
The Relationship between Search Based Software
Engineering and Predictive Modeling

Mark Harman
University College London,

Department of Computer Science, CREST Centre,
Malet Place, London, WC1E 6BT, UK.

ABSTRACT
Search Based Software Engineering (SBSE) is an approach to soft-
ware engineering in which search based optimization algorithms
are used to identify optimal or near optimal solutions and to yield
insight. SBSE techniques can cater for multiple, possibly compet-
ing objectives and/ or constraints and applications where the poten-
tial solution space is large and complex. This paper will provide
a brief overview of SBSE, explaining some of the ways in which
it has already been applied to construction of predictive models.
There is a mutually beneficial relationship between predictive mod-
els and SBSE. The paper sets out eleven open problem areas for
Search Based Predictive Modeling and describes how predictive
models also have role to play in improving SBSE.

1. INTRODUCTION
Harman and Clark argued that ‘metrics are fitness functions too’

[54]. This paper extends this analogy to consider the case for ‘pre-
dictive models are fitness functions too’. It turns out that the rela-
tionship between fitness functions and predictive models is much
richer than this slightly facile aphorism might suggest. There are
many connections and relationships between Search Based Soft-
ware Engineering and Predictive Modeling. This paper seeks to un-
cover some of these and describe ways in which they might be ex-
ploited, both by the SBSE community and by the Predictive Mod-
eling community.

Search based Software Engineering (SBSE) seeks to reformulate
Software Engineering problems as search problems. Rather than
constructing test cases, project schedules, requirements sets, de-
signs, architectures and other software engineering artifacts, SBSE
simply searches for them. The search space is the space of all pos-
sible candidate solutions. This is typically enormous, making it
impossible to enumerate all solutions. However, guided by a fit-
ness function that distinguishes good solutions from bad ones, we
can automate the search for good solutions in this search space.

SBSE has witnessed a dramatic increase in interest and activity
in the last few years, resulting is several detailed surveys of tech-
niques, applications and results [2, 9, 50, 57, 60, 100]. It has been
shown that SBSE solutions to Software Engineering problems are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

competitive with those produced by humans [29, 115] and that the
overall SBSE approach has tremendous scalability potential [13,
49, 85, 94]. Section 2 provides a very brief overview of SBSE,
while Section 3 present an overview of previous work on SBSE
applied to predictive modeling.

SBSE is attractive because of the way it allows software engi-
neers to balance conflicting and competing constraints in search
spaces characterized by noisy, incomplete and only partly accu-
rate data [50, 53]. This characterization of the problem space may
sound surprisingly familiar to a reader from the Predictive Mod-
eling community. Predictive modeling also has to contend with
noisy, incomplete and only partly accurate data. As a result, there
is a great deal of synergy to be expected between the two commu-
nities. This paper seeks to explore this synergy. It will also argue
that the way in which SBSE can cater for multiple competing and
conflicting objectives may also find, as yet largely unexplored, ap-
plications in predictive modeling work.

The 2009 PROMISE conference call for papers raised four ques-
tions for which answers were sought from the papers submitted.
Clearly, in the year that has passed since PROMISE 2009, progress
will have been made. However, the general character of the four
questions means that they are unlikely to be completely solved in
the near future. Since these questions are likely to remain open
and important for the predictive modeling research community they
serve as a convenient set of questions for this paper to seek to an-
swer through the perspective of SBSE. The questions, and the sec-
tions that address them, are as follows:

1. How much do we need to know about software engineering
in order to build effective models? (addressed in Section 4)

2. How to adapt models to new data? (addressed in Section 5)

3. How to streamline the data or the process? (addressed in
Section 6)

4. How can predictive modeling gain greater acceptance by the
SE community? (addressed in Section 7)

Of course, it would be one-sided and simplistic to claim that the
predictive modeling community had so much to gain from consid-
ering SBSE, without also considering the reciprocal benefit to the
SBSE community that may come from results and techniques asso-
ciated with predictive modeling. Indeed, there are several ways in
which predictive modeling may also benefit the SBSE community.
These are briefly set out in Section 8.

The paper is written as an accompaniment to the author’s keynote
presentation at PROMISE 2010: The 6th International Conference
on Predictive Models in Software Engineering. The paper, like the
keynote, is constructed to raise questions and possibilities, rather

than to answer them. The paper presents 11 broad areas of open
problems in SBSE for predictive modeling, explaining how tech-
niques emerging from the SBSE community may find potentially
innovative applications in Predictive Modeling. These open prob-
lem areas (and the sections that describe them) are as follows:

1. Multi objective selection of variables for a predictive model
(Section 4)

2. Sensitivity analysis for predictive models (Section 4)

3. Risk reduction as an optimization objective for predictive
models (Section 4)

4. Exploiting Bayesian models of Evolutionary Optimization
(Section 5)

5. Balancing functional and non–functional properties of pre-
dictive models (Section 6)

6. Exploiting the connection between fitness function smooth-
ing and model interpolation (Section 6)

7. Validating predictive models through optimization (Section 7)

8. Human–in–the–loop predictive Modeling with Interactive Evo-
lutionary Optimization (Section 7)

9. Identifying the building blocks of effective predictive models
(Section 7)

10. Predictive models as fitness functions in SBSE (Section 8)

11. Predictive models of SBSE effort and landscape properties
(Section 8)

2. SEARCH BASED SOFTWARE ENGINEER-
ING

Software Engineering, like other engineering disciplines, is all
about optimization. We seek to build systems that are better, faster,
cheaper, more reliable, flexible, scalable, responsive, adaptive, main-
tainable, testable; the list of objectives for the software engineer is
a long and diverse one, reflecting the breadth and diversity of ap-
plications to which software is put. The space of possible choices
is enormous and the objectives many and varied.

In such situations, software engineers, like their peers in other
engineering disciplines [117] have turned to optimization techniques
in general and to search based optimization in particular. This ap-
proach to software engineering has become known as Search Based
Software Engineering [50, 57]. Software Engineering is not merely
yet another engineering discipline for which Search Based Opti-
mization is suitable; its virtual nature makes software the ideal
‘killer application’ for search based optimization [53].

SBSE has proved to be very widely applicable in Software En-
gineering, with applications including testing [16, 18, 23, 56, 81,
90, 113], design, [26, 55, 93, 104, 110], requirements, [14, 39,
38, 66], project management [3, 10, 11] refactoring [61, 95] and,
as covered in more detail in the next section, predictive modeling.
To these Software Engineering problems a wide range of differ-
ent optimisation and search techniques have been applied such as
local search [73, 85, 92], simulated annealing, [21, 15, 92], Ant
Colony Optimization [7, 91], Tabu search [31], and most widely of
all (according to a recent review [60]), genetic algorithms and ge-
netic programming [17, 46, 55, 113]. Exact and greedy algorithms,
though not strictly ‘search’ based are also often applied to similar
problems, for example to requirements [122] and testing [119]. As

such, these algorithms are also regarded by many researchers as
falling within the remit of the SBSE agenda.

The reader who is unfamiliar with these algorithms, can find
overviews and more detailed treatments in the literature on SBSE
[60, 50, 100]. For the purpose of this paper, all that is required is
to note that SBSE applies to problems in which there are numer-
ous candidate solutions and where there is a fitness function that
can guide the search process to locate reasonably good solutions.
The algorithms in the literature merely automate the search (using
the guide provided by the fitness function in different ways). For
example, genetic algorithms, inspired by natural selection, evolve
a population of candidate solutions according to the fitness func-
tion, while hill climbing algorithms simply take a random solution
as a starting point and apply mutations to iteratively seek out near
neighbours with improved fitness. As has been noted in the litera-
ture on SBSE, the reader can interpret the words ‘fitness function’
as being very closely related to ‘metric’ in the Software Engineer-
ing sense of the word [54].

It is important not to be confused by terminology: In Search
Based Software Engineering, the term ‘search’ is used to refer to
‘search’ as in ‘search-based optimization’ not ‘search’ in the sense
of a ‘web search’ or a ‘library search’. It should also be understood
that search seldom yields a globally optimal result. Typically a
‘near optimal’ solution is sought in a search space of candidate so-
lutions, guided by a fitness function that distinguishes between bet-
ter and worse solutions. This near optimal solution, merely needs
to be ‘good enough’ to be useful. SBSE is very much an ‘engineer-
ing approach’ and so SBSE researchers often formulate problems
in terms of finding solutions that are good enough, better than pre-
viously obtained or within acceptable tolerances.

A detailed survey of all work on SBSE up to December 31st 2008
can be found in the work of Harman et al. [60]. There are also more
in-depth surveys on particular aspects of SBSE, for example test-
ing [9, 86] design level SBSE [100] and SBSE for non–functional
properties [2].

