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1. INTRODUCTION

Finite state machines (FSMs) have been used to model sys-

tems in different areas like sequential circuits [1], software

development [2] and communication protocols [3, 4, 5, 6, 7,

8, 9, 10]. To ensure the reliability of these systems once

implemented they must be tested for conformance to their

specification. Usually the implementation of a system

specified by an FSM is tested for conformance by applying

a sequence of inputs and verifying that the corresponding

sequence of outputs is that which is expected.

Ideally complete test suites are produced that would distin-

guish any faulty implementation given that it does not have

more states than its specification. However, often this is not

feasible because these methods rely on FSM with certain

characteristics that cannot always be guaranteed. Work on

generating complete test suits relies on either a distinguishing

sequence (DS) being present in an FSM [1, 11, 12, 13], the

existence of a reliable reset in the FSM [2] or generation of

test sequences of at least exponential (in terms of the number

of states) length [14]. These issues will be later discussed in

the paper. Hence generating incomplete test suites has been of

interest.

This paper focuses on the U-method for test sequence gen-

eration [15] where unique input/output (UIO) sequences for

each state have to be generated. The problem of generating

such sequences is known to be NP-hard [16]. While a random

algorithm could be used it does not always produce

acceptable results. Representing test sequence generation as

a search problem with a specified fitness function gives the

opportunity for algorithms known to be robust in searches of

unknown domains, such as genetic algorithms (GAs) [17], to

be used. Generating test sequences using such algorithms

could provide a computationally easy solution that produces

good results as shown by [18].

One of the primary contributions of this paper is the pro-

posal for a more computationally efficient and yet effective

method of generating UIO sequences. The proposed method

also does not suffer from the usual restriction of some test

sequence generation methods (D-method and W-method for

example) where only fully specified FSMs can be considered.

The generated UIOs can be used for partially or completely

specified FSMs that in turn can be used in generating a test

sequence using the U-method. As a result weak conformance

testing can be applied to partially specified FSMs without

having any completeness assumption.
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In order to minimize manual testing and hence software

production costs and speed the process up, automation is

necessary. Automation has been widely used in testing and

test data generation [6, 15, 19, 20]. Automating the generation

of UIO sequences can contribute to this.

The primary contributions of this paper show how UIO

generation can be formulated in terms of an automated search

problem and describe an approach to automation of UIO

generation using GAs. This paper demonstrates that UIO

generation can be reduced to an automated search problem

and presents results from an empirical study of this approach.

The paper presents results from an empirical study of this

approach, which provides evidence that the GA is successful

in guiding the automated search.

The paper begins with some preliminaries on FSMs,

conformance testing and GAs in Section 2. Section 3 shows

how the UIOs can be generated using GAs and the results

from the conducted experiments are presented in Section 4.

Finally in Section 5 conclusions are drawn.

2. BACKGROUND

Testing is an important part of the software engineering

process and can account for up to 50% of the total cost of

software development [21]. This motivates the study of testing

FSMs to ensure the correct functioning of systems.

The generation of efficient and effective test sequences

is very important in conformance testing. Test sequences

can be generated using formal methods like transition tours

(T-method), UIO sequences (U-method), DSs (D-method)

and characterizing sets (CSs) (W-method). The U-methods

are popular because of the following reasons [5]. The

T-method does not consider state transfer faults since it

does not verify the final state of a transition sequence. The

W-method relies on a reliable reset for the FSM and in

practice UIOs lead to shorter test sequences than those pro-

duced using CSs. There exist FSMs with UIOs for every state

but no DS. Practitioners report that in practice many FSMs

have UIOs [3].

2.1. Finite state machines

Finite state systems are usually modelled using Mealy

machines that produce an output for every transition triggered

by an input. An FSM M can be denoted M ¼ (S, s1, d, l, X, Y)

where S, X, Y are finite non-empty sets of states, input symbols

and output symbols respectively and s1 2 S is the initial state.

d is the state transition function and l is the output function.

A transition is represented as t ¼ (si, x, y, sj) where si 2 S is

the start state, sj 2 S is the end state, x 2 X is the input and y 2 Y

is the output. When a machine M in state si 2 S receives input

x it moves to state d(si, x) ¼ sj and outputs l(si, x) ¼ y.

The functions d and l can be extended to take input

sequences to give functions d� and l� respectively. FSMs

can be represented using state transition diagrams where

the vertices correspond to states and the edges to state transi-

tions which are labelled with the associated input and output

[16] (Figure 1).

An FSM is said to be deterministic if there is no pair of

transitions that have the same initial state and input i.e. upon

an input a unique transition follows to the next state. If for

any state an input could trigger more than one transition the

machine is non-deterministic. FSMs for which a transition

exists for every input a 2 X and state s 2 S are known as

completely (fully) specified. Given an FSM that is partially

specified it is possible to take a completeness assumption and

complete M by either adding an error state or assuming that

where the input was not specified originally an empty output

should be produced.

Those FSMs where every state can be reached from the

initial state are known as initially connected. Unreachable

states can be removed from any FSM to make it initially

connected. An FSM M is strongly connected if for every

pair of states (si, sj) from M there is some input sequence

that takes M from si to sj. If M is initially connected and

has a reset operator then it must be strongly connected.

