
1

Refactoring as Testability Transformation
Mark Harman

University College London, Department of Computer Science, CREST Centre,
Malet Place, London, WC1E 6BT, UK.

Abstract—This paper1 briefly reviews the theory of Testability
Transformation and outlines its implications for and relationship
to refactoring for testing. The paper introduces testability refac-
torings, a subclass of Testability Transformations and discusses
possible examples of testability refactorings. Several approaches
to testability refactoring are also introduced. These include
the novel concept of test–carrying code and the use of pareto
optimization for balancing the competing needs of machine and
human in search based testability refactoring.

I. INTRODUCTION

Testability transformation produces a version of a program
that is more amenable to test data generation [36], [37],
[30]. Test data is generated from the transformed version
of the program, but it is applied to the original version for
testing purposes. A transformation is said to be a testability
transformation with respect to a test adequacy criterion if all
test suites that are adequate for the transformed program are
also adequate for the untransformed program.

Testability transformation has proved effective for formal
models [15], state based models [51], [54] and MATLAB
simulink models [23], as well as for programs in Object Ori-
ented languages [3], and for imperative language testing in the
presence of gotos [48], flag variables [5], [11], high–precision
arithmetic operations [61] and nesting [59]. Therefore, we can
expect that much will be gained by exploiting relationships
between testability transformation and refactoring.

Using testability transformation, the transformed program’s
only role is to help test data generation. However, by construc-
tion, the transformed program’s set of adequate set suites are
also adequate for the original; if a test suite is adequate for the
transformed program then it is adequate for the original. The
transformed program produced by testability transformation
can be discarded once test data has been generated using it,
because it will no longer be needed. A testability transformed
program is thus merely a means to an end, rather than an end
in itself.

This is a subtle shift of emphasis from both traditional pro-
gram transformation and refactoring. The refactored version
becomes the new version of the program once it is accepted
by the developer. Therefore, testability transformation may be
thought of as a ‘speculative refactoring’, which does not need
to be useful to the developer so long as it allows test data to be
generated more easily than can be achieved with the original
program.

1The paper was written to accompany the author’s keynote presentation
at REFTEST: The 1st REFactoring and TESTing Workshop, Berlin, March
2011.

When we use refactoring for testing we make the program
more amenable to testing. As such, refactoring for testing
is akin to testability transformation. However, refactoring
a program has the intention that the refactored version of
the code becomes the new version of the program, whereas
testability transformation typically discards the refactored after
test data generation. Once test data has been generated from
the testability transformed program, the transformed version
is no longer required, because the test data is applied to the
original. This has the advantage that the developer need not
have to be aware of the transformation process, but need only
use the ultimate result; the test data for the original program
generated.

However, in refactoring for testing, the goal is to find a
version of the program that is a bone fide refactoring. That
is, one that can satisfactorily replace the original program as
the new (and better version of the program). The refactored
program must therefore be suitable, not only for testing, but
also for all the other activities, centred on subsequent program
evolution by the developers and maintainers of the system.
For this type of refactoring, the term ‘Testability Refactoring’
is introduced in this paper. A testability refactoring meets
two objectives simultaneously: it is better for testing and
also (at least no worse) for on-going human development and
maintenance.

A testability refactoring is a special subclass of testability
transformations in which the transformed program is not only
useful for test data generation, but is also acceptable to the
developer and the tester as a better version of the program with
which to continue development from the point of refactoring
onwards. This paper explores the interplay between these two
possibilities.

The rest of this paper is organised as follows: Section II
presents a brief overview of the definitions of testability
transformation, while Section III introduces the notion of testa-
bility refactorings as a subclass of testability transformations.
Section IV presents several open problems and directions for
future work in the study of testability refactoring, introducing
the concepts of test–carrying code, schizophrenic refactoring,
search based testability refactoring and human–in–the–loop
testability refactoring. Section V concludes.

II. TESTABILITY TRANSFORMATION

To make the paper self-contained, this section revisits the
formal definition of a testability transformation [37]. The
definition is straightforward, but it opens up some surprising
theoretical and practical possibilities, because a testability



2

transformation need not preserve the traditional semantics of
the program from which it is constructed.

While testability transformation can preserve traditional se-
mantics and improve testability, it is also possible to consider
more relaxed classes of testability transformation that merely
preserve the semantics captured by the test adequacy crite-
rion. This is a significant departure from traditional program
transformation [8], [19], [74].

A test adequacy criterion is any set of program elements
to be covered during testing. For example, a test adequacy
criterion could be a set of Control Flow Graph nodes, branches
or paths (at the code level) or a set of use cases, requirements
or states (at higher levels of abstraction). Given a test adequacy
criterion, a testing-oriented transformation is a partial function
that maps a program and test adequacy criteria to an updated
program and updated test adequacy criteria.

Definition 1 (Testing-Oriented Transformation):
Let P be a set of programs and C be a set of test adequacy
criteria. A program transformation is a partial function in P
→ P. A Testing-Oriented Transformation is a partial function
in (P × C) → (P × C).

A testability transformation is merely a special case of a
testing-oriented transformation that has properties that make
the transformed program suitable for testing the adequacy of
the original.

Definition 2 (Testability Transformation):
A Testing-Oriented Transformation, τ is a Testability Transfor-
mation iff for all programs p, and criteria c, if τ(p, c) = (p′, c′)
then for all test sets T , T is adequate for p according to c if
T is adequate for p′ according to c′.

For some criterion, c, a c–preserving testability transforma-
tion guarantees that the transformed program is suitable for
testing with respect to the original criterion.

Definition 3 (c–Preserving Testability Transformation):
Let τ be a testability transformation. If, for some criterion,
c, for all programs p, there exists some program p′ such that
τ(p, c) = (p′, c), then τ is called a c–preserving testability
transformation.

