
Augmenting Test Suites Effectiveness by Increasing Output Diversity

Nadia Alshahwan and Mark Harman
CREST Centre

University College London
Malet Place, London, WC1E 6BT, U.K.

{nadia.alshahwan.10,mark.harman}@ucl.ac.uk

Abstract—The uniqueness (or otherwise) of test outputs
ought to have a bearing on test effectiveness, yet it has not
previously been studied. In this paper we introduce a novel
test suite adequacy criterion based on output uniqueness. We
propose 4 definitions of output uniqueness with varying degrees
of strictness. We present a preliminary evaluation for web ap-
plication testing that confirms that output uniqueness enhances
fault-finding effectiveness. The approach outperforms random
augmentation in fault finding ability by an overall average of
280% in 5 medium sized, real world web applications.

Keywords-SBSE; HTML output; Web applications

I. INTRODUCTION

Why does structural coverage remain so prevalent as
the only adequacy criterion considered in so many studies
of software testing? This paper argues that we need more
research on complementary criteria and proposes one based
on uniqueness. Although higher coverage may increase
fault detection, there is much controversy about coverage
being the only contributing factor [6]. We propose a novel
criterion that is based on the uniqueness of the program’s
output to enhance traditional coverage criteria. We expect
that raising the diversity of the output could lead to test
suites that are more effective at exposing faults.

Faults with high severity often propagate to the observ-
able output and affect user perception of an application
[5]. Therefore, the output provides a valuable resource for
identifying unexpected behaviour that is more critical from a
user’s point of view. In applications with rich outputs such
as web applications, the output provides a more valuable
resource for our proposed criterion. The complexity and
richness of the output may also make it more likely for faults
to propagate to the output and for the approach to be effec-
tive. This is the proposition upon which this paper reports.

In this paper we apply our uniqueness approach to
augment test suites that were created using traditional
structural coverage criterion (branch coverage) with test
cases that provide unique outputs. We report results for 4
output uniqueness definitions applied to web applications.
The contributions of this paper are as follows:

• The introduction of a novel test adequacy criterion based
on output uniqueness.

• Four definitions of output uniqueness in the context of
web applications.

• An initial evaluation on 5 real world web applications
of the 4 output uniqueness definitions in terms of their
ability to find real faults. The initial results indicate that
output uniqueness is a valuable criterion for generating
test suites that are more effective at exposing faults.
Uniqueness outperforms random augmentation by an
average of 280% over all applications.

II. APPROACH

Checking the output of a test case is a comparatively
cheap operation: It neither requires instrumentation of the
code nor the building of intermediate structures, such as
control flow graphs or data flow models. This makes it easy
to experiment with a large number of test cases to find the
ones that provide interesting or ‘unique’ outputs.

We propose that output uniqueness shall be used to
augment a traditional test generation adequacy criterion not
replace it; output alone would not capture all faults that
can manifest in an application. For example, two different
errors that cause a web application to return a blank page
would have the same output. However, as we shall show
in this paper, focusing on output uniqueness improves fault
finding ability, even for relatively high coverage test suites.

In this paper we use output uniqueness to augment a
test suite generated to satisfy a traditional test adequacy
criterion (branch coverage). In the remainder of this section
we first discuss web application output and propose 4
definitions of client–side page output uniqueness. We then
describe how we propose to use these definitions in test
suite augmentation.

A. Web Application Output

The principle output of a web application, visible to the
user, is a client–side HTML page. The client–side page
can be either static or dynamically generated based on user
choices when the page was requested. The page is composed
of the content, the HTML code and embedded elements such
as images or client–side scripts (e.g. JavaScript). In this pa-
per we focus on the 2 main elements of the client–side page:

The Content: The content (C) is the textual data that is
presented to the user. The main element in this content is
the data that the user requested. For example in case of a
search, the content is the list of matching items.



However, extra helping text can be found throughout the
output page. Examples of such text are page titles, welcome
messages and field labels.

HTML Code: HTML code (H) defines how the page is
presented to the user. The content is organized in tables or
frames that are constructed using HTML. Aesthetic elements
such as colours and fonts as well as backgrounds and
embedded pictures can also be specified using HTML tags.
In addition to how the page looks, HTML can be used to
define functional elements that enable the user to interact
with the application. HTML Forms and links are the main
examples of these elements. HTML code is constructed of
HTML tags (T ) that define the type of the element (e.g.
table, form, input). Each tag has a number of relevant
attributes (A) such as actions for forms or values for input.

We can define a web applications client–side page output
as a tuple O =< C,H >.