A reset operator takes the FSM to its initial state. The presence

of a correctly implemented reset operator is sometimes impor-

tant for transition testing but cannot always be guaranteed.

One of the advantages of the U-method is that it does not need

a reset.

Two states si and sj are said to be equivalent if for every

input sequence the same output sequence is generated.

Otherwise the two states are inequivalent and there exists

an input sequence x where l�(si, x) 6¼ l�(sj, x) and that

sequence is known as a separating sequence. Comparing states

from different machines is similar. Two FSMs M and M0 are
equivalent if their initial states are equivalent. A minimal FSM

FIGURE. 1. Transition diagram of an FSM M1.
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is a machine M such that there is no equivalent FSM M0 with
fewer states than M.

For example Figure 1 represents the deterministic FSM M1.

M1 with an initial state s1 is initially and strongly connected

as every state in M1 is reachable from any other state. M1 is

also completely specified and minimal.

In this work we consider only deterministic FSMs. For non-

deterministic FSM conformance testing refer to [22, 23, 24].

It is also safe to assume that only minimal FSMs should be

considered as any deterministic FSM can be minimized [25]

and there are well-known methods to automatically do so

[25, 26]. Also for the reasons outlined before only strongly

connected FSMs are considered.

2.2. Conformance testing

When testing from an FSM model M it is assumed that the

implementation under test (IUT) can be modelled by an

unknown FSM M0 and thus that testing involves comparing

the behaviour of two FSMs. Verifying that M0 is equivalent
to M by only observing the input/output behaviour of M0 is
known as conformance testing or fault detection.

Often a fault can be categorized as either an output fault or a

state transfer fault. Output faults are those faults where the

wrong output is produced and state transfer faults are those

faults where the state after a transition is wrong. An output

fault can be detected by executing a transition and observing

its output. A state transfer fault can be detected by checking if

the final state is correct after the transition testing is applied.

Suppose we wish to check a transition t ¼ (si, x, y, sj). The test

strategy would involve moving M0 to si, applying the input x,

verifying that the output is y, and using a state verification

technique to verify the transition’s end state [2].

The first step is known as homing a machine to a desired

initial state si. It can be done by using a homing sequence

which can be constructed in polynomial time [26]. The second

step, transition verification, is to check whether M0 produces a
desired output sequence. The last step is to check whether M0

is in the expected state sj ¼ d(si, x). There are three main

techniques that can be used in state verification:

� DS

� UIO sequence

� CS

A DS is an input sequence that produces output unique for

each state. Not all FSMs have a DS.

A UIO for state s is an input/output sequence x/y such that

l�(s, x) ¼ y and 8s0 2 S.s0 6¼ s, we have that l�(s0, x) 6¼ y.

A DS defines a UIO for every state. While not every FSM

has UIOs for all states, some FSMs without a DS have UIOs

for all states. Also in practice most FSMs have UIOs for all

states [7].

A CS is a set of input sequences W which can distinguish

any pair of states. If every sequence in W is executed

from some state sj, the set of output sequences verifies sj.

However this technique requires a number of input sequences

to be executed for each state, and therefore could lead to

long test sequences. For some states not every element of

W is required and some subset can be used (the Wp method).

This can reduce the effort involved in verifying a state. Some

improvements on the W-method are presented in [22, 27, 28].

A general method for constructing minimal length check-

ing sequences described in [29] utilizes DSs, CSs or UIOs

depending on their existence.

In order to minimize test sequence length when testing

using UIOs, usually minimal UIOs are used (the shortest

UIO for a state). However it has been suggested [30] that

using non-minimal UIOs can improve the chance of avoiding

fault masking (when two or more faults collectiveły mask

their faulty behaviour leading to false confidence in the

IUT). Different UIOs for the same state can be compared

by using a metric known as degree of difference (DoD)

[31]. The DoD between two transition walks with identical

input sequence is defined as the number of output differences

between them. A UIO with higher DoD is expected to be more

fault tolerant [30].

Some UIOs could be of exponential length. Generally if a

UIO is longer than of O(n2) it might not be worth considering

since a CS with upper bound of O(n2) length would exist [2].

Not all FSMs are completely specified. There are two

types of conformance testing, strong and weak, depending

on how unspecified transitions are treated. In strong con-

formance testing a completeness assumption stating how

missing transitions are to be treated is necessary for partially

specified FSMs. In weak conformance testing the missing

transitions are treated as ‘don’t care’ and the implementation

is required to have only the same ‘core behaviour’ as the

specification.

UIOs have been popular [5, 32] since they help in state

transition fault detection and tend to yield shorter test

sequences than the D and W methods [5, 32]. UIOs do not

necessarily need a reliable reset operator. Only the U-method

and the T-method can be used for weak conformance testing

of partially specified FSMs [5]. However the T-method does

not check for state transition faults.