It is a useful conceptual device to imagine all possible solutions
(including the very worst and best) as lying on a horizontal plain in
which similar candidates are proximate. We can think of the fitness
of each individual in the plain as being denoted by a vertical high
in the vertical dimension. In this way we conceptualize a ‘fitness
landscape’, in which any globally optimal solutions will correspond
to the highest peaks and in which properties of the landscape may
relate to the difficulty of finding solutions using a chosen search
technique. If the problem is one of maximizing the value of fitness
then we seek to find solutions that denote the tops of hills in the
landscape. If the problem is to minimize the value of the fitness
function, then we seek the deepest troughs. Figure 1 presents an
example of two such fitness landscapes, in which the goal is to min-
imize the value of fitness. The visualization of fitness landscapes
provides insights into the nature of the search problem. In Figure 1
the upper landscape is far more challenging than the lower land-
scape. The lower landscape is produced by transforming the upper
landscape, thereby making the search more efficient and effective.
Sections 6 and 8 consider the ways in which such transformations
may be useful to Predictive Modeling, and how predictive model-
ing may help SBSE researchers to better understand their search
landscapes.

Like other engineers, software engineers find themselves unable
to achieve all possible objectives and therefore some balance be-
tween them is typically sought. This motivates a multi objective
approach to optimization which is increasingly prevalent in SBSE
work. Search based optimization is naturally suited to the balanc-
ing of competing and conflicting multiple objectives and so these

−100 −50 0 50 100
−100

−50

0

50

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b

a

O
bj

ec
tiv

e
V

al
ue

Untransformed program

−100
−50

0
50

100

−100

−50

0

50

100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

b

a

O
bj

ec
tiv

e
V

al
ue

Transformed version

Figure 1: Transforming the Fitness Landscape by Transform-
ing the Fitness Function (example from previous work [88, 89]).
In this example, we seek the global minimum in the search
space. The untransformed landscape is exceptionally difficult:
The global minimum is found when the value of a and b are
both −1. However, in all other cases where the value of a and b
are equal one of the local minima is reached. The fitness func-
tion is transformed in this case by transforming the program
from which fitness is computed. As a result, the local minima
disappear from the landscape and all points on the landscape
guide the search towards the global minimum. A problem can
be transformed so that search will be dramatically more likely
to locate a global optima, without necessarily knowing the val-
ues denoted by this optimum. As such, this transformation is
an effective approach to migrating a hard search problem into
an easier search problem from which optimal solutions can be
found. Such approaches may also find applications in smooth-
ing and optimizing predictive models.

Figure 2: A cost–benefit Pareto front from Search Based Re-
quirements Optimization [122]. Moving up the vertical axis de-
notes reduced cost; moving rightward on the horizontal axis
denotes increased customer satisfaction. Each circle is one
valid choice of requirements that minimizes cost and maximizes
value. For the set of requirements denoted by each circle, the
search can find no solution with a lower cost and greater value.
We can use this to find a good trade off between cost and value.
This approach can be adapted to Search based Predictive Mod-
eling in order to balance competing and conflicting predictive
modeling objectives. For example, it could be used to mini-
mize risk while maximizing predictive quality. Multi objective
predictive modeling possibilities are discussed in more detail in
Sections 4 and 6.

multi objective approaches have been adopted across the spectrum
in software quality [72], testing [78, 30, 36, 59, 120], requirements
[41, 102, 123], design [22, 98], and management [8, 12]. Sections 4
and 6 claim that multi objective SBSE also has an important role
to play in optimizing predictive models for several competing and
conflicting objectives.

Figure 2 gives an example of a multi objective solution Pareto
front from the domain of Requirements Optimization. The solu-
tion is a Pareto front of solutions each of which denotes a non–
dominated solution. A solution is Pareto optimal if there is no other
solution which better solves one of the two objectives without also
giving a worse solution for the other objective. In this way, the
Pareto front contains a set of choices, each of which balance in
an optimal manner, the trade off between the functional and non–
functional properties.

Like all metaheuristic search, one cannot be sure that one has
the true globally optimal Pareto front and so we seek to produce as
good an approximation as possible. Nevertheless, the Pareto front
can yield insights into the tradeoffs present.

3. PREVIOUS WORK ON SBSE FOR PRE-
DICTIVE MODELING

SBSE techniques have a natural application in Predictive Mod-
eling. In order to apply an SBSE approach to prediction, we need
to capture the objectives of the predictive modeling system as a set
of fitness functions which the SBSE algorithm can optimize. One

natural way in which this can be done is to use the degree of fit of
an equation to a set of data points as a fitness function.

The equation is sought from among a very large set of candidate
equations, using a Genetic Programming (GP) approach. In this
approach, the equation is not constrained to use only certain com-
binations of expressions and does not suffer from the limitations of
a standard linear regression fit, in which a comparatively limited
set of possibilities are usually available.

As with predictive modeling in general, software cost estimation
is one of the areas in which this search based predictive model-
ing approach has been most widely studied. Software project cost
estimation is known to be a very demanding task [106] with in-
herent uncertainties and a lack of reliable estimates. Software cost
estimation is further hampered by poor quality, missing and incom-
plete data sets. All of these problems are very well addressed by
SBSE. The SBSE approach is able to handle missing and incom-
plete data and can seek a best fit equation that may be piecewise;
revealing very different trends (and requiring consequently differ-
ent equations) for different parts of the problem space.

The first author to use a search based approach to project cost es-
timation was Dolado [32, 33, 34]. He used a GP approach to evolve
functions that fitted the observed data for project effort (measured
in function points).

In Dolado’s work, the population consists of a set of equations.
The operators that can be included in these GP-evolved equations
are very inclusive. Dolado includes arithmetic operators and other
potentially useful mathematical functions such as power, square
roots and log functions. Dolado’s fitness function is the mean squared
error,

mse =
1

n− 2

nX
i=1

(yi − ŷi)
2

Several other authors have also used GP to fit equations that pre-
dict quality, cost and effort [19, 20, 24, 37, 69, 70, 71, 80, 82,
83, 84, 108]. Other authors have compared GP to more ‘classi-
cal’ techniques such as linear regression [105] and have combined
search based approaches with approaches that use Artificial Neural
Networks [109] and Bayesian classifiers [21].

SBSE has also been used to build predictive models for defect
prediction [67], performance prediction [75] and for the classifica-
tion [112] and selection [73] of the metrics to be used in prediction.
However, SBSE has been much less applied to predicting locations
and numbers of bugs [1], which is surprising considering how im-
portant this is within the predictive modeling community [96].

4. CAN SBSE TELL US HOW MUCH DO
WE NEED TO KNOW IN ORDER TO BUILD
EFFECTIVE MODELS?

Building an effective model that can produce reasonable predic-
tions of a dependent variable set V requires at least two important
ingredients:

1. There has to be a set of variables A, the values of which
determine or at least influence the values of V .

2. There has to be sufficient information about values of A in
order to support the inference of a reasonable approximation
to the relationship that exists between A and V .

This may seem very obvious, but it is often overlooked or inad-
equately accounted for. Given a candidate set of ‘influencing fac-
tors’ (which, one hopes to be a superset of A) it is not unreasonable
to ask

“Which of the candidate variables’ values can affect
the values of the variables we seek to predict?”

This problem can be addressed in a variety of ways, one of which
involves an SBSE approach. Kirsopp et al. [73] showed how a sim-
ple local search could be used to find those sets of project features
that are good predictors of software project effort and cost. They
demonstrated how their approach could assist the performance of
Case Based Reasoning systems by identifying, from a set of 43 pos-
sible candidate project variables, those which are good predictors.

This approach is attractive because it is generic. For a candidate
set, A′, of prediction variables to be included in the model, the
search must allocate a fitness to A′. Kirsopp et al. simply ‘jack
knife’ the set of data to treat each project as a possible candidate for
prediction. They discard information about the chosen project and
seek to predict the discarded values using A′. This gives a fitness
based on prediction quality. The experiment can be repeated for
each project in the set to give an overall estimate of the predictive
quality of the set A′. The aggregate predictive quality denotes the
fitness of the choice of variables A′. In general, the closer A′ is to
A the better should be its fitness.

In a set of 43 variables there are 243 possible subsets so the pre-
diction variable space is too large to enumerate. However, using
a simple local search Kirsopp et al. were able to identify good
sets of prediction variables. They were also able to use the sim-
plicity of their hill climbing search technique to good advantage in
determining properties of the search space. They examined the fit-
ness landscape to reveal that the search problem had large basins of
attraction and clustered peaks, making hill climbing a reasonable
search technique to apply.