Much of the previous work on testability transformation has
used the branch coverage criterion [5], [11], [61], [59]. In this
previous work, the testability transformations of interest are
those which are ‘<branch adequacy>–preserving testability
transformations’ according to Definition 3.

III. TESTABILITY REFACTORING

Testability transformation can be very different from tra-
ditional transformation and also from refactoring, because it
need not preserve the traditional semantics of the program to
which it is applied. Indeed, the traditional semantics is of little
consequence; it only has any influence on the transformations
permissible through its influence on the set of adequate test
suites that must be preserved by the testability transformation.

As such, a testability transformation does not preserve the
traditional semantics, so much as it preserves a new form of
semantics defined by the test adequacy criterion. Furthermore,
there is not one single semantics preserved by testability

transformation. Rather, there is a lattice of related semantics
that describe the lattice of associated test adequacy criteria.

For instance, the program [[if (x>y); else;]] Can be
transformed to [[skip;]] according to traditional semantics.
This is one of the elementary transformations that one would
expect to be available in almost any traditional transformation
toolbox. However, according to the semantics preserved by
<branch adequacy>–preserving testability transformation, it
cannot be transformed to [[skip]] because this would change
the set of branch adequate test suites.

By contrast, the program [[if (x>y) x=1; else
x=2;]] transforms to [[if (x>y); else;]] according to
<branch adequacy>–preserving semantics, but this definitely
would not be a transformation that one would want to perform
if one were concerned to preserve traditional semantics; the
assignments to the variable x are lost in this transformation.

There are examples, where transformations such as this,
which may appear ‘bizarre’ traditionally speaking, can be
useful because they improve testability. For instance, suppose
there is some large part of the program that does not affect
whether or not a program covers a branch of interest, b.
Suppose further, that b is a particularly difficult branch to
cover and a lot of test effort is put in to automatically generate
test data to cover it. The process of repeatedly executing the
program to attempt to cover b is unnecessarily slowed by
the repeated execution of the code which cannot affect b.
Testability can therefore be improved (that is, speeded up)
by simply removing the code that does not affect branch b.

Clearly, removing a large portion of code will not preserve
traditional semantics, but it is acceptable for testability trans-
formation so long as it preserves ‘b–coverage adequacy’. This
approach has been used to slice away irrelevant parts of the
program and its input space in previous work on testability
transformation [33], [40], [54], with results that indicate that
it can improve both the efficiency and effectiveness of testing.

In program refactoring, the goal of the refactoring process
is to produce a better version of the program that is more
amenable to the human developer [62]. Refactorings typically
aim to make the process of ongoing development more reliable
and cheaper. As a result refactoring work tends to focus on the
way in which refactoring improves the program for the human
reader [18]. This is the principal point of divergence between
testability transformation and refactoring. Using testability
transformation, the result is intended to be more amenable
to testing, while for refactoring it is intended to be more
amenable to a human.

Despite their different intentions, testability transformation
and refactoring do share an intersection: The two approaches
overlap and agree on those sets of transformations that create
a new version of the program that is amendable to both the
developer and the tester. I propose to use the term testability
refactoring for this special subclass of testability transforma-
tions. Its definition is simple:

Definition 4 (Testability Refactoring):
A testability refactoring is any refactoring that is also a
testability transformation.



3

IV. DIRECTIONS FOR TESTABILITY REFACTORING

This section introduces four ways in which Testabil-
ity Refactoring might be achieved: Test–Carrying Code,
Schizophrenic Refactoring, Search Based Testability Refactor-
ing and Human–in–the–loop Testability Refactoring.

A. Test-carrying code

The idea of proof-carrying code is familiar in the field
of program verification [63]. However, there appears to be
no equivalent concept of test–carrying code in the world
of software testing. Such a concept is overdue. One could
envisage a testability refactoring approach in which the test
cases to be applied to a program are bound together with the
program code. Naturally, the development environment would
have to offer the ability to switch on and off this additional
‘view’ of the software; its test oracle.

In some ways, the idea of test–carrying code resembles
Knuth’s proposal of literate programming [52]. Using literate
programming the idea is that the program should include,
not merely comments, but the entire documentation of the
program, written as an explanation to another programmer.
In fact, for a literate program, the idea is that the primary task
of a programmer is to explain to another programmer what
the program is intended to do in prose (the literate part) and
to accompany this prose with the code that implements it.

To make the approach practical, Knuth proposed a system
in which the literate program could be projected, using TEX,
into a dvi file, which rendered the prose description of the
program as a dvi document for human consumption, along
with a separate projection, which extracts the code for the
machine. Updates are performed on code and prose together
so that the code and its description remain consistent.

Knuth introduces the idea of literature programming in
1984. It has proved influential, though it has not been widely
taken up directly as Knuth proposed. Echoes of this approach
and its underlying motivation can be found in more recent
work on pair programming [79] and model view consistent
updates issues [25] as well as in typical development environ-
ments such as JavaDoc [55].

The key observation behind literate programming is that
programs are, or should be, written for several ‘audiences’;
humans and machines. The notion of test–carrying code shares
this core motivation. However, rather than focusing on a
documentation of a program in prose, I prefer to consider the
best form of ‘documentation’ to be a set of well–chosen and
well–explained test cases.

One of the biggest problems with testing is the lack of an
automated oracle [10] and the costs of human generation of
these oracles when all else fails [42]. However, there are many
techniques for software test data generation, such as Search
Based Software Testing [2], [27], [60] and Dynamic Symbolic
Execution [24], [70] that address at least half of this problem.
That is, these techniques automate the process of generating
test inputs, though they do not assist with the determination
of a suitable outputs to accompany the corresponding inputs
they generate. This is the oracle problem: what is a correct
output for a given input.