In order to test a transition of an FSM the machine has to

be put in the initial state of that transition. Then the input

is applied and the output checked to verify that it is as

expected. After that the UIO sequence for that state is used

to verify that there is no state transfer fault. Several test

sequence generation techniques based on UIOs can be used

[3, 5, 6, 7, 9, 33]. This motivates an interest in automating the

generation of UIOs.

2.3. Genetic algorithms

A GA [17, 34] is a heuristic optimization technique which

derives its behaviour from a metaphor of the processes of

Automated Unique Input Output 333
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evolution in nature. GAs have been wideły used in search

optimization problems [17]. GAs and other meta-heuristic

algorithms have also been also used to automate software

testing [19, 20, 35, 36, 37]. GAs are known to be

particularly useful when searching large, multimodal and

unknown search spaces. One of the benefits of GAs is their

ability to escape local minima in the search for the global

minimum.

Generally a GA consists of a group of individuals (popula-

tion of genomes), each representing a potential solution to

the problem in hand. An initial population with such indivi-

duals is usually selected at random. Then a parent selection

process is used to pick a few of these individuals. New off-

spring individuals are produced using crossover, which keeps

some of their parent’s characteristics and mutation, which

introduces some new genetic material. The quality of each

individual is measured by a fitness function, defined for the

particular search problem. Crossover exchanges information

between two or more individuals. The mutation process

randomly modifies offspring individuals. The population is

iteratively recombined and mutated to evolve successive

populations, known as generations. When the termination cri-

terion specified is satisfied, the algorithm terminates. A flow-

chart for a simple GA is presented in Figure 2.

There are many different types of GAs, but they all share

the basic principle of having a pool (population) of potential

solutions (genomes) where some are picked using a biased

selection process and recombined by crossover and mutation

operations. An objective function, known as the fitness

function, defines how close each individual is to being a solu-

tion and hence guides the search.

When using a GA to solve a problem the first issue that

needs to be addressed is how to represent potential solutions in

the GA population. A genotype is how a potential solution is

encoded in a GA, while the phenotype is the real represen-

tation of that individual. There are different representation

techniques, the most common being binary and characters.

Gray coding is a binary representation technique that uses

slightly different encoding to standard binary. It has been

shown [38] that Gray codes are generally superior to

standard binary by helping to represent the solutions more

evenly in the search space.

The first step in a GA involves the initialization of a popu-

lation of usually randomly generated individuals. The size of

the population is specified at the start. Every individual is

evaluated using the fitness function. When ranking is used

the population is sorted according to the fitness value of the

individuals. Then each individual is ranked irrespective of its

size and its predecessors’ fitness. This is known as linear

ranking. It has been shown that using linear ranking helps

reduce the chance of a few very fit individuals dominating

the search leading to a premature convergence [39].

An important part of the algorithm is parent selection.

A commonly used technique is the roulette-wheel selection.

Here the chance of an individual being selected is directly

proportional to its fitness or rank (if linear ranking is used).

Hence the selection is biased towards fitter individuals.

A genome is made up of one or more chromosomes, each

representing a parameter in the fitness function. In some

literature genome is referred to as chromosome and genes

refer to what we call chromosomes, but here we use chromo-

some as a part of a genome and gene as the building block of

a chromosome.

The most common recombination technique used is cross-

over. During crossover the genes of the two parents are selec-

tively used to create one or more new offsprings. The simplest

crossover is known as single point crossover [39]. For example

Figure 3 shows how a single point crossover is applied to two

parent chromosomes where two new child chromosomes are

produced. There is also multiple point crossovers [40]. In

this work single point crossover was used with a randomly

generated crossover point as used in [41].

Mutation is applied to each individual after crossover. It

randomly alters one or more genes known as single point and

multiple point mutation respectively [17]. Not all individuals

are mutated. A predefined mutation rate (typically the

reciprocal of the chromosome length) is used to determine

if mutation will be performed. A single point mutation with

randomly selected point was used in this work as in [41].

There can be different termination criteria for a GA

depending on the fitness function. If the fitness function is

such that a solution would produce a specific fitness value,

which is known, then the GA can terminate when an individual

FIGURE 2. Flowchart for a basic GA.
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with such fitness is generated. However in many cases this is

not known therefore the GA must be given other termination

criteria. Such a criterion can be the specification of a max-

imum number of generations after which the GA will termi-

nate irrespective of whether a solution has been generated.

Another commonly used termination criterion is population

saturation. After the fitness of all or some of the individuals in

the GA population has not increased for a number of genera-

tions, it is assumed that a peak of the search space has been

found that cannot be escaped. Usually a combination of these

termination criteria is used. We use all three.

3. UIO SEQUENCE GENERATION

The problem of constructing UIO sequences is known to be

NP-hard [16]. While a random search algorithm would be

cheap to implement, it does not always produce acceptable

results. Representing UIO sequence generation as a search

problem with a specified fitness function gives the

opportunity for algorithms known to be robust in searches

of unknown domains, such as GAs, to be used.

A UIO for a given state s of an FSM is an input/output

sequence that labels a sequence of transitions from s, but does

not label a sequence of transitions from any other state.