Their approach was evaluated with respect to Case Based Rea-
soning but this was not an inherent aspect of their approach. It
would be possible to use a similar approach to locate the set of
‘useful prediction variables’ for any predictive modeling approach.
Furthermore, there are other factors that could be taken into ac-
count. Kirsopp et al. published their results in 2002. Since that
time, there has been an increasing interest in multi objective opti-
mization for software engineering (as mentioned in the introduction
to this paper).

A multi objective approach to the problem of identifying a good
prediction set could take into account other factors as well as pre-
diction quality. There may be several factors that are important in
a good model, and there may be tensions between these factors be-
cause the achievement of one may be won only at the expense of
another (a very typical problem for multi objective optimization).
Such additional objectives for predictive modeling that a multi ob-
jective search based approach might seek to optimize include:

1. Predictive Quality. Clearly we shall want our predictions
to be reasonably accurate in order to be useful. Prediction
quality may not be a single simple objective. There are many
candidates for measuring prediction quality. Typically [24,
33] MMRE has been used. However, this assumes that we
simply wish to minimize the likely error. This may not al-
ways be the case. Also, MMRE is only one of many possible
metrics and there has been evidence to suggest that it may
not always select the best model [43].

It has also been argued that information theoretic measures
have an important role to play in SBSE as fitness functions
[50]. Such measures can capture information content and
information flow and make ideal fitness function candidates
because the solutions to be optimized in SBSE are typically
composed of information [53]. For measuring fitness of pre-

dictive models we may look to techniques founded on infor-
mation theory such as the Akaike Information Criterion [4]
and Schwartz’ Bayesian variant [103].
A prediction model that is often very accurate, but occasion-
ally exceptionally inaccurate may not be desirable though
it may have an apparently attractive MMRE. The decision
maker may seek a prediction system that reduces the risk of
an inaccurate prediction, even at the expense of overall pre-
dictive quality. There has been previous work on risk reduc-
tion for project planning using SBSE [12], but there has been
no work on risk as an objective to be minimized in search
based predictive modeling; the problem of incorporating risk
into search based models therefore remains open.

2. Cost. There may be costs associated with applying a predic-
tive model to obtain a prediction, introducing a cost–benefit
aspect to the optimization problem: we seek the best predic-
tion we can for a given cost. Cost–benefit analysis is useful
where there is a cost of collecting data for an attribute of in-
terest. For example, it may be difficult or demanding to ob-
tain some data, but relatively easy to obtain other data. There
may also be a monetary cost associated with obtaining infor-
mation, for example when such data is obtained from a third
party. In such situations we have a cost–benefit trade off for
which a multi objective search is ideally suited. However,
this has not previously been explored in the SBSE literature.

3. Privacy. Certain information may have degrees of privacy
and/or access control that may limit the applicability of the
model. It may be preferable to favour, wherever possible,
less private data in constructing or applying a predictive model.
Once again, a multi objective search based optimization could
handle this situation in a very natural manner, provided the
degree of privacy could be measured and, thereby, incorpo-
rated into a fitness function.

4. Readability Predictive models may be used to give insight to
the developer, in which case the readability of the model may
be important. Tim Menzies kindly pointed out that readabil-
ity and concision may be possible objectives in response to
an earlier draft of this paper, also suggesting how they might
be measured [45].

5. Coverage and Weighting. We may have several dependent
variables in V , for which a prediction is sought. It could
be that we can find sets of predictors that predict one of the
outcomes in V better than another. In such cases we may
seek a solution that is a good generalist, balancing all of the
dependent variables equally and seeking to predict all equally
well. Alternatively, some predicted variables may be more
important and we may therefore allocate a higher weight to
these.
Both these situations can be covered in a multi objective
search, using standard search based optimization techniques.
For coverage of a set of predictors, with equal weighting or
where we are unsure about the relative weights of each, we
can adopt a Pareto optimal approach, which treats all objec-
tives as equal. On the other hand, where we know the relative
weighting to be applied to the elements of V , we can simply
use a single objective approach in which the overall fitness is
a weighted sum of the predictive quality of each element in
V .

For complex, multiple objective problems such as these, where
the constraints may be tight and the objectives may be conflicting

and competing, multi objective SBSE has proved to be exception-
ally effective. It remains an open problem to apply multi objec-
tive SBSE to the problems of predictive modeling. In many cases,
a Pareto optimal approach will be appropriate because the objec-
tives will be competing and conflicting and there will be no way
to define suitable weights to balance them. Using a Pareto opti-
mal approach, we can obtain a Pareto front similar to that depicted
in Figure 2 that balances, for example, privacy against predictive
quality or cost against predictive quality. Such graphs are easier to
visualize in two dimensions, but it is also possible to optimize for
more than two objectives.

In addition to identifying which sources of data and which vari-
ables are important for predictive modeling, there is also a related
problem of determining which of the predictor variables in A will
have the greatest impact on the predictions that the model pro-
duces. For these highly ‘sensitive’ variables, we shall need to be
extra careful. This is particularly important in Software Engineer-
ing predictive models, because it is widely known that estimates in
Software Engineering are often very inaccurate [99, 107, 111].

If we can identify those sensitive elements of A that may have
a disproportionately large impact on the solution space, then we
can pay particular attention to ensuring that the estimates of these
elements is as accurate as possible. This may save time and may
increase uptake as a result. It may be cost effective to focus on
the top 10% of input variables that require careful prediction rather
than paying equal attention to all input variables. Similarly we can
prioritize the input variables so that more effort is spent calibrating
and checking the estimates of those for which the model is most
sensitive.

There has been previous work on such sensitivity analysis for
problems in Requirements Optimization [58]. Hitherto, this ap-
proach to search based sensitivity analysis remains unexplored for
predictive modeling.

5. CAN SBSE HELP US TO ADAPT MOD-
ELS TO NEW DATA?

Re-estimating the values of some ‘sensitive’ variables will present
us with new data. The new data will override untrusted existing
data because they are better estimated and therefore preferable.
However, new data is not always a replacement for existing poor
quality data. It may be that existing data is more trusted and new
data is viewed with healthy scepticism until it has been demon-
strated to provide reliable prediction. In this situation, a model
needs to take account of the relative lack of trust in the new data.
One obvious way in which this can be achieved is to incorporate a
Bayesian model into the prediction system [40].

Over the past decade, researchers in the optimization community
have considered models of Evolutionary Computation that involve
statistical computations concerning the distribution of candidate so-
lutions in a population of such solutions. This trend in research
on Estimation of Distributions Algorithms’ (EDAs) may have rel-
evance to the predictive modeling community. In particular, two
classes of EDAs are worth particular attention: the Bayesian Evo-
lutionary Algorithms (BEA) and the Bayesian Optimization Algo-
rithms (BOA). Both may have some value to the Predictive Model-
ing community.

In a BEA [121], the evolutionary algorithm seeks to find a model
of higher posterior probability at each iteration of the evolutionary
computation, starting with the prior probabilities. One of the out-
puts of a BEA is a Bayesian network. In this way, a BEA can be
considered to be one way in which a search based approach can be
used to construct a Bayesian Network.

A BOA [97] uses Bayesian modeling of the population in or-
der to predict the distribution of promising solutions. Though not
essential for the approach to work, the use of Bayesian modeling
allows for the incorporation of prior knowledge into the search con-
cerning good solutions and their building blocks. It is widely ob-
served that the inclusion of such domain knowledge can improve
the efficiency of the search. The BOA provides one direct mecha-
nism through which this domain knowledge can be introduced.

6. CAN SBSE HELP US TO STREAMLINE
THE DATA OR THE PROCESS?

SBSE techniques may be able to streamline the predictive mod-
eling process and also the data that is used as input to a model.
This section explains how SBSE has been used to trade functional
and non–functional properties and how this might yield insight into
the trade offs between functional and non–functional properties for
predictive models.

The section also briefly reviews the work on fitness function
smoothing and discusses how this may also have a resonance in
work on predictive modeling.

Section 4 briefly discussed the open problem of multi–objective
predictive model construction using SBSE to search for models
that balance many of the competing objectives that may go towards
making up a good model. However, the objectives considered could
all be characterized as being ‘functional’ objectives; they concern
the predictive quality, cost and characteristics of the predictions
made by the model. We may optimize for non–functional prop-
erties of the predictive model and may also seek a balance between
functional and non–functional aspects of the model.

There has been a long history of work on the optimization of
non–functional properties, such as temporal aspects of software
testing [6, 114] and stress testing [5, 23, 44]. Afzal et al. [2]
provide a survey of non–functional search based software testing.
Recent work on SBSE for non–functional properties [68, 116], has
also shown how functional and non–functional properties can be
jointly optimized in solutions that seek to balance their competing
needs.