Notwithstanding the oracle problem, there are many situ-
ations in which there may be some form of ‘partial oracle’.
For instance, when the project has some agreed set of test
cases derived from requirements [58] or specifications [49],
or when they can be inferred from other documentation [66].
Also, when regression testing [82] or when using metamorphic
testing [17], there is a partial oracle provided, either by the
regression test suite or the metamorphic relations. In all of
these situations it makes sense for the test suites to reside
together with the code they test and for the mapping between
tester and tested to be maintained.

It is in the maintenance of this mapping between code and
the test carried with it, that testability refactoring has a role
to play. As the code is refactored, the test carried with the
code must also be refactored in a manner that preserves the
consistency of the mapping. For example, when a refactoring
moves a method from one class to another, then the method–
carried test code should migrate with the code. This is the
meaning I wish to ascribe to the concept of ‘test–carrying
code’. It would seem to be a natural way to maintain the
resources and effort bound up in the test cases of the overall
system.

Also, given that the oracle problem is so pressing and
programs often have inadequate test suites on which we can
rely, is it not all the more important that we should do all
we can to preserve those few good quality test cases we do
have? Testability refactoring can achieve this by ensuring that
the test suite carried by a code fragment, really is carried
along with the fragment as it migrates and mutates under
development, evolution, refactoring and transformation. In this
way we preserve the relationship between our code and its
test suite, helping to preserve the oracle information we have
available to us.

B. The Schizophrenic Refactoring

Testability transformation seeks to make the code easier to
test. This has traditionally been applied to automated test data
generation [3], [11], [23], [61]. For such applications, the code
produced by testability transformation need only be readable
by a machine. It is well known that machine–generated code
is not human-friendly [47], [80] and so this form of testability
transformation is not well suited, as it stands, to testability
refactoring.

For testability refactoring we seek a transformation that
is useful to human and machine. This may not always be
achievable, but it should not be a Boolean goal, which is either
satisfied or unsatisfied. It is more nuanced than that. We can
measure the degree to which our refactoring serves the human
and the degree to which it serves the machine and seek to
obtain as much as possible of both. The term ‘Schizophrenic
Refactoring’ will be used to refer to a refactoring that tries
to achieve two (possibly conflicting) goals, seeking to balance
each against one another, where both cannot be simultaneously
achieved. Sometimes we may be lucky: the two objectives may
not even be in opposition. There are testability transformation
approaches, though they are aimed at improving testability,
which may also improve human readability. This section



4

explores three such examples, concerned with transformations
to removal flags, goto statements and side effects, each
of which is arguably bad for both test generation and for
comprehension.

1) Flag Removal as a Testability Refactoring: Testability
transformation has been used to replace a flag with a more
expressive arithmetic computation that captures the meaning
of the flag at the point at which it is used. Consider the
illustrative example in Figure 1. The original code fragment is
shown in Figure 1(a), in which the code denoted ‘...’ is some
arbitrary code segment that does not mention the flag variable.
It has been shown that search based testing has difficulties
covering branches like the last one in this fragment because
of the presence of flag variables which create a so-called
‘needle–in–a–haystack” fitness landscape [37]. Many authors
have proposed solutions to this problem [6], [56], [57], [75],
the first of which was to use a testability transformation [36].
The testability transformation which produces the transformed
version in Figure 1(b) has been implemented in a tool called
FlagRemover [11], which is now publicly available.

The transformed version in Figure 1(b) replaces the ref-
erence to a flag by an expression that is much longer, but
which draws together the expressions that denote the outcome
of the flag as a predicate. In transforming the program in this
way, the testability transformation also transforms the fitness
landscape, so that the ‘haystack’ becomes a single, smooth,
rounded ‘hill of hay’, in which the ‘needle’ is conveniently
located at its summit. The ‘needle’ in this analogy is the
desired input vector that causes the flag to evaluate to true.
Local search, such as hill climbing algorithms are fast and
efficient at traversing such simple ‘hill–like’ landscapes [44].
The testability transformation therefore makes the problem of
covering the flag-controlled branch much more amenable to
search based testing.

It could be argued that the version of the fragment in
Figure 1(b) is also more easy to understand at the point of the
final use of the variable flag. The testability transformation
has gathered together all the relevant code that expresses the
meaning of flag at the point at which the flag is used. Though
this leads to a longer expression, it saves the human reader
from having to search to locate the relevant computations and
thereby may reduce cognitive effort.

There are no empirical studies of the effect of this flag
removal transformation on human comprehension of the trans-
formed code and so any claim about the human-readability
of flag-removal testability transformation remains anecdotal at
this stage. An empirical study of flag removal for compre-
hension would answer the question ‘Is flag removal testability
transformation also a testability refactoring?’.

2) goto Removal as a Testability Refactoring: Unstruc-
tured or ‘goto’ code has also been shown to be a problem
for test data generation techniques for which a testability
transformation can be used to address the problem [48]. Of
course, the debate about whether goto statements are harmful
to program comprehension dates back to Dijkstra’s famous
publication in Communication of the ACM [20] and was
the subject of much debate in the literature throughout the
following decades.

flag = n<4;
... ...
if (n%2==0) flag=0; n′ = n;

flag=(n′%2==0)?0:(n′<4);
... ...
if (a[i]!=’0’&&flag) if (a[i]!=’0’ &&

(n′%2==0)?0:(n′<4))
... ...

(a) Original (b) Transformed version

Fig. 1. Flag Removal Example [36]. The transformed version enriches the
expression that captures the value of the flag at its final use. This has been
shown to be of benefit to automated test data generation. It may also be useful
for certain comprehension activities.