The UIOs considered in this work do not contain transitions

unspecified in the FSM specification. This allows for weak

conformance testing of partially specified machines. The

proposed method uses GA search in an attempt to generate

a UIO sequence for each state of a given FSM. A fitness

function directs the search. The fitness function estimates

how likely it is that a given transition sequence is a UIO

sequence without actually verifying that it is one. For an

input sequence of size l for a given state in an FSM with

n states the fitness function used is of O(l) complexity

while a UIO verification algorithm would be of O(nl).

Previous work [18] has shown that a GA may be used in the

generation of UIOs using a state splitting tree. A state splitting

tree is a rooted tree that is used to construct adaptive DSs

or UIOs from an FSM. The fitness function encourages

candidates to split the set of all states (in the root) into

more discrete units (that share the same input and output

characters). Hence the fitness function guides the search to

explore potential UIOs by rewarding the early occurrence of

discrete partitions while penalizing the length of the sequence.

The previous work differs from that described here in three

important ways: (i) it used a more computationally intensive

fitness function (based on generating the state splitting tree

[16] and thus considering all states of the FSM); (ii) it was

evaluated only on relatively small FSMs; (iii) only completely

specified machines were considered. In the work described

in the present paper the fitness function is simpler and

computationally easy to compute, and it also generated

UIOs for partially specified machines.

3.1. Defining UIO generation as a search problem

When searching for a solution using GAs an efficient way

must be defined to distinguish between potentially good

and potentially bad solutions. A fitness function has been

defined in order to represent the UIO sequence generation

as a search problem. The fitness function determines how

suitable a given transition sequence is to be a UIO sequence.

In order to verify if an input sequence would produce a

UIO an algorithm with complexity is of O(nl) has to be

executed where n is the number of states of the FSM and

l is the length of the input sequence. Instead the proposed

fitness function has complexity of O(l), and this fitness func-

tion aims to reward sequences that are likely to be UIOs.

Picking a less computationally complex algorithm for the fit-

ness function is important since the algorithm can be executed

several times for each state.

A transition ranking process is completed first before the

fitness function is ready to be used. This process ranks each

input/output pair of the specification machine according to

how many times it reoccurs in the transition table (a table

with all the transitions of a machine) of the machine. A pair

that occurs only once gets the lowest rank, a pair that occurs

twice is ranked next etc. Pairs that have the same number

of occurrences in the transition table get the same rank.

For example Table 1 shows a ranked transition table for the

FSM from Figure 1 (M1).

It is important to note that execution costs for different

transitions are simply assumed to be equal. Also equally

ranked pairs are assumed to have similar ability to construct

valid UIOs. Where this does not hold it would be straight-

forward to introduce extra information into the fitness function

without increasing the complexity of the algorithm.

The fitness algorithm used in this paper rewards a potential

solution according to the ranks of the input/output pairs the

sequence contains. The fitness function reflects the belief that

the more lower ranked transitions a sequence contains,

the more likely it is to define a UIO. Some reported experi-

ments in Section 4 investigate this claim. In fact if there is

an input/output pair that is unique, then it automatically

becomes a UIO, identifying the state from which the transition

initiates. This fitness function however does not account

for infeasible test sequences if partially specified FSMs are

considered. Input characters testing unspecified transitions

could result in unexpected behaviour of the IUT. Hence

FIGURE 3. Example of crossover.
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this fitness function works only for fully specified machine and

in order for a partially specified machine to be used a com-

pleteness assumption has to be made. Below we explain how

the fitness function can be adapted for partially specified

machines.

Now consider the FSM M1 in Figure 1. Using the fitness

function defined above the fitness of an input/output sequence

would be the sum of the ranks assigned to the input/output

pairs it is composed of. If we consider the sequence a/0, b/1 as

a potential UIO for s1 of M1 and use the ranking provided

on Table 1, a fitness value of 2 will be derived. This sequence

is not a UIO as the same sequence could be executed and the

same output observed from s3 of M1. On the other hand while

the sequence b/1, a/1 is considered from s1 a fitness value of

1 could be derived. This sequence is a UIO and its fitness

value reflects the higher chance of it being a UIO compared

with the sequence before that.

Not all FSMs are completely specified and protocols

systems are typically partially specified [16]. In strong

conformance testing assumptions on how the non-core transi-

tions are to be treated are made hence converting the machine

into a completely specified FSM. For example one scenario is

to add a transition with null output that stays in the same state.

An alternative completeness assumption may be that if a

transition is not in the core, then the machine makes a transi-

tion to an error state and outputs an error symbol. The missing

transitions are treated as being ‘do not cares’ in weak con-

formance testing. The implementation is only required to have

the same core behaviour and can be arbitrary or undefined for

the missing transitions.

Further refinements to the fitness function allow it to work

for partially specified machines. This could facilitate weak

conformance testing without a completeness assumption.

For the purpose a simulator of the specification FSM was

constructed. The FSM simulator (l� and d�) is a lite version

of the IUT that only determines if a test sequence is feasible

from a given start state and if not it indicates how close it

came of being feasible. If an input character from a sequence

represents an infeasible transition from a given state the input

is ignored by leaving the FSM in the same state and then

the next input character in the sequence is considered.