Algorithm 1 Test Data Generation Algorithm: Starting from
a test suite the algorithm generates 4 test suites that each
satisfy one of the output uniqueness definitions
Require: Test Suite TS

1: for all T in TS do
2: output = executeTestCase(T )
3: O = O ∪ output
4: end for
5: for all T in TS do
6: while Number of tries <= 100 do
7: T ′ = mutateInput(T )
8: output = executeTestCase(T ′)
9: if OU-AllSatisfied(O,output) then

10: TS-ALL = TS-ALL ∪ T ′

11: if OU-TextSatisfied(O,output) then
12: TS-Text = TS-Text ∪ T ′

13: end if
14: if OU-StructSatisfied(O,output) then
15: TS-Struct = TS-Struct ∪ T ′

16: end if
17: if OU-SeqSatisfied(O,output) then
18: TS-Seq = TS-Seq ∪ T ′

19: end if
20: end if
21: O = O ∪ output
22: end while
23: end for
24: return TS-All, TS-Text, TS-Struct, TS-Seq

B. Client–side Page Output Uniqueness

To apply our approach we need to first define
‘uniqueness’. A strict definition of output uniqueness
could capture all generated test cases that cause a fault that
propagates to the output. However, a strict definition could
also lead to an explosion in the test suite size, with many
additional test cases that may yield no additional benefit.

Our aim is to evaluate a number of output uniqueness
definitions to identify the most effective definition that
captures interesting output differences while maintaining
a smaller test suite. We define a test suite as a set of
(input,output) pairs. We first consider the strictest definition:
Definition 1. Output o is OU-All unique with regard to a
test suite T ⇐⇒ for all (i, o′) there exists at least one
observable difference between o and o′.

When a new output page is analysed, any difference in
any element of the page compared to all previously visited
pages categorizes the new output page as unique.

This definition could potentially lead, in some cases,
to infinitely many unique outputs that do not necessarily
enhance the test suite’s effectiveness, but considerably
increase the oracle cost. For example, an application that
displays the date on the output page could result in a po-
tentially infinite set of unique outputs. A page that displays
product information would have as many unique outputs as
there are products in its database. To overcome this problem
we can also define output uniqueness, less strictly, in terms
of the HTML structure of the page ignoring the text.
Definition 2. Output o is OU-Struct unique with regard
to a test suite T ⇐⇒ for all (i, o′) where o =< c, h >
and o′ =< c′, h′ > there exists at least one observable
difference between h and h′.

This definition eliminates the ‘potentially infinite output’
issue in the text discussed for OU-All. However, the HTML
structure may still yield large test suites. Consider the
product pages of items again, if the form to order an item
contains a hidden field that holds the item’s ID, we will
have as many unique outputs as there are products in the
database. We add a new definition of output uniqueness
where the HTML structure of a page is stripped of any text or
embedded values and only the opening and closing tags are
considered. This is to eliminate any variations that are caused
by form options, default values or font and style settings.
Definition 3. Output o is OU-Seq unique with regard to a
test suite T ⇐⇒ for all (i, o′) where o =< c, h > and
o′ =< c′, h′ > and where h and h′ contain a set of tags t
and t′ and attributes a and a′ respectively and there exists
at least one observable difference between t and t′.

The previous two definitions focused on the HTML
structure of a page. However, the text in the page can
contain error messages produced by the server. Therefore,
we add a final definition of output uniqueness:
Definition 4. Output o is OU-Text unique with regard to
a test suite T ⇐⇒ for all (i, o′) where o =< c, h >
and o′ =< c′, h′ > there exists at least one observable
difference between c and c′.

C. Generating Test Cases for Output Uniqueness

Algorithm 1 describes how we use output uniqueness to
generate new test cases. The algorithm takes a test suite



as an input and builds new test suites that satisfy each of
the output uniqueness definitions in Section II-B. For each
original test case, one input is mutated at a time to generate
a new test case. The input is mutated, with equal probability,
by either assigning a random value or a value collected
dynamically from the output of the original test suite. The
new mutated test case is then executed and the output is
examined to determine which output uniqueness definition
it satisfies. For each definition a test suite is maintained that
contains all mutated test cases that satisfy its definition.

III. EVALUATION

We designed the evaluation to answer the following
research questions:
RQ1: Does using output-uniqueness augmented test suites
enhance fault finding ability?
RQ2: How do the 4 definitions of output uniqueness affect
the fault finding ability and test effort of the generated test
suite?
To answer these 2 questions we augment a test suite
generated using a tool called SWAT from previous work [1]
with test cases that enhance output uniqueness for each of
the 4 definitions. We then compare the fault finding ability
of the original suite to the augmented suites and also to the
original SWAT test suite augmented by the same number
of additional test cases selected randomly. We calculate
and compare the number of faults per new test case of
each of the definitions compared to random. We perform
Wilcoxon paired one-sided signed rank test at the 95%
confidence level to determine the statistical significance
of the observed results. To answer RQ2 we compare the
fault finding ability and sizes of the new test suites for the
4 definitions. Test suite size is only an approximation of
test effort. A larger test suite would require more time and
effort to execute, maintain and examine the output.