Böhm and G. Jacopini [12] had demonstrated that goto
statements were not essential, in the sense that a program
could be transformed to a goto–free version with equivalent
behaviour. Ashcroft and Manna realised this theoretical ob-
servation in the first algorithm for transforming unstructured
programs to versions with no goto statements [4], while
Hopcroft, in a contribution to a paper by Knuth and Floyd [53],
demonstrated that unstructured programs could not always be
transformed to goto–free versions under path equivalence.
That is, though we may transform a goto–program into a
goto–free version that performs the same computation, it
may have to achieve the same results by following different
paths. Clearly, this may affect the comprehension of the code,
particularly if the programmer was originally familiar with the
structure and behaviour of the original.

The contortions sometimes required to remove goto state-
ments from code in which they were heavily used, promoted
some to reject goto–removal transformation [69]. The debate
continued well into the 1980s, spawning some innovative
paper titles [77], which played upon the title of Dijkstra’s
original publication2. It is interesting to note that, despite
these many papers, often authored by Turing–award–winning
authors, with interesting and important theoretical insights into
the interplay between program structure and behaviour, there
remains no thorough empirical study of the effect of the goto
statement on program comprehension.

Empirical studies have been performed on program corpuses
in order to empirically investigate the ways in which goto
statements are used in code [9], but there appears to be no
psychological empirical study of programmers themselves to
determine, empirically, the degree to which goto statements
may affect program comprehension. It therefore remains open
as to whether a goto–removal testability transformation is
also a testability refactoring, though anecdotally, we may
suspect that it is.

This lack of empirical evidence is surprising, given that the
‘goto controversy’ is so well established in the folklore of
computer science, while more recent trends such as object
orientation have been more thoroughly studied, providing a

2Actually, Dijkstra’s famous ‘paper’ on goto statements was nothing of
the kind; it was, in fact, a short letter to the editor of CACM, in which Dijkstra
made the anecdotal observation that better programmers refrain from using
goto statements. The editor gave the letter its title, simply putting Dijkstra’s
sentiment into the passive voice and so the title given to the letter became
‘goto considered harmful’.



5

wealth of empirical evidence [14], [16], [26], as has the topic
of refactoring itself [1], [64], [73].

3) Side Effect Removal as a Testability Refactoring: Side
effects are also a problem for test data generation techniques
[7], [60]. Side effect-removal transformation can also act as
a testability transformaton to assist with this problem. Side
effect removal has also been suggested as an aid to program
comprehension [39]. For example, using post placement side
effect removal transformation [38], the code fragment

[[if (++i && i--) x=1;]]

is transformed to

[[if (i==-1) i = i+1; else x = 1;]]

The first version of the code fragment is hard to understand
because the side effects are mingled with the difficulty of
determining the effects of predicate evaluation in the pres-
ence of short–circuit evaluation. In code with side effects,
expressions play two roles, one of which is evaluation, while
the other is state update. This makes comprehension hard
because the reader has to keep a mental track of the state as
the expression is evaluated. The presence of side effects also
inhibits understanding because it destroys the mathematical
interpretation of the expressions. The desire to avoid side
effects in order to retain these mathematical properties was
one of the motivations for functional programming [50].

In the transformed, side–effect–free version of the code
fragment, expressions serve only one purpose: evaluation, and
their mathematical character is restored to them, imbuing them
with many of the properties that their mathematical counter-
parts enjoy. All state update is performed in statements, where
the sequence of execution steps is comparatively easier to
follow. This has a positive effect on program comprehension.

There are empirical results which have provided evidence
that programmers, whether they be novices and experienced
coders, perform better at cognitive tasks when faced with
side–effect–free code fragments than with their side–effecting
equivalents [21]. As such, side effect removal transformation
can be said to be a testability refactoring; it makes code better
for comprehension and testing.

C. Search Based Testability Refactoring
Search based Software Engineering (SBSE) [2], [27], [28],

[41], [68] has been widely used as a way to find good
refactorings from the large space of potential transformations
that can be applied [13], [45], [64], [65], [71].

Using Search Based Refactoring, the goal is to define the
metrics that capture properties of programs that we seek to
improve through refactoring. The metrics are re-formulated as
fitness functions [31]. The fitness functions are used to guide a
search based optimisation algorithm, such as a hill climber or
a genetic algorithm. The fitness captures the metric of interest
so that when the search moves to a better solution according
to the guidance of the fitness function, that solution should
denote a better program according to the metric of interest. In
this way the search gradually moves the program towards a
refactored version which optimises the value of the metric of
interest.

Typically there may be very many metrics to consider in
refactoring [46], all of which have a bearing on the best
sequence of refactorings to perform. In previous work this
multiplicity of metrics has been handled, either by combining
a set of metrics into a single weighted sum [65], [71] or by
adopting a pareto optimal approach [45].

The weighting approach is suitable when one can, a priori,
determine the relative importance of each of the metrics to be
combined by weighted sum. Where such a weighing scheme
is not obvious a pareto optimal approach is more suitable [28],
[45].

Using Pareto optimality, it is not possible to measure ‘how
much’ better one solution is than another, merely to determine
whether one solution is better than another. Suppose F denotes
the combined fitness of a set of individual fitness functions fi
each of which operate on a vector of values x. A solution x1
is considered to be a (pareto) improvement on x2, if and only
if

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

That is, x1 is better than x2 if and only if it is better
according to at least one of the individual fitness functions
and no worse according to all of them. In this situation x1 is
said to ‘dominate’ x2.

Using Pareto optimality, the search process yields, not a
single optimised solution, but a set of solutions that are non-
dominated. That is, each member of the non-dominated set is
no worse than any of the others in the set, but also cannot
be said to be better. Any such set of non-dominated solutions
forms a Pareto front.