White et al. [116] show how functional and non–functional prop-
erties can be traded for one another. They use GP to evolve a
pseudo-random number generator with low power consumption.
They do this by treating the functional property (randomness) and
the non–functional property (power consumption) as two objectives
to be solved using a Pareto optimal multi objective search. Using
the Pareto front, White et al. were able to explore the operators
that had most impact on the front, thereby gaining insight into the
relationship between the operations used to define a pseudo ran-
dom number generator and their impact on functional and non–
functional properties.

In using SBSE as an aid to predictive modeling we re-formulate
the question ‘how should we construct a model’ to ‘what are the
criteria to guide a search for the best model among the many can-
didates available’. This is a ‘reformulation’ of the software engi-
neering problem of predictive modeling as a search problem in the
style of Clark et al. [25]. With such a reformulation in mind, there
is no reason not to include non-functional aspects of the model in
the fitness function which guides the search.

In this way, we could search for a model that balances predictive
quality against the execution time of the model. For some appli-
cations, the execution time of certain model aspects may be high.
This could be a factor in determining whether a predictive model
is practical. In such situations it would be advantageous to factor
into the search the temporal aspects of the problem. Using such

a multi objective approach, the decision maker could consider a
Pareto front of trade offs between different models, each of which
optimally balances the choice between predictive quality and time
to produce the prediction.

As with the work of White et al. [116], the goal may not be nec-
essarily to produce a solution, but to yield insight into the trade offs
inherent in the modeling choices available. Producing a sufficiently
accurate and fast predictive model may be one possible aim, but we
should not overlook the value of simply understanding the balance
of trade offs and the effect of modeling choices on solution charac-
teristics. SBSE provides a very flexible and generic way to explore
these trade offs.

It is not uncommon for approaches to search based optimization
to estimate or approximate fitness, rather than computing it directly.
Optimizers can also interpolate between fitness values when con-
structing a new candidate solution from two parents. This is not
merely a convenience, where only approximate fitness is possible.
Rather, it has been shown that smoothing the search landscape can
improve the performance of the search [101]. Some of the tech-
niques used for fitness approximation and interpolation either im-
plicitly or explicitly accept that the fitness computed may not be
entirely reliable. There would appear to be a strong connection be-
tween such realistic acceptance of likely reliability and the problem
of constructing a predictive model. Perhaps some of the techniques
used to smooth fitness landscapes can be adapted for use in predic-
tive modeling.

7. CAN SBSE HELP PREDICTIVE MODEL-
ING GAIN GREATER ACCEPTANCE BY
THE SE COMMUNITY?

As described in Section 6, SBSE may not be used merely to
help find good quality predictive models from among the enormous
space of candidates. It may also be used as a tool for gaining in-
sight into the trade offs inherent in the choices between different
model characteristics, both functional and non–functional.

We might consider a predictive model to be a program. It takes
inputs in the form of data and produces output in the form of pre-
dictions. The inputs can be noisy, imprecise and only partly defined
and this raises many problems for modeling as we have discussed
earlier. The outputs are not measured according to correctness, but
accuracy, forcing a more nuanced statistical view of correctness.
Both these input and output characteristics make predictive models
unlike traditional programs, but this should not obscure our recog-
nition that predictive models are a form of program.

This observation underpins the application of Genetic Program-
ming (GP) (as briefly reviewed in Section 3). We know from the
literature on GP [79, 74] that GP is good at providing small pro-
grams that are nearly correct. Scaling GP to larger programs has
proved to be a challenge, though there has been recent progress in
this area [65, 78]. However, such GP scalability issues are not a
problem for predictive modeling, because the programs required,
although subtle, are not exceptionally long. Furthermore, tradi-
tional programming techniques cope inadequately with ill-defined,
partial and messy input data, whereas, this is precisely the area
where the GP approach excels.

In many ways, the GP community and the predictive modeling
communities have a similar challenges to overcome with regard to
acceptance within the wider Software Engineering community. The
perceived ‘credibility gap’, in part, may stem from the very nature
of the problems both communities seek to tackle. Messy and noisy
inputs are deprecated in Software Engineering and much effort has
gone into eliminating them. Both the GP and the predictive model-

ing communities are forced to embrace this ‘real world messiness’
and do not have the luxury of simply rejecting such inputs as ‘in-
valid’. Similarly, outputs for which no ‘correctness guarantee’ can
be provided sit uneasily on the shoulders of a science that grew out
of mathematics and logic and whose founders eschewed any such
notions [27, 42, 62].

SBSE researchers face a similar challenge to that faced by re-
searchers and practitioners working with predictive models. SBSE
is all about engineering optimization. Its motivation and approach
are inherently moulded by an engineering mindset, rather than a
more traditional mindset derived from mathematical logic. As such,
SBSE is concerned with improving not with proving. Perhaps the
same can be said of Predictive Modeling.

Fortunately there is a growing acceptance that Software Engi-
neers are ready to widen their understanding of correctness (and its
relationship to usefulness). Increasingly, software engineering is
maturing to the point where it is able to start to consider complex
messy real world problems, in which the software exhibits engi-
neering characteristics as well as mathematical and logical charac-
teristics [63]. The growing interest in SBSE may be one modest
example of this increasing trend [60], though it can also be seen
in the wide acceptance of other useful (though not guaranteed cor-
rect) techniques, such as dynamic determination of likely invariants
[35].

There are several ways in which SBSE researchers have found
it possible to increase acceptability of search based solutions and
these may extend to predictive modeling, because of the close simi-
larities outlined above. Four possible approaches to gaining greater
acceptance using SBSE are outlined below:

1. Justification. It may be thought that SBSE is a form of ‘Arti-
ficial Intelligence for Software Engineering’. However, this
observation can be misleading. While it is true that some
search techniques have been used for AI problems, the appli-
cation of search based optimization for Software Engineer-
ing is all about optimization and little about artificial intelli-
gence. One problem with an ‘AI for SE’ view point is that
some AI techniques lack an adequate explanation for the re-
sults they produce. This is a common criticism of Artificial
Neural Net approaches to predictive modeling [64].
SBSE is not about artificial intelligence; the only ‘intelli-
gence’ in the search process is supplied, a priori, by the
human in the form of the fitness function and problem rep-
resentation and in the construction of the search algorithm.
Also, by contrast with ANNs and other so-called ‘black box’
AI techniques, the SBSE approach is far from being ‘black
box’. Indeed, one of the great advantages of the SBSE ap-
proach is precisely that it is not a ‘black box’ approach. Al-
gorithms such as hill climbing and evolutionary algorithms
make available a detailed explanation of the results they pro-
duce in the trace of candidates considered. For example, in
hill climbing, each solution found is better than the last, ac-
cording to the fitness function. This means that there is a se-
quence of reasoning leading from one individual to the next,
which explains how the algorithm considered and discarded
each candidate solution on the way to its final results.

2. Human–in–the–loop Search based optimization is typically
automated. It is often the ability to automate the search pro-
cess that makes SBSE attractive [50, 53]. However, the search
process does not have to be fully automated. It is possible to
employ the human to guide fitness computation while the al-
gorithm progresses. For example, interactive evolution com-
putes fitness, but allows the human to make a contribution to

the fitness computation, thereby incorporating human knowl-
edge and judgement into the evolutionary search process.

Interactive evolution provides a very effective way to allow
the human a say in the construction of solutions. It may be
essential to do this, perhaps because fitness cannot be wholly
captured algorithmically or because there is a necessary ele-
ment of aesthetics or subjective judgement involved. In pre-
vious work on SBSE the possibility of interactive evolution
has been proposed for applications to program comprehen-
sion [51] and design [110]. It could also be used to increase
acceptance of solutions; if an engineer has helped to define
fitness, might such an engineer not be more likely to accept
its optimized results?

3. Optimization as Evaluation Using SBSE, any metric can
be treated as a fitness function [54]. Therefore, if we have a
candidate prediction system, we can use it as a fitness func-
tion and optimize solutions according to its determination of
high values from low. Essentially, we are using the predic-
tion system ‘in reverse’; we seek to find those sets of decision
variables in A that lead to high values of one of the predicted
variables in V . This could have interesting and useful appli-
cations in the validation of predictive models.

Many SBSE techniques can be configured to produce a se-
quence of candidate solutions with monotonically increasing
fitness. This is one of the advantages of the way a search
can auto-justify its findings. Using such a ‘monotonically in-
creasing fitness chain’ one can explore the degree to which
the prediction system provides good predictions. If it does,
then the candidate solutions in such a chain, should increas-
ingly exhibit properties that ought to lead to a greater value
of the predicted variable. In this way, SBSE can provide an
alternative perspective on prediction system validation.

4. Insight Search based approaches can be used to find the so-
called ‘building blocks’ of good solutions, rather than simply
to find the solutions themselves. The building blocks of an
optimal or near optimal solution are those sub parts of the
solution that are shared by all good solutions. The identifica-
tion of good building blocks can provide great insight into the
solution space. For example, in predictive modeling, finding
building blocks of good solutions may shed light on the rela-
tionship between clusters of related parameters that affect the
predictive quality of a solution. This could potentially be far
more revealing than principal component analysis, which it
subsumes to some extent, because it reveals relationships be-
tween components of solutions, not merely the components
themselves.