Hence the whole input sequence under consideration can be

evaluated by the fitness function even when an infeasible

character has been reached. The fitness of infeasible input

sequences is penalized according to how close the sequence

came to be valid, while valid sequences are not penalized at

all. The algorithm for the fitness function proposed is pre-

sented in Figure 4. The parameters involved are as follows:

SUIO is the test state; x is a single input character; y is single

output character; l represents the length of the input sequence;

r is the set of transition rankings where rs,x represents the

rank for the transition initiating from state s when input x

is fed and penaltyValue is a penalty constant or function

that penalizes the fitness when an unspecified transition is

triggered.

The test sequence generated like this would enable strong

conformance testing with a less restrictive completeness

assumption and weak conformance testing without any

completeness assumption for a partially specified machine.

The whole process of searching for a UIO for each state of

a given FSM can be easily automated as only the transition

table of the FSM is required.

A GA using this fitness function is directed towards gen-

erating input sequences that contain mostly input/output pairs

with lower frequency in the transition table corresponding to

feasible transitions (in the specification). The fitness function

represents the search for a UIO sequence as a function mini-

mization problem so an input sequence with a lower fitness

value is considered to be more likely to form a UIO sequence

since it is made up of more low ranked transitions.

3.2. Input sequence representation and GA

Generating a UIO sequence for a given state of an FSM would

involve finding an appropriate input sequence that generates

TABLE 1. Transition table for the FSM from Figure 1 with I/O

rankings.

Start state Input/output End state Rank

1 a/0 1 1

1 b/1 2 1

2 a/1 2 0

2 b/1 3 1

3 a/0 2 1

3 b/0 1 0

validValue [ 0

strengthValue [ 0

Sk [ SUIO

If (l ¼ 0) then return f

For(i [ 1 to l) //for all the inputs/characters

Sm [ Sk

yi [ l(Sk, xi)

Sk [ d(Sk, xi)

If (Sk 6¼ f)

//There is a transition with this input

validValue [ validValue + 1

strengthValue [ strengthValue + rSk
,xi

EndIf

Else

strengthValue [ strengthValue + penaltyValue

Sk [ Sm

EndElse

EndFor

return l � validValue + strengthValue

FIGURE 4. UIO fitness algorithm.
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a unique output sequence. A specification simulator of the

FSM can be used to simulate a transition path and generate

the corresponding output. Hence a genotype representing a

potential solution for a given state will only need to encode

an input sequence.

A phenotype representing a sequence of characters can

easily be represented as a genotype made of chromosomes

for each character. Then each character can be represented

as it is or encoded in binary notation. As described in Section 2

the classic GA approach would be to encode the characters in

binary, but both methods could be applied to this problem. The

GA tool used for UIO generation [42] supported only binary,

hence that was the method of choice. Also in an attempt to

reduce premature convergence in the population Gray coding

was used instead of standard binary encoding [38].

A type checking process could be used to discard geno-

types that do not represent valid phenotypes. When using

binary representation the information that it translates to

should ideally be in increments of the power of 2. Hence

an input for an FSM with binary alphabet can be presented

with a single digit in binary, an input with input alphabet of

size 4, with 2 binary digits etc. However there is a problem if

the FSM considered has an input alphabet of size that is not a

power of 2. In such cases a special type checking must be

performed on all chromosomes within a genotype considered

for fitness evaluation. The essence of this type checking is to

ignore those binary combinations that do not translate to input

characters from the input alphabet of the FSM considered. In

the cases where a genotype is produced with invalid chromo-

some(s), the gene recombination, or generation in the case of

the initial population generation, is repeated until a genotype

where all the chromosomes are valid is produced.

This could potentially affect the speed of the algorithm as

the input alphabet of the FSMs considered increases. However

this was not evident in the experiments reported in Section 4.

Sometimes the size of the input alphabet for an FSM is slightly

bigger than its optimal binary representation (e.g. input

alphabet of 17 will necessitate the use of a binary string of

length 5 just because of one extra input character and

introduces 15 redundant binary combinations). In such

cases alternative binary to character translation techniques

can be used [41] that distribute the number of valid

characters and reduce the number of redundant binary

combinations, but optimizing this part of the generation

algorithm is not a focus of this paper.

The fitness function is designed so that it can compare only

input sequences of the same length. For testing efficiency

shorter sequences are more desirable, however we chose to

separately consider the problem of having a fitness function

and data representation that effectively addresses both the

problem of UIO sequence generation and the length of such

a sequence generated simultaneously.

Sequences of various lengths can be represented in binary

for the GA in two ways. The first way is to simply have

genotypes of different lengths encoding input sequence of

different lengths. In this case the problem of how to apply

the genetic recombination techniques has to be considered.

Some work has been done on variable length genotype recom-

bination, however these methods are very domain specific and

no generic form is available [43]. A different approach is to

encode different length input sequences by using the same

length genotypes. This could be done by introducing a reset

or sequence termination character to the sequence input

alphabet. When such a character is reached in a sequence,

the remaining characters encoded in the genotype will be

ignored. In both situations the fitness function will favour

shorter sequences to longer ones as they are likely to get a

lower fitness value because of the fewer transitions involved.