For the problem of balancing the two objectives of refac-
toring (testing and comprehension) we have just such a multi
objective scenario in which we have two different and poten-
tially conflicting objectives: refactor for human and refactor
for machine. These objectives may be in conflict and it is not
obvious how to choose to weight their importance. As such,
this problem is very well suited to pareto optimal search based
refactoring. This is illustrated in Figure 2.

In Figure 2(a) the pareto front is smooth and unbroken. This
is an idealised scenario. The front may be broken, because
some solutions may be infeasible. The front can indicate this,
guiding the decision maker. Furthermore, many SBSE pareto
fronts (for example those used in regression testing [81] and
requirements optimization [83]) have been found to exhibit
such ‘knee points’ at which the trade off between the two
objectives changes dramatically. In the example in Figure 2(b),
the decision maker would be likely to choose solution either
S1 or S3 but not S2 even though all are non–dominated.
This is because the pareto front reveals that solution S2
dramatically reduces achievement of one of the two objectives
of with little impact on the other, when compared to either S1
or S3.

D. Human–in–the–loop Testability Refactoring

Testability transformation has previously been targeted at
situations in which automated techniques have difficulty in
generating test data. This difficulty is due to some structural



6

(a) Smooth Pareto Front (b) Pareto Front with Knee point

Fig. 2. Pareto fronts, illustrating a potential trade off between human– and machine– friendly transformation in the search for a testability refactoring. Fitness
function f1 measures how suitable the refactored program is for humans, while fitness function f2 measures how suitable it is for automated testing. Solutions
S1, S2 and S3 each denote different tradeoff between f1 and f2. None can be said to be better, because each lies on the pareto front of non–dominated
solutions. Computing this pareto front provides decision support.

feature of the code for which the approach (or a tool that
improves it) proves to be ineffective or inefficient. However,
there is no reason why a testability transformation could not
be targeted at the human tester, who retains some test objective
for which no tool can help, even after some tool-oriented
testability transformation has been performed.

For example, suppose that a program contains a branch
that no tool has been able to cover. It could be that this
branch is infeasible, in which case attempts to cover it will
be futile. However, statement reachability (and hence branch
coverage) is known to be undecidable [78] so we cannot expect
a machine to be able to reliably answer this question for us.
As a result, it is likely that a human may be faced with this
time–consuming and often tedious task.

This is not an unrealistic scenario: Standards for testing,
such as the Aerospace Standard [67] lay down the requirement
that 100% feasible branch coverage (and higher) levels of test
adequacy criteria must be achieved. In order to meet these
requirements, a tester may employ tools, but the undecidability
of branch coverage inevitably means that there may remain
uncovered branches for which the human has either to find a
test case or to determine that the branch is uncoverable.

In such situations, though testability transformation may not
assist directly by helping a tool to find a test case, it may still
assist indirectly, by helping the human to address the problem
faster. Program analysis and manipulation has been previously
suggested as a way to help a human analyst to find answers to
undecidable propositions [32] and this approach could also be
used to help the human solve the ‘uncovered branch problem’.

For example, slicing [35], [72], [76] could be used to
remove parts of the program that cannot affect the branch of
interest, thereby simplifying the task. Furthermore, in those
cases where the programmer is aware of pre– and post–
conditions under which the code must be executed, pre/post
conditioned slicing [34] can be used to further refine the slice,
narrowing attention on the parts of the code that must be
considered in order to determine whether the branch is feasible
or not. In this application the slicing algorithms would be

playing the role of testability refactoring.
Another possible way of keeping the human in the loop

during the refactoring process, would be to use interactive
evolution [22] for a search based approach to meet comprehen-
sion goals. The use of interactive evolution for search based
comprehension has previously been advocated [29] and could
be used in this context to achieve the human oriented fitness
assessment outlined in Section IV-C.

V. CONCLUSION

Testability transformations change programs to make them
better suited to automated test data generation. Refactoring,
on the whole, changes programs to make them better suited to
on-going human activities. I argue that at testability refactoring
should seek to do both simultaneously.

This paper presented testability transformation examples
that are also testability refactorings because they improve code
for both human consumption and also for automated test data
generation. There are surely other ways in which programs
can be transformed to make them easier for testing and for
the programmer. This remains a topic for future investigation.

Refactoring for testing, the subject of this workshop, is all
about the question of how to refactor a program in such a
way that it makes it easier to test. Because refactoring for
testing is also, by definition, refactoring, it also surely seeks
to improve the program for human-based activities. As such,
refactoring for testing is ‘testability refactoring’ as I define
it. There is much interesting work to be done to determine
what of the previous work on testability transformation can
be carried over into testability refactoring. There is also much
further work to be done on Testability Refactoring itself.
Acknowledgements:
I am grateful to Kelly Androutsopoulos, André Baresel, Dave
Binkley, John Clark, Steve Counsell, Sebastian Danicic, Chris
Fox, Robert Hierons, John Howroyd, Bogdan Korel, Bill
Langdon, Kiran Lakhotia, Phil McMinn, Marc Roper, Har-
man Sthamer, Paolo Tonella, Joachim Wegener and Martin
Woodward for many rewarding discusssions on the subject of



7

Testability Transformation. The pareto front diagrams in Fig-
ure 2 were produced by Yuanyuan Zhang and have appeared
previously in a different form [43].

REFERENCES

[1] Deepak Advani, Youssef Hassoun, and Steve Counsell. Extracting
refactoring trends from open-source software and a possible solution
to the ‘related refactoring’ conundrum. In Hisham Haddad, editor, ACM
Symposium on Applied Computing (SAC 06), pages 1713–1720, Dijon,
France, 2006. ACM.

[2] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege. A systematic review of the application and empirical
investigation of search-based test-case generation. IEEE Transactions on
Software Engineering, 2010. To appear.