Building blocks are an inherent feature of the workings of
evolutionary approaches to optimization [28, 118]. However,
they can be extracted from any search based approach, in-
cluding local searchers [85]. Identifying the building blocks
of a solution using search can be an end in itself, rather than
a means to an end. It is not necessary to trust the algo-
rithm to produce a solution, merely that it is able to identify
building blocks likely to be worthy of consideration by the
human; a far less stringent requirement. The ultimate solu-
tion proposed may be constructed by a human engineer and
so the problem of acceptance simply evaporates. However,
the engineer can have been informed and guided on the se-
lection of parameters and construction of the model using a
search based process that flags up potentially valuable build-
ing blocks.

8. HOW CAN PREDICTIVE MODELING HELP
SBSE RESEARCHERS?

Section 7 explored the connections between predictive modeling
and the SBSE community and, in particular, the strong connec-
tions between GP-based approaches to SBSE and predictive mod-
eling. These connections suggest that work on predictive model-
ing may be as helpful to SBSE as SBSE is to predictive model-
ing. This section briefly explores the ways in which the results and
techniques from the predictive modeling community may be useful
to the SBSE research community1. The section briefly considers
three areas of SBSE for which predictive models could be help-
ful and where there has been only a little initial work. This work
demonstrates the need for predictive models but there remain many
interesting open problems and challenges.

1. Predictive Models as Fitness Functions The two key ingre-
dients for SBSE are the representation of candidate solutions
and the fitness function [50]. The fitness function guides the
search and so it is important that it correctly distinguishes
good solutions from bad. We might say that we want the
fitness function to be a good predictor of the attribute we
seek to optimize. Naturally, the success of the whole SBSE
enterprise rests upon finding fitness functions that are good
predictors. In this way, there is a direct contribution to be
made by the predictive modeling community.

Defining suitable fitness functions is far from straightforward
in many SBSE applications. For example, in Search Based
Software Testing, there has been work on exploring the de-
gree to which the fitness typically used is a good predictor
[76].

SBSE researchers also have to construct fitness functions that
fit existing data (for simulations). The predictive modeling
community has significant experience and expertise concern-
ing missing and incomplete data that clearly should have a
bearing on fitness function construction. Once we have a
good prediction system, based on available data, we may
think of this as a metric and, thereby, also think of it as a
fitness function [54]. We may therefore claim, as we set out
to do in the introduction that “Prediction Systems and Fitness
Functions too”.

2. Predicting Global Optima Proximity The SBSE approach
reformulates a Software Engineering problem as a search
problem. This implicitly creates a fitness landscape, like
those depicted in Figure 1. Predictive Modeling may help
to analyze and understand this landscape.

For example, if the landscape consists of one smooth hill,
then a simple hill climbing approach will find the global op-
timum. Gross et al. [47, 48] have explored the possibility
of predicting the proximity of a result to a global optima
for Search Based Software Testing. This is a very impor-
tant topic, not just in SBSE research, but also in optimization
in general. One of the advantages of greedy approaches for

1The author is from the SBSE community and is not an expert in
predictive modeling. As a result, this section is shorter than the
remainder of the paper. However, this should not be interpreted
as being anything other than a reflection of lack of expertise. An
author with greater expertise in predictive modeling would surely
produce a more detailed, authoritative and, no doubt, better account
of the ways in which predictive modeling can be useful to SBSE
researchers. Indeed, it is to be hoped that such a paper (or papers)
may emerge from the predictive modeling community; it would be
very welcome in the SBSE community.

single objective test case selection and minimization [120] is
the fact that greedy algorithms are known to be within a log
of the global optimum.

3. Effort prediction Some searches using SBSE can consume
considerable computation resources. While greedy algorithms
and hill climbing tend to be fast and efficient (at the expense
of often locating sub optimal solutions), more sophisticated
search techniques such as evolutionary algorithms can be
computationally intensive. This is important, since most of
the existing work on SBSE has focused on the use of pop-
ulation based evolutionary algorithms, such as genetic algo-
rithms and genetic programming [60].

There is clearly scope for predictive modeling here. Predict-
ing effort is one of the most widely studied aspects of predic-
tive modeling, particularly with relation to software project
cost and effort estimation [106]. Lammermann and Wegener
have explored the possibility of predicting effort in Search
Based Software Testing [77]. However, there is much more
work that can be done on predictive models to inform SBSE.

If effort can be predicted, then perhaps it can be controlled
and thereby managed or even reduced. For example, there is
work on transformation for search based testing, that seeks to
reduce computation search effort by transforming programs
for increased ‘testability’ [52, 56, 87]. This work is currently
guided by known problems for testability. A more sophisti-
cated approach might take account of predictions from mod-
els of testability. As was explained in Figure 1, different
landscapes have very different properties, with some being
more amenable to search based optimization. Therefore, the
ability to predict features of the fitness landscape would be
extremely attractive.

9. CONCLUSIONS
This paper has explored some of the ways in which SBSE re-

search may assist predictive modeling, outlining some open prob-
lems and challenges for the SBSE community. The paper also
briefly reviews existing work on SBSE techniques for predictive
modeling and how they may be further extended.

There is a close relationship between the challenges faced by
both the SBSE and the Predictive Modeling communities. It seems
likely that any research flow of ideas will be bi-directional. There
are many ways in which the results and techniques emerging from
the predictive modeling community may also be of benefit to re-
searchers in SBSE. The connections between SBSE research work
and predictive modeling outlined in this paper suggest that there
may be significant value in a joint workshop to further explore these
connections, relationships and to cross pollinate ideas between the
two research communities.

10. ACKNOWLEDGEMENTS
The ideas presented here have been shaped by discussions with

Giulio Antoniol, Edmund Burke, John Clark, Max Di Penta, Jose
Javier Dolado, Norman Fenton, Robert Hierons, Mike Holcombe,
Yue Jia, Brian Jones, Bill Langdon, Spiros Mancoridis, Phil McMinn,
Tim Menzies, Marc Roper, Conor Ryan, Martin Shepperd, Paolo
Tonella, Darrell Whitley, Xin Yao, Shin Yoo and Yuanyuan Zhang.
I apologize to those I may have neglected to mention. My work is
part funded by the generous support for grants from the EPSRC,
the EU and Motorola.

11. REFERENCES

[1] W. Afzal, R. Torkar, and R. Feldt. Search-based prediction
of fault count data. In Proceedings of the 1st International
Symposium on Search Based Software Engineering (SSBSE
’09), pages 35–38, Cumberland Lodge, Windsor, UK,
13-15 May 2009. IEEE Computer Society.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of
search-based testing for non-functional system properties.
Information and Software Technology, 51(6):957–976,
2009.

[3] J. S. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro.
An Evolutionary Approach to Estimating Software
Development Projects. Information and Software
Technology, 43(14):875–882, December 2001.

[4] H. Akaike. A new look at the statistical model
identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974.

[5] J. T. Alander, T. Mantere, and P. Turunen. Genetic
Algorithm based Software Testing. In Proceedings of the
3rd International Conference on Artificial Neural Networks
and Genetic Algorithms (ICANNGA ’97), pages 325–328,
Norwich, UK, April 1997. Springer-Verlag.

[6] J. T. Alander, T. Mantere, P. Turunen, and J. Virolainen. GA
in Program Testing. In Proceedings of the 2nd Nordic
Workshop on Genetic Algorithms and their Applications
(2NWGA), pages 205–210, Vaasa, Finland, 19-23 August
1996.

[7] E. Alba and F. Chicano. Finding Safety Errors with ACO.
In Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07), pages
1066–1073, London, England, 7-11 July 2007. ACM.

[8] E. Alba and F. Chicano. Software Project Management with
GAs. Information Sciences, 177(11):2380–2401, June 2007.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K.
Panesar-Walawege. A systematic review of the application
and empirical investigation of search-based test-case
generation. IEEE Transactions on Software Engineering,
2010. To appear.

[10] G. Antoniol, M. Di Penta, and M. Harman. Search-based
Techniques for Optimizing Software Project Resource
Allocation. In Proceedings of the 2004 Conference on
Genetic and Evolutionary Computation (GECCO ’04),
volume 3103/2004 of Lecture Notes in Computer Science,
pages 1425–1426, Seattle, Washington, USA, 26-30 June
2004. Springer Berlin / Heidelberg.

[11] G. Antoniol, M. Di Penta, and M. Harman. Search-based
Techniques Applied to Optimization of Project Planning for
a Massive Maintenance Project. In Proceedings of the 21st
IEEE International Conference on Software Maintenance
(ICSM ’05), pages 240–249, Los Alamitos, California,
USA, 25-30 September 2005. IEEE Computer Society.