Initial experiments found that such a fitness function would

always favour a single character sequence with just a reset

character. Hence in order to generate a minimal UIO a set

of generation attempts was made with gradually increasing

sequence size.

3.3. Generating UIOs using GAs

After a fitness function and a phenotype representation

technique are defined a GA can be used to find UIOs for

all the states of an FSM. Verifying whether an input sequence

is a valid UIO for a given state of an FSM is computation

intense—O(nl) for sequences of length l and n state FSM.

So after a GA search stops, instead of checking if all the

population individuals of the GA are UIOs only the sequence

with the best fitness is considered. The result need not be a

UIO sequence since not all FSMs have UIOs for all states or

the GA might have converged prematurely i.e. the search

might have converged to a local minimum. To increase

the confidence that the input/output sequence found is the

minimal length UIO for any given state i.e. a global minimum

in the search space has been reached, the GA should be

executed a number of times and only the best result kept.

For every GA execution the initial population is a set of

randomly generated input sequences (genotypes). The corre-

sponding output can be obtained from the FSM simulator

generated from the FSM specifications (transition table).

Each generated input sequence is type checked to see whether

it represents a specified sequence of input of characters for the

FSM under test. If not a new sequence is randomly generated

until the initial population consists entirely of specified input

sequences. The fitness is evaluated only for valid sequences.

Hence any repeated attempts to generate a sequences are

not counted as fitness evaluations. Starting the GA with a

population of valid input sequences increases the probability

of generating new valid input sequences after crossover. The

crossover and mutation operators recombine the existing

genotypes in such a way that input sequences representing

specified transitions with lower ranked input/output pairs

are rewarded. Input sequences that represent some unspecified

Automated Unique Input Output 337

The Computer Journal Vol. 49 No. 3, 2006



transitions, specified transitions with higher ranked input/

output pairs or a combination of both would be rewarded

less and penalized.

An example of how the GA recombination operators can

help in this search follows. Lets consider an FSM M2 for

which the sequence a/1, b/0, c/1 is a UIO for s1. Assuming

that abc is the only minimal UIO for that state lets take aab and

cbc as two potential solutions in the population of the GA

searching to find that UIO. Recombining these two sequences

using a crossover at the first point would generate the

necessary solution abc. Alternatively a crossover at the second

point would generate the sequence aac that after a mutation

at the second point can again produce the required abc.

The GA for every search terminates either after a set number

of recombinations or if the population gets saturated with the

same solution and does not improve for a number of genera-

tions. The lowest possible value for the fitness function cannot

be negative but otherwise is unknown. Hence the GA cannot

be set to terminate after an optimal solution is found. The only

exception is when a single input character represents a UIO,

then the fitness value evaluates to 0 and the GA terminates.

Hence the GA currently used might have generated a solution

much earlier than it actually terminates, but we have not yet

attempted to optimize this aspect of the GA. Further work

will aim to improve the fitness function and the generation

algorithm so that fewer GA cycles are necessary before a

solution is found.

4. EXPERIMENTS

Most FSM examples available in the literature are not very

large. A set of relatively small real FSM systems exists that is

used for benchmarking purposes [44]. This set can be used to

examine the effects of the UIO generation algorithm on small

but real FSMs and in order to examine how it performs on

larger FSMs a set of larger randomly generated FSMs

was used.

The first set of experiments considers a set of 11 real FSMs

(Table 2). The FSMs ranged in size from 4 to 27 states and

10–108 transitions. The second set of experiment was con-

ducted on a set of 23 randomly generated FSMs (Table 3).

These FSMs ranged from 5 to 360 states and 14–901 transi-

tions in size.1 Both sets consisted only of deterministic,

strongly connected and minimal but not necessarily com-

pletely specified FSMs.

A breadth first search (BFS) algorithm can be used to

enumerate through all possible input sequence combinations.

By verifying each combination we can exhaustively (up

to a fixed input sequence limit) find all the minimal length

UIOs (within that limit). This approach would require each

input sequence to be verified using a UIO verification

algorithm (O(nl)). On the other hand the GA approach

presented in this paper verifies only one input sequence at

the end of a GA execution. For that reason it is difficult to

present a precise comparison of effort between the GA and a

BFS algorithm, but a rough figure biased towards the BFS is

presented.

The minimal UIOs found for all the states of an FSM by

the two GAs and random algorithm were considered. The

shortest UIO for each state was listed. The longest UIO in

this list was used as an indicator of what maximum length

input sequence a BFS algorithm would be expected to

generate for a given FSM in a worst case scenario. This figure

TABLE 2. List of the 11 real FSM examples used.

FSM States Transitions Inputs Outputs

dk15 4 32 8 11

mc 4 32 8 8

bbtas 6 24 4 4

beecount 7 51 8 4

dk14 7 56 8 15

dk27 7 14 2 3

shiftreg 8 16 2 2

dk17 8 32 4 5

lion9 9 25 4 2

dk512 15 30 2 4

dk16 27 108 4 5

TABLE 3. List of the 23 randomly generated FSM examples used.

