search based approaches for automation of stress
testing and so it remains an open question as to whether this
hard problem can be made any easier by testability transfor-
mation. Two open problems naturally suggest themselves:

1. Can a system be transformed to make potential stress
more likely?

2. Can the system be transformed so that the space of
inputs has larger basins of attraction for search based
stress testing?

10 Directed Random and Concolic Testing
Concolic testing [53] and Directed Automated Random

testing (DART) [20] form constraints for test data genera-
tion which are put to a linear constraint solver. These tech-
niques have received much recent interest. However, the
current approach uses the constraint solver lp solve, which
is itself, an implementation of an optimization algorithm
for constraint solving, based on classic OR techniques. It
cannot handle real–valued constraints (so CUTE, for ex-
ample, cannot properly handle programs with floating point
numbers), nor constraints which involve non–linear terms.
This raises a natural question as to whether a program can
be transformed to remove or reduce the prevalence of such
non–linear constraints and to transform the use of floats to
integers in a branch preserving manner.

11

11 Testing FSMs
There has been much work on test data generation for

Finite State Machines (FSMs), but relatively little work on
transformation for FSMs. There has been some initial work
by Hierons et al. [33], who suggested the possibility of im-
proving test data generation techniques for Finite State Ma-
chines using a testability transformation approach. More
work is required to explore the possibilities.

There are extended FSMs, such as X machines [31, 34],
for which testing is particularly powerful, because of the
guarantees it is able to provide concerning testing adequacy.
These models require certain design–for–test criteria to be
met. A natural transformation based approach would be
to seek to transform an extended Finite State Machine into
an X machine. This would allow testing to take advantage
of the improved testability of such machines. The investi-
gation of such FSM testability transformations remains an
open problem.

12 Specification Based Testing
Occasionally, we are fortunate enough to have a formal

specification, from which to generate test cases [29, 30].
Even when a formal specification is not available, it is pos-
sible that there may be some model of the system under
test. Model based approaches to system development are in-
creasingly prevalent in industry and so the presence of some
form of model of the system under test, formal or semi for-
mal, is becoming more likely. Models are often written to
help generate test data. It makes sense, therefore, to con-
sider the extent to which a model (or specification) could be
transformed to improve the chances of test data generation.

It is convenient to define modelling notations in such a
way that testability transformation is relatively easy. Rather
than attempting to write the model in a way that is both
suitably abstract and also suitable for testing, the engineer
could simply concentrate on getting the abstraction right
and then use transformation to render the model in a form
more suited to test data generation.

In this way, testability transformation would be follow-
ing a parallel path of development to functional program-
ming; define a language rich in applicable transformations
and concentrate on getting the abstraction right, leaving the
details to the transformation engine. Testability transforma-
tion for declarative modelling languages would be one way
in which testability transformation could ‘return to its roots’
in the transformation literature [13, 14, 38, 51].

13 Conclusion
Test data generation is notoriously hard. Recent work

(including that one search based testing) has made progress
towards the ultimate goal of fully automated test case de-
sign. However, the techniques that are being developed

are often hampered by features of the programs under test.
Testability transformation provides a way to extend the ap-
plicability of these techniques and to increase their effec-
tiveness and efficiency. Testability transformation is an in-
stance of the application of a well-used engineering princi-
ple:

If the problem we are trying to solve is inherently
too hard, then develop techniques to transform the
problem to make it more amendable to the tools
and techniques available.

14 Acknowledgments
This is a single author paper, since it is a brief account of

the topics and open problems raised by the author’s keynote
at the first Search Based Testing Workshop, in Lillehammer,
Norway, April 2008. However, though it is a single author
paper, there are many other researchers with whom I have
worked who deserve significant credit for helping to form
the ideas outlined in the paper.

I have worked on testability transformation with André
Baresel, David Binkley, John Clark, Sebastian Danicic,
Robert Hierons, Lin Hu, Bogdan Korel, Kiran Lakhotia,
Phil McMinn, Marc Roper and Shin Yoo.

In particular, the idea of extending testability transforma-
tion to situations where the conditions outlined in Section 2
must be relaxed (described in Section 8) came form work
with Bogdan Korel and Phil McMinn and my many con-
versations with them have also certainly contributed signif-
icantly to the development of these ideas.

The initial work on testability transformation was funded
by the EPSRC project TeTra — Testability Transformation
(GR/R98938), which ran from 2003 to 2006. More details
concerning the TeTra project, including pointers to the lit-
erature are available on the TeTra website at

www.dcs.kcl.ac.uk/staff/linhu/TeTra

Current work on Testability Transformation is supported
by the EU project EvoTest — Evolutionary Testing (IST-
33472) and by the EPSRC project SEBASE — Software
Engineering By Automated SEarch (EP/D050863). The
SEBASE project website maintains a repository of all pa-
pers on Search Based Software Engineering, including
those on Search Based Testing:

www.sebase.org

I am grateful to my partners and collaborators in the
these projects for the many conversations we have had on
Search Based Software Engineering, in general, and Search
Based Testing in particular.

12

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, techniques and tools. Addison Wesley, 1986.