[12] G. Antoniol, S. Gueorguiev, and M. Harman. Software
project planning for robustness and completion time in the
presence of uncertainty using multi objective search based
software engineering. In ACM Genetic and Evolutionary
Computation COnference (GECCO 2009), pages
1673–1680, Montreal, Canada, 8th – 12th July 2009.

[13] F. Asadi, G. Antoniol, and Y. Guéhéneuc. Concept locations
with genetic algorithms: A comparison of four distributed
architectures. In Proceedings of 2nd International
Symposium on Search based Software Engineering (SSBSE

2010), page To Appear, Benevento, Italy, 2010. IEEE
Computer Society Press.

[14] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The
Next Release Problem. Information and Software
Technology, 43(14):883–890, December 2001.

[15] P. Baker, M. Harman, K. Steinhöfel, and A. Skaliotis.
Search Based Approaches to Component Selection and
Prioritization for the Next Release Problem. In Proceedings
of the 22nd IEEE International Conference on Software
Maintenance (ICSM ’06), pages 176–185, Philadelphia,
Pennsylvania, 24-27 September 2006. IEEE Computer
Society.

[16] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary Testing in the Presence of Loop-Assigned
Flags: A Testability Transformation Approach. In
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’04),
pages 108–118, Boston, Massachusetts, USA, 11-14 July
2004. ACM.

[17] A. Baresel, H. Sthamer, and M. Schmidt. Fitness Function
Design to Improve Evolutionary Structural Testing. In
Proceedings of the 2002 Conference on Genetic and
Evolutionary Computation (GECCO ’02), pages
1329–1336, New York, USA, 9-13 July 2002. Morgan
Kaufmann Publishers.

[18] L. Bottaci. Instrumenting Programs with Flag Variables for
Test Data Search by Genetic Algorithms. In Proceedings of
the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02), pages 1337–1342, New York,
USA, 9-13 July 2002. Morgan Kaufmann Publishers.

[19] S. Bouktif, D. Azar, D. Precup, H. Sahraoui, and B. Kégl.
Improving Rule Set Based Software Quality Prediction: A
Genetic Algorithm-based Approach. Journal of Object
Technology, 3(4):227–241, 2004.

[20] S. Bouktif, B. Kégl, and H. Sahraoui. Combining Software
Quality Predictive Models: An Evolutionary Approach. In
Proceedings of the International Conference on Software
Maintenance (ICSM ’02), pages 385–392, MontrÃl’al,
Canada, 3-6 October 2002. IEEE Computer Society.

[21] S. Bouktif, H. Sahraoui, and G. Antoniol. Simulated
Annealing for Improving Software Quality Prediction. In
Proceedings of the 8th annual Conference on Genetic and
Evolutionary Computation (GECCO ’06), pages
1893–1900, Seattle, Washington, USA, 8-12 July 2006.
ACM.

[22] M. Bowman, L. Briand, and Y. Labiche. Multi-objective
genetic algorithms to support class responsibility
assignment. In 23rd IEEE International Conference on
Software Maintenance (ICSM 2007), Los Alamitos,
California, USA, October 2007. IEEE Computer Society
Press. To Appear.

[23] L. C. Briand, Y. Labiche, and M. Shousha. Stress Testing
Real-Time Systems with Genetic Algorithms. In
Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages
1021–1028, Washington, D.C., USA, 25-29 June 2005.
ACM.

[24] C. J. Burgess and M. Lefley. Can Genetic Programming
Improve Software Effort Estimation? A Comparative
Evaluation. Information and Software Technology,
43(14):863–873, December 2001.

[25] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones,

M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem. IEE Proceedings — Software,
150(3):161–175, 2003.

[26] S. L. Cornford, M. S. Feather, J. R. Dunphy, J. Salcedo, and
T. Menzies. Optimizing Spacecraft Design - Optimization
Engine Development: Progress and Plans. In Proceedings
of the IEEE Aerospace Conference, pages 3681–3690, Big
Sky, Montana, March 2003.

[27] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured
Programming. Academic Press, London, 3 edition, 1972.

[28] K. De Jong. On using genetic algorithms to search program
spaces. In J. J. Grefenstette, editor, Genetic Algorithms and
their Applications: Proceedings of the second international
Conference on Genetic Algorithms, pages 210–216,
Hillsdale, NJ, USA, 28-31 July 1987. Lawrence Erlbaum
Associates.

[29] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P.
Coutinho. The human competitiveness of search based
software engineering. In Proceedings of 2nd International
Symposium on Search based Software Engineering (SSBSE
2010), page To Appear, Benevento, Italy, 2010. IEEE
Computer Society Press.

[30] C. Del Grosso, G. Antoniol, M. Di Penta, P. Galinier, and
E. Merlo. Improving Network Applications Security: A
New Heuristic to Generate Stress Testing Data. In
Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages
1037–1043, Washington, D.C., USA, 25-29 June 2005.
ACM.

[31] E. Díaz, J. Tuya, R. Blanco, and J. J. Dolado. A Tabu
Search Algorithm for Structural Software Testing.
Computers & Operations Research, 35(10):3052–3072,
October 2008.

[32] J. J. Dolado. A Validation of the Component-based Method
for Software Size Estimation. IEEE Transactions on
Software Engineering, 26(10):1006–1021, October 2000.

[33] J. J. Dolado. On the Problem of the Software Cost Function.
Information and Software Technology, 43(1):61–72,
January 2001.

[34] J. J. Dolado and L. Fernandez. Genetic Programming,
Neural Networks and Linear Regression in Software Project
Estimation. In C. Hawkins, M. Ross, G. Staples, and J. B.
Thompson, editors, Proceedings of International
Conference on Software Process Improvement, Research,
Education and Training (INSPIRE III), pages 157–171,
London, UK, 10-11 September 1998. British Computer
Society.

[35] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 27(2):1–25, Feb. 2001.

[36] R. M. Everson and J. E. Fieldsend. Multiobjective
Optimization of Safety Related Systems: An Application to
Short-Term Conflict Alert. IEEE Transactions on
Evolutionary Computation, 10(2):187–198, April 2006.

[37] M. P. Evett, T. M. Khoshgoftaar, P. der Chien, and E. B.
Allen. Using Genetic Programming to Determine Software
Quality. In Proceedings of the 12th International Florida
Artificial Intelligence Research Society Conference
(FLAIRS ’99), pages 113–117, Orlando, FL, USA, 3-5 May
1999. Florida Research Society.

[38] M. S. Feather, S. L. Cornford, J. D. Kiper, and T. Menzies.
Experiences using Visualization Techniques to Present
Requirements, Risks to Them, and Options for Risk
Mitigation. In Proceedings of the International Workshop
on Requirements Engineering Visualization (REV ’06),
pages 10–10, Minnesota, USA, 11 September 2006. IEEE.

[39] M. S. Feather and T. Menzies. Converging on the Optimal
Attainment of Requirements. In Proceedings of the 10th
IEEE International Conference on Requirements
Engineering (RE ’02), pages 263–270, Essen, Germany,
9-13 September 2002. IEEE.

[40] N. E. Fenton and M. Neil. A critique of software defect
prediction models. IEEE Transactions on Software
Engineering, 25(5):675–689, 1999.

[41] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and
Y. Zhang. “Fairness Analysis" in Requirements
Assignments. In Proceedings of the 16th IEEE
International Requirements Engineering Conference (RE
’08), pages 115–124, Barcelona, Catalunya, Spain, 8-12
September 2008. IEEE Computer Society.

[42] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor, Mathematical Aspects of Computer
Science, volume 19 of Symposia in Applied Mathematics,
pages 19–32. American Mathematical Society, Providence,
RI, 1967.

[43] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A
simulation study of the model evaluation criterion mmre.
IEEE Transactions on Software Engineering, 29:985–995,
2003.

[44] V. Garousi, L. C. Briand, and Y. Labiche. Traffic-aware
Stress Testing of Distributed Real-Time Systems based on
UML Models using Genetic Algorithms. Journal of
Systems and Software, 81(2):161–185, February 2008.

[45] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet.
Automatically finding the control variables for complex
system behavior. Automated Software Engineering, page to
appear.

[46] N. Gold, M. Harman, Z. Li, and K. Mahdavi. Allowing
Overlapping Boundaries in Source Code using a Search
Based Approach to Concept Binding. In Proceedings of the
22nd IEEE International Conference on Software
Maintenance (ICSM ’06), pages 310–319, Philadelphia,
USA, 24-27 September 2006. IEEE Computer Society.