[3] Andrea Arcuri and Xin Yao. Search based software testing of object-
oriented containers. Information Sciences, 178(15):3075–3095, 2008.

[4] Edward A. Ashcroft and Zohar Manna. The translation of goto
programs into while programs. In C. V. Freiman, J. E. Griffith, and
J. L. Rosenfeld, editors, Proceedings of IFIP Congress 71, volume 1,
pages 250–255. North-Holland, 1972.

[5] André Baresel, David Wendell Binkley, Mark Harman, and Bogdan
Korel. Evolutionary testing in the presence of loop–assigned flags:
A testability transformation approach. In International Symposium on
Software Testing and Analysis (ISSTA 2004), pages 108–118, Omni
Parker House Hotel, Boston, Massachusetts, July 2004. Appears in
Software Engineering Notes, Volume 29, Number 4.

[6] André Baresel and Harmen Sthamer. Evolutionary testing of flag
conditions. In Genetic and Evolutionary Computation (GECCO-2003),
volume 2724 of LNCS, pages 2442–2454, Chicago, 12-16 July 2003.
Springer-Verlag.

[7] André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness function
design to improve evolutionary structural testing. In GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1329–1336, San Francisco, CA 94104, USA, 9-13 July 2002.
Morgan Kaufmann Publishers.

[8] Ira D. Baxter. Transformation systems: Domain-oriented component and
implementation knowledge. In Proceedings of the Ninth Workshop on
Institutionalizing Software Reuse, Austin, TX, USA, January 1999.

[9] Barbara A. Benander, Narasimhaiah Gorla, and Alan C. Benander. An
empirical study of the use of the GOTO statement. The Journal of
Systems and Software, 11(3):217–223, March 1990.

[10] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In Lionel Briand and Alexander Wolf, editors, Future of
Software Engineering 2007, Los Alamitos, California, USA, 2007. IEEE
Computer Society Press.

[11] David Binkley, Mark Harman, and Kiran Lakhotia. FlagRemover: A
testability transformation for transforming loop assigned flags. ACM
Transactions on Software Engineering and Methodology, 2010. to
appear.

[12] C. Böhm and G. Jacopini. Flow diagrams, turing machines, and
languages with only two formation rules. Communications of the ACM,
9(5):366–372, May 1966.

[13] Salah Bouktif, Giuliano Antoniol, Ettore Merlo, and Markus Neteler. A
novel approach to optimize clone refactoring activity. In GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, volume 2, pages 1885–1892, Seattle, Washington, USA,
8-12 July 2006. ACM Press.

[14] Lionel C. Briand, Erik Arisholm, Steve Counsell, Frank Houdek, and
Pascale Thévenod-Fosse. Empirical studies of object-oriented artifacts,
methods, and processes: State of the art and future directions. Empirical
Software Engineering, 4(4):387–404, 1999.

[15] Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff.
Verified firewall policy transformations for test case generation. In
3rd. International Conference on Software Testing, Verification and
Validation (ICST 2010), pages 345–354. IEEE Computer Society, 2010.

[16] Michelle Cartwright and Martin J. Shepperd. An empirical investigation
of an object-oriented software system. IEEE Transactions on Software
Engineering, 26(8):786–796, 2000.

[17] Tsong Yueh Chen, Jianqiang Feng, and T. H. Tse. Metamorphic testing
of programs on partial differential equations: A case study. In 26th

Annual International Computer Software and Applications Conference
(COMPSAC’02), pages 327–333. IEEE Computer Society, 2002.

[18] A. Correa, C. Werner, and M. Barros. Refactoring to improve the
understandability of specifications written in object constraint language.
IET Software, 3(2):69–90, 2009.

[19] John Darlington and Rod M. Burstall. A tranformation system for
developing recursive programs. Journal of the Association for Computer
Machinery, 24(1):44–67, 1977.

[20] Edskar Wabe Dijkstra. Goto statement considered harmful. Communi-
cations of the ACM, 11:147, 1968.

[21] José Javier Dolado, Mark Harman, Mari Carmen Otero, and Lin Hu.
An empirical investigation of the influence of a type of side effects on
program comprehension. IEEE Transactions on Software Engineering,
29(7):665–670, 2003.

[22] Pablo Funes, Eric Bonabeau, Jerome Herve, and Yves Morieux. Interac-
tive multi-participant task allocation. In Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, pages 1699–1705, Portland,
Oregon, 20-23 June 2004. IEEE Press.

[23] Kamran Ghani and John A. Clark. Widening the goal posts: Program
stretching to aid search based software testing. In Proceedings of the
1st International Symposium on Search Based Software Engineering
(SSBSE’09), Windsor, UK, 13-15 May 2009. IEEE.

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Vivek Sarkar and Mary W. Hall, editors,
Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005, pages 213–223. ACM, 2005.

[25] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards
automating source-consistent UML refactorings. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified
Modeling Language. 6th International Conference on Model Languages
and Applications, volume 2863 of LNCS, pages 144–158, San Francisco,
CA, USA, 2003. Springer.

[26] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation
of object-oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering, 31(10):897–910, 2005.

[27] Mark Harman. Automated test data generation using search based
software engineering. In 2nd International Workshop on Automation
of Software Test (AST 07), page 2, Minneapolis, USA, May 2007. IEEE
Computer Society Press.

[28] Mark Harman. The current state and future of search based software
engineering. In Lionel Briand and Alexander Wolf, editors, Future of
Software Engineering 2007, pages 342–357, Los Alamitos, California,
USA, 2007. IEEE Computer Society Press.

[29] Mark Harman. Search based software engineering for program compre-
hension. In 15th International Conference on Program Comprehension
(ICPC 07), pages 3–13, Banff, Canada, 2007. IEEE Computer Society
Press.