[2] D. Baldwin and F. Sayward. Heuristics for determining
equivalence of program mutations. Research Report 276,
Department of Computer Science, Yale University, 1979.

[3] A. Baresel, D. W. Binkley, M. Harman, and B. Korel. Evo-
lutionary testing in the presence of loop–assigned s: A testa-
bility transformation approach. In International Symposium
on Software Testing and Analysis (ISSTA 2004), pages 108–
118, Omni Parker House Hotel, Boston, Massachusetts, July
2004. Appears in Software Engineering Notes, Volume 29,
Number 4.

[4] A. Baresel and H. Sthamer. Evolutionary testing of flag
conditions. In Genetic and Evolutionary Computation
(GECCO-2003), volume 2724 of LNCS, pages 2442–2454,
Chicago, 12-16 July 2003. Springer-Verlag.

[5] B. Beizer. Software Testing Techniques. Van Nostrand Rein-
hold, 1990.

[6] D. W. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[7] L. Bottaci. Instrumenting programs with flag variables for
test data search by genetic algorithms. In GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1337–1342, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.

[8] L. Bottaci and E. S. Mresa. Efficiency of mutation oper-
ators and selective mutation strategies: An empirical study.
Software Testing, Verification and Reliability, 9(4):205–232,
Dec. 1999.

[9] British Standards Institute. BS 7925-1 vocabulary of terms
in software testing, 1998.

[10] T. A. Budd. Mutation analysis: Ideas, examples, problems
and prospects. In Proceedings of the Summer School on
Computer Program Testing, pages 129–148, Sogesta, June
1981.

[11] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
Aug. 1992.

[12] P. Cousot and R. Cousot. Systematic design of program
transformation frameworks by abstract interpretation. ACM
SIGPLAN Notices, 31(1):178–190, Jan. 2002.

[13] J. Darlington and R. M. Burstall. A system which automati-
cally improves programs. Acta Informatica, 6:41–60, 1976.

[14] J. Darlington and R. M. Burstall. A tranformation system for
developing recursive programs. J. ACM, 24(1):44–67, 1977.

[15] R. A. DeMillo and A. J. Offutt. Experimental results from
an automatic test generator. acm Transactions of Software
Engineering and Methodology, 2(2):109–127, Mar. 1993.

[16] N. Dershowitz and Z. Manna. The evolution of programs: A
system for automatic program modification. In Conference
Record of the Fourth Annual Symposium on Principles of
Programming Languages, pages 144–154. ACM SIGACT
and SIGPLAN, ACM Press, 1977.

[17] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis
for performance understanding of framework-based appli-
cations. In Proceedings of the ACM/SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2007,
London, UK, July 9-12, 2007, pages 118–128. ACM, 2007.

[18] M. S. Feather. A system for assisting program transforma-
tion. ACM Transactions on Programming Languages and
Systems, 4(1):1–20, Jan. 1982.

[19] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Transactions on Software
Engineering and Methodology, 5(1):63–86, Jan. 1996.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In V. Sarkar and M. W. Hall,
editors, Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementa-
tion, Chicago, IL, USA, June 12-15, 2005, pages 213–223.
ACM, 2005.

[21] J. Gustafsson. WCET 2007 - report from the WCET tool
challenge 2006 ideas for the WCET tool challenge 2008.
In C. Rochange, editor, 7th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Pisa, Italy, July 3, 2007,
volume 07002 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2007.

[22] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu,
B. Korel, P. McMinn, and M. Roper. Testability trans-
formation — program transformation to improve testabil-
ity. In R. Hierons, J. Bowen, and M. Harman, editors, For-
mal Methods and Testing LNCS 4949, chapter 11. Springer,
2008. to appear.

[23] M. Harman, D. W. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software, 68(1):45–
64, Oct. 2003.

[24] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and
J. Wegener. The impact of input domain reduction on search-
based test data generation. In ACM Symposium on the Foun-
dations of Software Engineering (FSE ’07), pages 155–164,
Dubrovnik, Croatia, September 2007. Association for Com-
puter Machinery.

[25] M. Harman and R. M. Hierons. An overview of program
slicing. Software Focus, 2(3):85–92, 2001.

[26] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer.
Improving evolutionary testing by flag removal. In GECCO
2002: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 1359–1366, San Francisco, CA
94104, USA, 9-13 July 2002. Morgan Kaufmann Publishers.

[27] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability transformation. IEEE
Transactions on Software Engineering, 30(1):3–16, Jan.
2004.

[28] R. Hierons, M. Harman, and C. Fox. Branch-coverage testa-
bility transformation for unstructured programs. The com-
puter Journal, 48(4):421–436, 2005.

[29] R. Hierons, M. Harman, and H. Singh. Automatically gener-
ating information from a Z specification to support the clas-
sification tree method. In 3rd International Conference of
B and Z Users (ZB2003), pages 388–407, Turku, Finland,
June 2003. Springer. LNCS 2651.

[30] R. M. Hierons. Testing from a Z specification. Journal
of Software Testing, Verification and Reliability, 7:19–33,
1997.

13

[31] R. M. Hierons and M. Harman. Testing conformance of
a deterministic implementation against a non-deterministic
specification. Theoretical Computer Science, 323(1-3):191–
233, 2004.