[47] H.-G. Groß, B. F. Jones, and D. E. Eyres. Structural
Performance Measure of Evolutionary Testing applied to
Worst-Case Timing of Real-Time Systems. IEE
Proceedings - Software, 147(2):25–30, April 2000.

[48] H.-G. Groß and N. Mayer. Evolutionary Testing in
Component-based Real-Time System Construction. In
E. Cantú-Paz, editor, Proceedings of the 2002 Conference
on Genetic and Evolutionary Computation (GECCO ’02),
pages 207–214, New York, USA, 9-13 July 2002. Morgan
Kaufmann Publishers.

[49] R. J. Hall. A quantum algorithm for software engineering
search. In Automated Software Engineering (ASE 2009),
pages 40–51, Auckland, New Zealand, 2009. IEEE
Computer Society.

[50] M. Harman. The current state and future of search based
software engineering. In L. Briand and A. Wolf, editors,
Future of Software Engineering 2007, pages 342–357, Los
Alamitos, California, USA, 2007. IEEE Computer Society
Press.

[51] M. Harman. Search based software engineering for program
comprehension. In 15th International Conference on
Program Comprehension (ICPC 07), pages 3–13, Banff,
Canada, 2007. IEEE Computer Society Press.

[52] M. Harman. Open problems in testability transformation
(keynote). In 1st International Workshop on Search Based
Testing (SBT 2008), Lillehammer, Norway, 2008.

[53] M. Harman. Why the virtual nature of software makes it
ideal for search based optimization. In 13th International
Conference on Fundamental Approaches to Software
Engineering (FASE 2010), pages 1–12, Paphos, Cyprus,
March 2010.

[54] M. Harman and J. A. Clark. Metrics Are Fitness Functions
Too. In Proceedings of the 10th IEEE International
Symposium on Software Metrics (METRICS ’04), pages
58–69, Chicago, USA, 11-17 September 2004. IEEE
Computer Society.

[55] M. Harman, R. Hierons, and M. Proctor. A New
Representation and Crossover Operator for Search-based
Optimization of Software Modularization. In Proceedings
of the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02), pages 1351–1358, New York,
USA, 9-13 July 2002. Morgan Kaufmann Publishers.

[56] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability Transformation.
IEEE Transactions on Software Engineering, 30(1):3–16,
January 2004.

[57] M. Harman and B. F. Jones. Search based software
engineering. Information and Software Technology,
43(14):833–839, Dec. 2001.

[58] M. Harman, J. Krinke, J. Ren, and S. Yoo. Search based
data sensitivity analysis applied to requirement engineering.
In ACM Genetic and Evolutionary Computation
COnference (GECCO 2009), pages 1681–1688, Montreal,
Canada, 8th – 12th July 2009.

[59] M. Harman, K. Lakhotia, and P. McMinn. A multi-objective
approach to search-based test data generation. In GECCO
2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 1098 – 1105, London,
UK, July 2007. ACM Press.

[60] M. Harman, A. Mansouri, and Y. Zhang. Search based
software engineering: A comprehensive analysis and
review of trends techniques and applications. Technical
Report TR-09-03, Department of Computer Science, King’s
College London, April 2009.

[61] M. Harman and L. Tratt. Pareto optimal search-based
refactoring at the design level. In GECCO 2007:
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1106 – 1113, London,
UK, July 2007. ACM Press.

[62] C. A. R. Hoare. An Axiomatic Basis of Computer
Programming. Communications of the ACM, 12:576–580,
1969.

[63] C. A. R. Hoare. How did software get so reliable without
proof? In IEEE International Conference on Software
Engineering (ICSE’96), Los Alamitos, California, USA,
1996. IEEE Computer Society Press. Keynote talk.

[64] A. Idri, T. M. Khoshgoftaar, and A. Abran. Can neural
networks be easily interpreted in software cost estimation?,
2003.

[65] D. Jackson. Self-adaptive focusing of evolutionary effort in
hierarchical genetic programming. In A. Tyrrell, editor,

2009 IEEE Congress on Evolutionary Computation,
pages –, Trondheim, Norway, 18-21 May 2009. IEEE
Computational Intelligence Society, IEEE Press.

[66] O. Jalali, T. Menzies, and M. Feather. Optimizing
Requirements Decisions With KEYS. In Proceedings of the
4th International Workshop on Predictor Models in
Software Engineering (PROMISE ’08), pages 79–86,
Leipzig, Germany, 12-13 May 2008. ACM.

[67] G. Jarillo, G. Succi, W. Pedrycz, and M. Reformat.
Analysis of Software Engineering Data using
Computational Intelligence Techniques. In Proceedings of
the 7th International Conference on Object Oriented
Information Systems (OOIS ’01), pages 133–142, Calgary,
Canada, 27-29 August 2001. Springer.

[68] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen.
Automated Microprocessor Stressmark Generation. In
Proceedings of the 14th IEEE International Symposium on
High Performance Computer Architecture (HPCA ’08),
pages 229–239, Salt Lake City, UT, USA, 16-20 February
2008. IEEE.

[69] T. M. Khoshgoftaar and Y. Liu. A Multi-Objective Software
Quality Classification Model Using Genetic Programming.
IEEE Transactions on Reliability, 56(2):237–245, June
2007.

[70] T. M. Khoshgoftaar, Y. Liu, and N. Seliya. Genetic
Programming-based Decision Trees for Software Quality
Classification. In Proceedings of the 15th International
Conference on Tools with Artificial Intelligence (ICTAI
’03), pages 374–383, Sacramento, California, USA, 3-5
November 2003. IEEE Computer Society.

[71] T. M. Khoshgoftaar, N. Seliya, and D. J. Drown. On the
Rarity of Fault-prone Modules in Knowledge-based
Software Quality Modeling. In Proceedings of the 20th
International Conference on Software Engineering and
Knowledge Engineering (SEKE ’08), pages 279–284, San
Francisco, CA, USA, 1-3 July 2008. Knowledge Systems
Institute Graduate School.

[72] T. M. Khoshgoftaar, L. Yi, and N. Seliya. A multiobjective
module-order model for software quality enhancement.
IEEE Transactions on Evolutionary Computation,
8(6):593– 608, December 2004.

[73] C. Kirsopp, M. Shepperd, and J. Hart. Search heuristics,
case-based reasoning and software project effort prediction.
In GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1367–1374,
San Francisco, CA 94104, USA, 9-13 July 2002. Morgan
Kaufmann Publishers.

[74] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[75] M. Kuperberg, K. Krogmann, and R. Reussner.
Performance Prediction for Black-Box Components Using
Reengineered Parametric Behaviour Models. In
Proceedings of the 11th International Symposium on
Component-Based Software Engineering (CBSE ’08),
volume 5282 of LNCS, pages 48–63, Karlsruhe, Germany,
14-17 October 2008. Springer.

[76] F. Lammermann, A. Baresel, and J. Wegener. Evaluating
Evolutionary Testability with Software-Measurements. In
Proceedings of the 2004 Conference on Genetic and
Evolutionary Computation (GECCO ’04), volume 3103 of
Lecture Notes in Computer Science, pages 1350–1362,

Seattle, Washington, USA, 26-30 June 2004. Springer
Berlin / Heidelberg.

[77] F. Lammermann and S. Wappler. Benefits of Software
Measures for Evolutionary White-Box Testing. In
Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages
1083–1084, Washington, D.C., USA, 25-29 June 2005.
ACM.

[78] W. B. Langdon, M. Harman, and Y. Jia. Multi objective
mutation testing with genetic programming. In 4th Testing
Academia and Industry Conference — Practice And
Research Techniques (TAIC PART’09), pages 21–29,
Windsor, UK, 4th–6th September 2009.

[79] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

[80] M. Lefley and M. J. Shepperd. Using Genetic Programming
to Improve Software Effort Estimation Based on General
Data Sets. In Proceedings of the 2003 Conference on
Genetic and Evolutionary Computation (GECCO ’03),
volume 2724 of LNCS, pages 2477–2487, Chicago, Illinois,
USA, 12-16 July 2003. Springer.

[81] Z. Li, M. Harman, and R. M. Hierons. Search Algorithms
for Regression Test Case Prioritization. IEEE Transactions
on Software Engineering, 33(4):225–237, April 2007.

[82] Y. Liu and T. Khoshgoftaar. Reducing Overfitting in
Genetic Programming Models for Software Quality
Classification. In Proceedings of the 8th IEEE International
Symposium on High Assurance Systems Engineering
(HASE ’04), pages 56–65, Tampa, Florida, USA, 25-26
March 2004. IEEE Computer Society.

[83] Y. Liu and T. M. Khoshgoftaar. Genetic Programming
Model for Software Quality Classification. In Proceedings
of the 6th IEEE International Symposium on
High-Assurance Systems Engineering: Special Topic:
Impact of Networking (HASE ’01), pages 127–136, Boco
Raton, FL, USA, 22-24 October 2001. IEEE Computer
Society.