Table I
THE WEB APPLICATIONS USED IN THE STUDY

PHP PHP
App Name Version Files ELoC Description
FAQForge 1.3.2 19 834 FAQ management tool
Schoolmate 1.5.4 63 3,072 School admin system
Webchess 0.9.0 24 2,701 Online chess game
PHPSysInfo 2.5.3 73 9,533 System monitoring tool
Timeclock 1.0.3 62 14,980 Employee time tracker

Experimental Set-up: Table I provides information about
the 5 applications we used in our evaluation. We used the
test suite with the highest branch coverage from 30 test
suites previously generated by SWAT [1] as an input to
a new tool SWAT-U that implements Algorithm 1. We
chose the highest coverage because we want to focus on
additional fault finding ability of uniqueness, even where
coverage is relatively high. We also used the same SWAT
test suite and mutation algorithm for random augmentation.
Since the test data generation process is non-deterministic,
we run SWAT-U and random augmentation 30 times for
each test suite, to support statistical significance testing.

Table II
RESULTS OF AVERAGE FAULTS FOUND AND TEST SUITE SIZE OBTAINED

FROM RUNNING THE APPROACH AND RANDOM 30 TIMES FOR EACH
APPLICATION. THE (%) COLUMN IN NEW FAULTS IS CALCULATED IN

RELATION TO ORIGINAL FAULTS FOUND. FAULTS/TEST RESULTS IN BOLD
PERFORM STATISTICALLY SIGNIFICANTLY BETTER THAN RANDOM.

Original New New Faults Faults Improv.
App Name Cov Tests Faults Algorithm Tests Num % /Test on Rand

FAQForge 69% 36 50

Rand 180 3.6 7.1 0.020 -
OU-All 180 5.0 9.9 0.028 40%
OU-Text 96 1.3 2.7 0.014 -30%
OU-Struct 170 5.0 9.9 0.029 48%
OU-Seq 3 0.8 1.6 0.245 1137%

Schoolmate 70% 176 103

Rand 314 1.7 1.6 0.005 -
OU-All 314 23.7 23.0 0.076 1324%
OU-Text 120 21.4 20.8 0.178 3255%
OU-Struct 252 20.3 19.7 0.080 1415%
OU-Seq 32 9.9 9.6 0.309 5737%

Webchess 33% 49 70

Rand 299 0 0 0 -
OU-All 299 0 0 0 0%
OU-Text 54 0 0 0 0%
OU-Struct 220 0 0 0 0%
OU-Seq 2 0 0 0 0%

PHPSysInfo 22% 20 7

Rand 1138 2.1 30.0 0.002 -
OU-All 1138 2.1 30.0 0.002 0%
OU-Text 1138 2.1 30.0 0.002 0%
OU-Struct 228 1.6 22.9 0.007 289%
OU-Seq 8 1.7 24.8 0.228 12567%

Timeclock 21% 284 172

Rand 1366 2.7 1.6 0.002 -
OU-All 1366 3.7 2.2 0.003 37%
OU-Text 98 3.7 2.2 0.038 1812%
OU-Struct 1317 2.7 1.6 0.002 2%
OU-Seq 9 2.7 1.6 0.307 15408%

We use a fully automated oracle to detect faults. Our
oracle parses PHP error log files and the output HTML pages
of each test case for faults. Only faults that are caused by a
unique code location and have a distinct type are counted.

We use database tables to keep track of previous output.
Execution times of SWAT-U are not reported in this paper
but the slowest run we encountered was 20 minutes.
Results: Table II reports the results of running the approach
30 times on each application together with information
about the original test suites. The new test cases increased
coverage only by 1% or less for all applications with no
additional coverage for FaqForge. The last column reports
the improvement in percentage of each algorithm over
random. This is calculated based on the faults per test case.

In 3 of the 5 applications OU-All performed better than
random augmentation. In Webchess no new faults were
found by either the uniqueness approaches or random. This
could be because no other faults exist or due to a limitation
in the mutation algorithm. PHPSysInfo only has 4 user
inputs which could limit the effect of user inputs on outputs.

As expected OU-All adds the largest number of test cases
to the test suite while OU-Seq adds the fewest. OU-Struct
and OU-Text perform differently based on the application.
In both PHPSysInfo and Timeclock, the number of unique
outputs based on the strictest definition OU-All yield a
comparatively large number of new test cases. Both of
these applications contain a time-dependent element in the



output: PHPSysInfo prints the time the system has been
available while Timeclock prints weather information. This
reinforces our arguments for the need for different output
uniqueness definitions.