FSM States Transitions Inputs Outputs

1 5 14 4 2

2 10 33 4 2

3 20 51 4 2

4 39 87 4 2

5 50 136 4 2

6 73 177 4 2

7 90 218 4 2

8 98 250 4 2

9 113 296 4 2

10 132 316 4 2

11 158 393 4 2

12 180 450 4 2

13 203 498 4 2

14 209 553 4 2

15 227 568 4 2

16 244 611 4 2

17 264 658 4 2

18 291 765 4 2

19 305 771 4 2

20 311 765 4 2

21 323 809 4 2

22 347 856 4 2

23 360 901 4 2

1The experiments were carried out on FSMs with at most 360 states due to

the prototype tool being limited to FSMs with no more than 1000 transitions.

This restriction was due to a combination of Java features and the tool design.
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is compared with the number of fitness evaluations (including

unsuccessful UIO generation attempts) by the GAs and

random UIO generation (the 2 GAs and random were given

the same effort in terms of fitness evaluations). Figure 5 shows

the difference between these two figures for all 23 randomly

generated FSMs. As some of the BFS input sequence varia-

tions go into billions Figure 6 shows the same information

but filtering the four worst estimated BFS effort FSMs. From

the graph it is clear that for many FSMs the BFS algorithm

could have been more efficient to use. This is because of

the mainly short UIOs found for many of the FSMs. However

the graphs also indicate that the BFS is much worse in some

cases, where the GA performed well.

It was expected that when small FSMs are considered the

real advantage of the new method cannot always be observed

over the random test sequence generation method. However

as the size of the FSMs considered increases the proposed

method is expected to outperform the random method.

Since BFS is not feasible for those FSMs where the benefits

of using GA are likely to be observed, BFS was not included

in the experiments.

Some results justifying the UIO generation algorithm

choice are presented first. Then the actual performance of

the algorithm is compared with the random generation algo-

rithm. The reason for using two different GA types was to

experiment if the slightly different heuristics can generate

better results. The first GA used a single point crossover

and mutation while the second used a complex multiple

point crossover and mutation. In general the second GA tended

to find a solution slightly faster than the first GA, but they

produced the same results. Hence for most FSMs the two GAs

show identical performance.

4.1. UIO generation process

For any successful heuristic search it is imperative that a

fitness function is selected that guides the search correctly

towards a solution. In the search for UIOs the DoD metric

can be used [30]. A DoD compares the output sequence b

generated by an input sequence a from state si with the

corresponding output sequence from state sj. We can extend

this notion and instead of comparing the output sequence of

si only with that of sj, where sj is just another state, we can

compare it with all states apart from si. We sum all the

individual DoD values into one cumulative DoD for a

given UIO. This process is of the same complexity as the

UIO verification algorithm—O(ln). In this paper we refer to

this cumulative DoD value.

Figure 7 has two graphs representing the DoD and fitness

values of 19 input sequences for the dk16 FSM, the largest

from the set of real FSM examples. These 19 input sequences

represented 19 UIOs for different states of that FSM. The

vertical scale of the graph represents the fitness and DoD

values while the horizontal represents the state of the UIO.

It can be seen how the shape of the fitness function closely

follows the shape of the DoD, except for the extent of the

actual rises and falls of the DoD. This indicates that the

fitness function, although not calculating the DoD for a

given input sequence, can serve as a rough estimate of

which input sequences are likely to have higher DoD and

hence are likely to be UIOs. Therefore the fitness function

FIGURE 6. Difference in effort between worst case BFS and

current GA results in attempt to find all UIOs of an FSM—four

worst performing FSMs for BFS removed from graph.

FIGURE 7. Fitness function value and DoD for a set of UIOs for

FSM dk16.

FIGURE 5. Difference in effort between worst case BFS and current

GA results in attempt to find all UIOs of an FSM.
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is likely to be directing the search in a positive direction

without the full expense of calculating the DoD.

As mentioned before the UIO generation process used

involved verifying whether a given input sequence is a UIO

for a given state. After a GA has terminated only the highest

ranked element in the final population is verified to see

whether it represents a UIO because of the computational

complexity involved with this checking process. Verifying

an input sequence as a UIO is the most expensive part of

the algorithm but it would not make sense to verify only

the top ranked individual of a population if such individuals

do not tend to be UIOs. Figure 8 represents the rank of the

first element within the 20 terminated GA populations which

generated UIOs for the dk16 FSM (the largest of the real

FSMs). Half of the UIOs were found at the top, 0-th position

of their corresponding GA population. The next highest ratio

represented only 10% of the results. The rest of the real FSMs

had even higher ratio of UIOs found at the top, 0-th position of

their corresponding GA populations. This suggests that we

lose little by verifying only the top ranked individual but

we reduce the complexity of the whole UIO generation pro-

cess since we repeat the search if a UIO is not found. It is

simple to adapt the algorithm so it checks all elements of the

final population or some fixed proportion of this.