[84] Y. Liu and T. M. Khoshgoftaar. Building Decision Tree
Software Quality Classification Models Using Genetic
Programming. In Proccedings of the Genetic and
Evolutionary Computation Conference (GECCO ’03),
volume 2724 of LNCS, pages 1808–1809, Chicago, Illinois,
USA, 12-16 July 2003. Springer.

[85] K. Mahdavi, M. Harman, and R. M. Hierons. A multiple
hill climbing approach to software module clustering. In
IEEE International Conference on Software Maintenance,
pages 315–324, Los Alamitos, California, USA, Sept. 2003.
IEEE Computer Society Press.

[86] P. McMinn. Search-based Software Test Data Generation:
A Survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[87] P. McMinn. Search-based failure discovery using testability
transformations to generate pseudo-oracles. In F. Rothlauf,
editor, Genetic and Evolutionary Computation Conference
(GECCO 2009), pages 1689–1696, Montreal, Québec,
Canada, 2009. ACM.

[88] P. McMinn, D. Binkley, and M. Harman. Testability
transformation for efficient automated test data search in the
presence of nesting. In UK Software Testing Workshop (UK
Test 2005), Sheffield, UK, Sept. 2005.

[89] P. McMinn, D. Binkley, and M. Harman. Empirical
evaluation of a nesting testability transformation for

evolutionary testing. ACM Transactions on Software
Engineering and Methodology, 18(3), May 2009. Article
11.

[90] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The
Species per Path Approach to Search-based Test Data
Generation. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA ’06),
pages 13–24, Portland, Maine, USA., 17-20 July 2006.
ACM.

[91] P. McMinn and M. Holcombe. The State Problem for
Evolutionary Testing. In Proceedings of the 2003
Conference on Genetic and Evolutionary Computation
(GECCO ’03), volume 2724 of LNCS, pages 2488–2498,
Chicago, Illinois, USA, 12-16 July 2003. Springer.

[92] B. S. Mitchell and S. Mancoridis. Using Heuristic Search
Techniques to Extract Design Abstractions from Source
Code. In Proceedings of the 2002 Conference on Genetic
and Evolutionary Computation (GECCO ’02), pages
1375–1382, New York, USA, 9-13 July 2002. Morgan
Kaufmann Publishers.

[93] B. S. Mitchell and S. Mancoridis. On the Automatic
Modularization of Software Systems using the Bunch Tool.
IEEE Transactions on Software Engineering,
32(3):193–208, March 2006.

[94] B. S. Mitchell, M. Traverso, and S. Mancoridis. An
architecture for distributing the computation of software
clustering algorithms. In IEEE/IFIP Proceedings of the
Working Conference on Software Architecture (WICSA ’01),
pages 181–190, Amsterdam, Netherlands, 2001. IEEE
Computer Society.

[95] M. O’Keeffe and M. Ó Cinnéide. Search-based Software
Maintenance. In Proceedings of the Conference on Software
Maintenance and Reengineering (CSMR ’06), pages
249–260, Bari, Italy, 22-24 March 2006. IEEE Computer
Society.

[96] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems.
IEEE Transactions on Software Engineering,
31(4):340–355, 2005.

[97] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The
Bayesian Optimization Algorithm. Technical Report
IlliGAL 99003, Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign, Urbana, IL,
1999.

[98] K. Praditwong, M. Harman, and X. Yao. Software module
clustering as a multi-objective search problem. IEEE
Transactions on Software Engineering, 2010. to appear.

[99] R. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill Book Company Europe,
Maidenhead, Berkshire, England, UK., 3rd edition, 1992.
European adaptation (1994). Adapted by Darrel Ince. ISBN
0-07-707936-1.

[100] O. Räihä. A survey on search based software design.
Technical Report Technical Report D-2009-1, Department
of Computer Sciences, University of Tampere, 2009.

[101] A. Ratle. Accelerating the convergence of evolutionary
algorithms by fitness landscape approximation. In A. E.
Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel,
editors, 5th Parallel Problem Solving from Nature
(PPSN’98), volume 1498 of Lecture Notes in Computer
Science (LNCS), pages 87–96. Springer-Verlag (New York),
Amsterdam, The Netherlands, Sept. 1998.

[102] M. O. Saliu and G. Ruhe. Bi-objective release planning for
evolving software systems. In I. Crnkovic and A. Bertolino,
editors, Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE) 2007, pages 105–114.
ACM, Sept. 2007.

[103] G. E. Schwartz. Estimating the dimension of a model.
Annals of Mathematical Statistics, 6:461–464, 1978.

[104] O. Seng, M. Bauer, M. Biehl, and G. Pache. Search-based
Improvement of Subsystem Decompositions. In
Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages
1045–1051, Washington, D.C., USA, 25-29 June 2005.
ACM.

[105] Y. Shan, R. I. McKay, C. J. Lokan, and D. L. Essam.
Software Project Effort Estimation Using Genetic
Programming. In Proceedings of the 2002 IEEE
International Conference on Communications, Circuits and
Systems and West Sino Expositions (ICCCSWSE ’02),
volume 2, pages 1108–1112, Chengdu, China, 29 June-1
July 2002. IEEE.

[106] M. Shepperd. Software economics. In L. Briand and
A. Wolf, editors, Future of Software Engineering 2007,
pages 304–315, Los Alamitos, California, USA, 2007.
IEEE Computer Society Press.

[107] M. J. Shepperd. Foundations of software measurement.
Prentice Hall, 1995.

[108] A. F. Sheta. Estimation of the COCOMO Model Parameters
Using Genetic Algorithms for NASA Software Projects.
Journal of Computer Science, 2(2):118–123, 2006.

[109] K. K. Shukla. Neuro-Genetic Prediction of Software
Development Effort. Information and Software Technology,
42(10):701–713, July 2000.

[110] C. L. Simons and I. C. Parmee. Agent-based Support for
Interactive Search in Conceptual Software Engineering
Design. In M. Keijzer, editor, Proceedings of the 10th
Annual Conference on Genetic and Evolutionary
Computation (GECCO ’08), pages 1785–1786, Atlanta,
GA, USA, 12-16 July 2008. ACM.

[111] I. Sommerville. Software Engineering. Addison-Wesley,
6th edition, 2001.

[112] R. Vivanco and D. Jin. Enhancing Predictive Models using
Principal Component Analysis and Search Based Metric
Selection: A Comparative Study. In Proceedings of the
Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’08), pages
273–275, Kaiserslautern, Germany, 9-10 October 2008.
ACM.

[113] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary Test
Environment for Automatic Structural Testing. Information
and Software Technology Special Issue on Software
Engineering using Metaheuristic Innovative Algorithms,
43(14):841–854, December 2001.

[114] J. Wegener and F. Mueller. A Comparison of Static
Analysis and Evolutionary Testing for the Verification of
Timing Constraints. Real-Time Systems, 21(3):241–268,
November 2001.

[115] W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In International Conference on Software Engineerign
(ICSE 2009), pages 364–374, Vancouver, Canada, 2009.

[116] D. R. White, J. A. Clark, J. Jacob, and S. M. Poulding.
Searching for Resource-Efficient Programs: Low-Power
Pseudorandom Number Generators. In M. Keijzer, editor,
Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’08), pages
1775–1782, Atlanta, GA, USA, 12-16 July 2008. ACM.

[117] G. Winter, J. Periaux, M. Galan, and P. Cuesta. Genetic
Algorithms in Engineering and Computer Science. Wiley,
1995.

[118] A. S. Wu and R. K. Lindsay. A comparison of the fixed and
floating building block representation in the genetic
algorithm. Evolutionary Computation, 4(2):169–193, 1997.

[119] S. Yoo and M. Harman. Regression testing minimisation,
selection and prioritisation: A survey. Journal of Software
Testing, Verification and Reliability. to appear.

[120] S. Yoo and M. Harman. Pareto efficient multi-objective test
case selection. In International Symposium on Software
Testing and Analysis (ISSTA’07), pages 140 – 150, London,
United Kingdom, July 2007. Association for Computer
Machinery.

[121] B.-T. Zhang. A bayesian framework for evolutionary
computation. In 1999 Congress on Evolutionary
Computation, pages 722–728, Piscataway, NJ, 1999. IEEE.

[122] Y. Zhang, A. Finkelstein, and M. Harman. Search based
requirements optimisation: Existing work and challenges.
In International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ’08), volume 5025, pages 88–94, Montpellier,
France, 2008. Springer LNCS.

[123] Y. Zhang, M. Harman, and A. Mansouri. The
multi-objective next release problem. In GECCO 2007:
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1129 – 1137, London,
UK, July 2007. ACM Press.