[30] Mark Harman. Open problems in testability transformation. In 1st Inter-
national Workshop on Search Based Testing (SBT 2008), Lillehammer,
Norway, 2008. Keynote paper.

[31] Mark Harman and John Clark. Metrics are fitness functions too. In 10th

International Software Metrics Symposium (METRICS 2004), pages 58–
69, Los Alamitos, California, USA, September 2004. IEEE Computer
Society Press.

[32] Mark Harman, Chris Fox, Rob Mark Hierons, David Wendell Binkley,
and Sebastian Danicic. Program simplification as a means of approxi-
mating undecidable propositions. In 7th IEEE International Workshop
on Program Comprenhesion (IWPC’99), pages 208–217, Los Alamitos,
California, USA, May 1999. IEEE Computer Society Press.

[33] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Philip McMinn, and
Joachim Wegener. The impact of input domain reduction on search-
based test data generation. In ACM Symposium on the Foundations of
Software Engineering (FSE ’07), pages 155–164, Dubrovnik, Croatia,
September 2007. Association for Computer Machinery.

[34] Mark Harman, Rob Mark Hierons, Sebastian Danicic, John Howroyd,
and Chris Fox. Pre/post conditioned slicing. In IEEE International
Conference on Software Maintenance (ICSM’01), pages 138–147, Los
Alamitos, California, USA, November 2001. IEEE Computer Society
Press.

[35] Mark Harman and Robert Mark Hierons. An overview of program
slicing. Software Focus, 2(3):85–92, 2001.

[36] Mark Harman, Lin Hu, Robert Hierons, André Baresel, and Harmen
Sthamer. Improving evolutionary testing by flag removal. In GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 1359–1366, San Francisco, CA 94104, USA, 9-13 July
2002. Morgan Kaufmann Publishers.

[37] Mark Harman, Lin Hu, Robert Mark Hierons, Joachim Wegener, Harmen
Sthamer, André Baresel, and Marc Roper. Testability transformation.
IEEE Transactions on Software Engineering, 30(1):3–16, January 2004.

[38] Mark Harman, Lin Hu, Robert Mark Hierons, Xingyuan Zhang, Mal-
colm Munro, José Javier Dolado, Mari Carmen Otero, and Joachim



8

Wegener. A post-placement side-effect removal algorithm. In IEEE
International Conference on Software Maintenance, pages 2–11, Los
Alamitos, California, USA, October 2002. IEEE Computer Society
Press.

[39] Mark Harman, Lin Hu, Xingyuan Zhang, and Malcolm Munro. Side-
effect removal transformation. In 9th IEEE International Workshop
on Program Comprehension, pages 310–319, Los Alamitos, California,
USA, May 2001. IEEE Computer Society Press.

[40] Mark Harman, Fayezin Islam, Tao Xie, and Stefan Wappler. Automated
test data generation for aspect-oriented programs. In 8th International
Conference on Aspect-Oriented Software Development (AOSD ’09),
pages 185–196, Charlottesville, Virginia, USA, March 2009.

[41] Mark Harman and Bryan F. Jones. Search based software engineering.
Information and Software Technology, 43(14):833–839, December 2001.

[42] Mark Harman, Sung Gon Kim, Kiran Lakhotia, Philip McMinn, and
Shin Yoo. Optimizing for the number of tests generated in search based
test data generation with an application to the oracle cost problem. In
3rd International Workshop on Search-Based Software Testing (SBST
2010), Paris, France, April 2010.

[43] Mark Harman, Afshin Mansouri, and Yuanyuan Zhang. Search based
software engineering: A comprehensive analysis and review of trends
techniques and applications. Technical Report TR-09-03, Department
of Computer Science, King’s College London, April 2009.

[44] Mark Harman and Philip McMinn. A theoretical and empirical study of
search based testing: Local, global and hybrid search. IEEE Transactions
on Software Engineering, 36(2):226–247, 2010.

[45] Mark Harman and Laurence Tratt. Pareto optimal search-based refac-
toring at the design level. In GECCO 2007: Proceedings of the 9th

annual conference on Genetic and evolutionary computation, pages 1106
– 1113, London, UK, July 2007. ACM Press.

[46] Rachel Harrison, Steve Counsell, and Reuben V. Nithi. An investigation
into the applicability and validity of object-oriented design metrics.
Empirical Software Engineering, 3(3):255–273, 1998.

[47] Mats Per Erik Heimdahl and David J. Keenan. Generating code
from hierarchical state-based requirements. In Proceedings: 3rd IEEE
International Symposium on Requirements Engineering, pages 210–221.
IEEE Computer Society Press, 1997.

[48] Robert Hierons, Mark Harman, and Chris Fox. Branch-coverage testa-
bility transformation for unstructured programs. The computer Journal,
48(4):421–436, 2005.

[49] Robert M. Hierons. Testing from a Z specification. Software Testing,
Verification and Reliability, 7(1):19–33, 1997.

[50] Simon L. Peyton Jones and Philip Wadler. Imperative functional
programming. In Principles of Programming Languages (POPL’93),
pages 71–84, 1993.

[51] AbdulSalam Kalaji, Robert Mark Hierons, and Stephen Swift. A
testability transformation approach for state-based programs. In 1st
International Symposium on Search Based Software Engineering (SSBSE
2009), pages 85–88, Windsor, UK, May 2009. IEEE.

[52] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[53] Donald E. Knuth and Robert W. Floyd. Notes on avoiding “go to”
statements. Information Processing Letters, 1(1):23–31, February 1971.