[32] R. M. Hierons, M. Harman, and S. Danicic. Using pro-
gram slicing to assist in the detection of equivalent mutants.
Software Testing, Verification and Reliability, 9(4):233–262,
1999.

[33] R. M. Hierons, T.-H. Kim, and H. Ural. On the testability
of SDL specifications. Computer Networks, 44(5):681–700,
2004.

[34] M. Holcombe. What are X-machines? Formal Asp. Comput,
12(6):418–422, 2000.

[35] W. E. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineering,
8:371–379, 1982.

[36] K. N. King and A. J. Offutt. A FORTRAN language system
for mutation-based software testing. Software Practice and
Experience, 21:686–718, 1991.

[37] B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, and
R. Gupta. Data dependence based testability transformation
in automated test generation. In 16th International Sympo-
sium on Software Reliability Engineering (ISSRE 05), pages
245–254, Chicago, Illinios, USA, Nov. 2005.

[38] J. Kort, R. Lämmel, and J. Visser. Functional trans-
formation systems. In 9th International Workshop on
Functional and Logic Programming (WFLP’2000), Beni-
cassim, Spain, Sept. 2000. Online proceedings at
http://www.dsic.upv.es/˜wflp2000/.

[39] P. J. Landin. The next 700 programming languages. Com-
munications of the ACM, 9(3):157–166, Mar. 1966.

[40] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[41] P. McMinn, D. Binkley, and M. Harman. Empirical evalu-
ation of a nesting testability transformation for evolutionary
testing. ACM Transactions on Software Engineering and
Methodology. To appear.

[42] P. McMinn, D. Binkley, and M. Harman. Testability trans-
formation for efficient automated test data search in the pres-
ence of nesting. In UK Software Testing Workshop (UK Test
2005), Sheffield, UK, Sept. 2005.

[43] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The
species per path approach to search-based test data genera-
tion. In International Symposium on Software Testing and
Analysis (ISSTA 06), pages 13–24, Portland, Maine, USA.,
2006.

[44] P. McMinn and M. Holcombe. The state problem for evo-
lutionary testing. In Genetic and Evolutionary Computation
– GECCO-2003, volume 2724 of LNCS, pages 2488–2498,
Berlin, 12-16 July 2003. Springer-Verlag.

[45] P. McMinn and M. Holcombe. Evolutionary testing of state-
based programs. In H.-G. Beyer and U.-M. O’Reilly, ed-
itors, Genetic and Evolutionary Computation Conference,
GECCO 2005, Proceedings, Washington DC, USA, June 25-
29, 2005, pages 1013–1020. ACM, 2005.

[46] F. Mueller and J. Wegener. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. In 4th IEEE Real-Time Technology and Applica-

tions Symposium (RTAS ’98), pages 144–154, Washington -
Brussels - Tokyo, June 1998. IEEE.

[47] A. J. Offutt and W. M. Craft. Using compiler optimization
techniques to detect equivalent mutants. Software Testing,
Verification and Reliability, 4:131–154, 1994.

[48] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant opera-
tors. ACM Transactions on Software Engineering Method-
ology, 5:99–118, 1996.

[49] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An experimen-
tal evalutation of data flow and mutation testing. Software
Practice and Experience, 26:165–176, 1996.

[50] A. J. Offutt and R. Untch. Mutation 2000: Uniting the or-
thogonal. In W. E. Wong, editor, Mutation Testing for the
New Century (proceedings of Mutation 2000), pages 45–55,
San Jose, California, USA, Oct. 2001. Kluwer.

[51] H. Partsch. The CIP Transformation System, pages 305–322.
Springer, 1984. Peter Pepper (ed.).

[52] H. A. Partsch. The Specification and Transformation of
Programs: A Formal Approach to Software Development.
Springer, 1990.

[53] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In M. Wermelinger and H. Gall, edi-
tors, Proceedings of the 10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineer-
ing, 2005, Lisbon, Portugal, September 5-9, 2005, pages
263–272. ACM, 2005.

[54] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[55] N. Tracey, J. Clark, and K. Mander. Automated program
flaw finding using simulated annealing. In International
Symposium on Software Testing and Analysis (ISSTA 98),
pages 73–81, March 1998.

[56] N. Tracey, J. Clark, K. Mander, and J. McDermid. Auto-
mated test-data generation for exception conditions. Soft-
ware Practice and Experience, 30(1):61–79, 2000.

[57] J. M. Voas and K. W. Miller. Software testability: The new
verification. IEEE Software, 12(3):17–28, May 1995.

[58] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. Information
and Software Technology, 43(14):841–854, 2001.

[59] M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, MI, 1979.

[60] M. R. Woodward. Mutation testing - its origin and evolution.
Information and Software Technology, 35:163–169, 1993.

[61] Y. Zhan and J. A. Clark. The state problem for test gen-
eration in simulink. In GECCO 2006: Proceedings of the
8th annual conference on Genetic and evolutionary com-
putation, volume 2, pages 1941–1948, Seattle, Washington,
USA, 8-12 July 2006. ACM Press.

14