OU-All also finds the largest number of faults with a
few exceptions where another definition finds a matching
number of faults with fewer test cases. In all applications
OU-Seq is the most efficient definition that found the
largest number of faults per test case.
Answers to Research Questions: In this section we answer
the research questions we posed at the start of this section.
RQ1: Does using output-uniqueness augmented
test suites enhance fault finding ability? In 4 of the 5
applications studied at least one output uniqueness definition
performed better than random. In 3 applications OU-All
performed statistically significantly better than random.
The best performing uniqueness definition significantly
outperforms random augmentation in 3 of 5 applications
by an overall average of 6,970% with one application
(Webchess) where improvement was not possible.
RQ2: How do the 4 definitions of output uniqueness
affect the fault finding ability and test effort of the gen-
erated test suite? OU-All found the most faults overall but
adds the largest number of test cases. Less strict definitions
result, in most cases, in a loss of some of the faults found
by OU-All. OU-Seq performed the best in terms of faults
per additional test case and shows the most potential.

IV. RELATED WORK

In web application testing, traditional test adequacy
criteria such as statement [3] and branch [1] coverage have
been used for generating test suites. A new definition of
these criteria has also been applied [8] where web pages,
instead of statements, are the nodes in the control flow
graph, while links are the edges. The output uniqueness
criterion proposed in this paper aims to augment these
criteria rather than to replace them.

Raghavan and Garcia-Molina [7] developed a crawler
that extracts data behind web forms and therefore needs
to identify pages that return ‘errors’ such as ‘no records
found’. The output is analysed to identify pages that appear
frequently in response to a form submission and mark them
as error pages. In our paper we aim to find pages where an
execution error has occurred.

Sprenkle et al. [9] used the HTML output to automate
the oracle in regression testing while Di Lucca [4] used it to
detect clones in static web pages. Our implementation uses
some concepts of categorizing HTML output and resolving
issues in dynamic content that these previous research
papers used. However, we apply those concepts to test case
generation rather than oracle automation and clone detection.

Artzi et al. [2] used a path constraint similarity criterion to
generate test cases to localize faults with minimal test cases.
Their approach generates additional test cases for previously
known faults, while we generate test cases to find new faults.

V. CONCLUSION AND FUTURE WORK

In this paper we propose a new test generation criterion
that is based on output uniqueness. In our preliminary
evaluation, this new criterion proved to be useful in finding
test cases that can reveal new faults. The results of the 4
definitions show that a less strict definition based on the
HTML tags of a page was the most effective.

This new criterion poses new open research questions to
further evaluate and understand how output uniqueness af-
fects fault finding ability. One question is how does the start-
ing test suite, in terms of coverage or fault finding ability,
affect results. Also: How can we define output uniqueness
for applications with less complex outputs? For example, for
a program that outputs numbers, output uniqueness can be
defined in terms of ranges or data types. Can we combine
coverage and output uniqueness in one test data generation
tool? What is the optimum point in the generation process
to switch from coverage to output uniqueness criteria?

For web applications, we can use the results of this
study to define a new criterion that decomposes and mixes
elements of the different client–page components to achieve
higher effectiveness. We can also include other elements of
the output in our definitions such as the application state.

Output uniqueness can also be used as an alternative
criterion when all or part of the application code is
unavailable for instrumentation as, for example, in cases
where an application uses third party components. This also
suggests that relationships between white–box coverage and
output uniqueness may prove interesting in future work.

REFERENCES

[1] Nadia Alshahwan and Mark Harman. Automated web
application testing using search based software engineering.
In ASE ’11, 2011.

[2] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia.
Directed test generation for effective fault localization. In
ISSTA ’10, pages 49–60, 2010.

[3] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Daniel
Dig, Amit Paradkar, and Michael D. Ernst. Finding bugs in
web applications using dynamic test generation and explicit-
state model checking. IEEE Trans. Softw. Eng., 36:474–494,
2010.

[4] Giuseppe A. Di Lucca, Massimiliano Di Penta, and Anna Rita
Fasolino. An approach to identify duplicated web pages. In
COMPSAC ’02, pages 481–486, 2002.

[5] Kinga Dobolyi and Westley Weimer. Modeling consumer-
perceived web application fault severities for testing. In
ISSTA ’10, pages 97–106, 2010.

[6] Akbar Siami Namin and James H. Andrews. The influence
of size and coverage on test suite effectiveness. In ISSTA ’09,
pages 57–68, 2009.

[7] Sriram Raghavan and Hector Garcia-Molina. Crawling the
hidden web. In VLDB ’01, pages 129–138, 2001.

[8] Filippo Ricca and Paolo Tonella. Analysis and testing of web
applications. In ICSE ’01, pages 25–34, 2001.

[9] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori
Pollock. Automated replay and failure detection for web
applications. In ASE ’05, pages 253–262, 2005.