[54] Bogdan Korel, Mark Harman, S. Chung, P. Apirukvorapinit, and
R. Gupta. Data dependence based testability transformation in auto-
mated test generation. In 16th International Symposium on Software
Reliability Engineering (ISSRE 05), pages 245–254, Chicago, Illinios,
USA, November 2005.

[55] Douglas Kramer. API documentation from source code comments: A
case study of Javadoc. In Proceedings of the 7th Annual International
Conference of Computer Documentation (SIGDOC-99), pages 147–153,
N.Y., September 12–14 1999. ACM Press.

[56] Xiyang Liu, Ning Lei, Hehui Liu, and Bin Wang. Evolutionary testing
of unstructured programs in the presence of flag problems. In 12th Asia-
Pacific Software Engineering Conference (APSEC’05), pages 525–533.
IEEE Computer Society, 2005.

[57] Xiyang Liu, Hehui Liu, Bin Wang, Ping Chen, and Xiyao Cai. A
unified fitness function calculation rule for flag conditions to improve
evolutionary testing. In David F. Redmiles, Thomas Ellman, and
Andrea Zisman, editors, 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), pages 337–341, Long
Beach, CA, USA, 2005. ACM.

[58] Neil A. Maiden and Cornelius Ncube. Acquiring COTS software
selection requirements. IEEE Software, 15(2):46–56, 1998.

[59] Phil McMinn, David Binkley, and Mark Harman. Empirical evaluation
of a nesting testability transformation for evolutionary testing. ACM

Transactions on Software Engineering and Methodology, 18(3), May
2009. Article 11.

[60] Philip McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105–156, June 2004.

[61] Philip McMinn. Search-based failure discovery using testability trans-
formations to generate pseudo-oracles. In Franz Rothlauf, editor,
Genetic and Evolutionary Computation Conference (GECCO 2009),
pages 1689–1696, Montreal, Québec, Canada, 2009. ACM.

[62] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, February 2004.

[63] G. Necula. Proof-carrying code. In Principles of Programming
Languages (POPL’97), pages 106–119. ACM Press, 1997.

[64] Mark O’Keeffe and Mel Ó Cinnéide. Search-based refactoring: an
empirical study. Journal of Software Maintenance, 20(5):345–364, 2008.

[65] Mark O’Keeffe and Mel O’Cinneide. Search-based software mainte-
nance. In Conference on Software Maintenance and Reengineering
(CSMR’06), pages 249–260, March 2006.

[66] Dennis K. Peters and David Lodge Parnas. Using test oracles gen-
erated from program documentation. IEEE Transactions on Software
Engineering, 24(3):161–173, 1998.

[67] Radio Technical Commission for Aeronautics. RTCA DO178-B Soft-
ware considerations in airborne systems and equipment certification,
1992.

[68] Outi Räihä. A survey on search–based software design. Computer
Science Review, 4(4):203–249, 2010.

[69] F. Rubin. “GOTO considered harmful” considered harmful. Communi-
cations of the ACM, 30(3):195–196, March 1987.

[70] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic
unit testing engine for C. In Michel Wermelinger and Harald Gall,
editors, 10th European Software Engineering Conference and 13th
ACM International Symposium on Foundations of Software Engineering
(ESEC/FSE ’05), pages 263–272. ACM, 2005.

[71] Olaf Seng, Johannes Stammel, and David Burkhart. Search-based
determination of refactorings for improving the class structure of object-
oriented systems. In Genetic and evolutionary computation conference
(GECCO 2006), volume 2, pages 1909–1916, Seattle, Washington, USA,
8-12 July 2006. ACM Press.

[72] Josep Silva. A vocabulary of program slicing-based techniques. ACM
Computing Surveys, 2011. to appear.

[73] Paolo Tonella and Mariano Ceccato. Refactoring the aspectizable
interfaces: An empirical assessment. IEEE Transactions on Software
Engineering, 31(10):819–832, 2005.

[74] Eelco Visser. A survey of strategies in rule-based program transforma-
tion systems. Journal of Symbolic Computation, 40(1):831–873, 2005.

[75] Stefan Wappler, Joachim Wegener, and André Baresel. Evolutionary
testing of software with function-assigned flags. The Journal of Systems
and Software, 82(11):1767–1779, November 2009.

[76] Mark Weiser. Program slices: Formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, MI, 1979.

[77] P. H. Welch. GOTO (Considered Harmful)n, n is Odd. Occam User
Group Newsletter, 8:22–26, January 1988.

[78] Elaine J. Weyuker. Program schemas with semantic restrictions. PhD
thesis, Rutgers University, New Brunswick, New Jersey, June 1977.

[79] Laurie A. Williams, Robert R. Kessler, Ward Cunningham, and Ron
Jeffries. Strengthening the case for pair programming. IEEE Software,
17(4), 2000.

[80] Hui Wu, Jeffrey G. Gray, Suman Roychoudhury, and Marjan Mernik.
Weaving a debugging aspect into domain-specific language grammars.
In Hisham Haddad, Lorie M. Liebrock, Andrea Omicini, and Roger L.
Wainwright, editors, ACM Symposium on Applied Computing (SAC
2005), pages 1370–1374, Santa Fe, New Mexico, USA, March 2005.
ACM.

[81] Shin Yoo and Mark Harman. Pareto efficient multi-objective test case
selection. In International Symposium on Software Testing and Analysis
(ISSTA’07), pages 140 – 150, London, United Kingdom, July 2007.
Association for Computer Machinery.

[82] Shin Yoo and Mark Harman. Regression testing minimisation, selection
and prioritisation: A survey. Journal of Software Testing, Verification
and Reliability, 2011. To appear.

[83] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search
based requirements optimisation: Existing work and challenges. In
International Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ’08), volume 5025, pages 88–94,
Montpellier, France, 2008. Springer LNCS.