4.2. UIO generation

A set of experiments involving UIO generation was run using

the two sets of FSMs. Two slightly different GAs and a ran-

dom search algorithm were used for every FSM. After each

UIO generation attempt a simple algorithm was used to

determine whether the sequence is indeed a valid UIO and

does not contain unspecified transitions. The GAs used a

single, ranked population where fitter genotypes are added

by removing the genotypes with the lowest rank. The genotype

selection was done using roulette wheel selection [34]. Gray

coding [41] was used as the chromosome representation

technique. The recombination operators used were uniform

crossover and uniform binary mutation with mutation

rate of 0.05. The first GA used the classic genotype

recombination while the second GA used a chromosome

recombination where each input character for a transition

sequence is represented as a separate chromosome. The

second GA performs recombination independently on each

character of the input sequence. The termination criteria

were population saturation or up to 10,000 fitness

evaluations. A UIO generation attempt for a given state in

the FSM involved no more than 3 GA executions, for each of

the sequence sizes (number of chromosomes) considered

with up to 25 inputs. The fittest phenotype after each GA

termination was considered as a potential UIO sequence.

As soon as a valid UIO was found for a given state in the

FSM the search moved to the next state. For the randomly

generated FSMs no more than 15 GA executions were

considered for each sequence size up to 45 inputs because

these FSMs are larger and we expected that more effort

would be required to generate UIOs.

After sequences were generated with the 2 GAs, random

sequence generation was applied. After a number of random

input sequence generations, within the FSM input alphabet

constraints, the sequences were ranked and the fittest one

was checked to determine whether it was a UIO. The number

of random generation attempts (to generate a UIO) for a state

of the FSM used was equal to the average number of attempts

it took the GAs to generate a UIO for that particular state.

Every attempt to generate a sequence for a given state was

repeated for sequence sizes ranging from the shortest to the

longest UIO sequence found for this state by the GAs. The

random search was given at least the same computational

power in terms of number of fitness evaluations and UIO

verification attempts.

Figure 9 and Table 4 show the results of the UIO generation

algorithm conducted on the set of 11 real FSMs. For each FSM

two different types of GA algorithms and a random generation

algorithm were executed in an attempt to generate UIOs for

each state.

Some of the FSMs considered have a very small number of

states. For such FSMs a single input character might represent

a UIO. In such cases it is obvious that the random algorithm

will be effective. For example all the UIOs in the mc FSM

were of length 1. It is also important to note that not all

FSMs have UIOs for all states. For example the lion9 and

becount FSMs have UIOs for only 2 of their states, and they

were found by the UIO generation algorithms. The number

of UIOs generated were compared with results reported in

[45, 46]. FSMs dk14–17 and dk512 were reported to have

the same UIO state coverage as we found. In [45] the dk16

FSM was reported to have UIOs for 21 of its 27 states,

however [46] reported that it only has UIOs for 20 states

and we manually verified that. The GA produced UIOs for

these 20 states. FSMs mc, bbtas and shiftreg had UIOs

FIGURE 8. Positions in the GA population where the first valid UIO

was found for each state of FSM dk16 (the largest of the real FSMs).
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generated for all their states. This shows that for each FSM the

GA UIO generation managed to find at least one UIO for all

the states that had one. Also for most of the FSMs the

GA-based UIO generation outperformed the random genera-

tion generating up to 33% better results. As expected not

all the UIOs generated were minimal.

Now consider the experiments with (larger) randomly

generated FSMs. Both GA search-based UIO generation

techniques performed better for all 23 randomly generated

FSMs, sometimes generating UIOs for up to 62% more states

than the random search. The 2 GAs produced identical UIO

state coverage results. Figure 10 shows the number of states

for which a UIO has been generated as a percentage of the

total number of states of the FSM using the three methods.

Figure 11 shows the same data but plots the difference in the

percentage between the random search and the two GA

methods. Here it appears that the difference between the

GA and random algorithm increases as the size of the

FSMs increases. Both graphs clearly illustrate the potential

FIGURE 9. Percentage state coverage in UIOs generated by GA compared with random algorithm. Results for real FSMs.

UIO State Coverage

FIGURE 10. Percentage state coverage in UIOs generated by GA

compared with random algorithm. The two GAs produced identical

results. Results for randomly generated FSMs.

FIGURE 11. Percentage difference in UIOs generated by GA

compared with random algorithm. Results for randomly

generated FSMs.

TABLE 4. Percentage state coverage in UIOs generated by GA

compared with random algorithm. Results for real FSMs.

FSM States GA % GA Alt % Ran. % Diff. %

dk15 4 75 75 50 25

mc 4 100 100 100 0

bbtas 6 100 100 67 33

beecount 7 28 28 28 0

dk14 7 43 43 43 0

dk27 7 57 57 43 14

shiftreg 8 100 100 100 0

dk17 8 88 88 63 25

lion9 9 22 22 22 0

dk512 15 73 73 40 33

dk16 27 74 74 63 11
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advantage of using GA search against random search for

UIOs, when using the fitness function considered. It is

important to remember that different FSMs have different

properties. For example not all FSMs have UIO sequences

for all their states. Hence the graphs are not very smooth.

Again, not all the UIOs generated were minimal.

Another interesting result was that the average UIO

sequence size was much shorter than expected as in the

worst case the length of a UIO is exponential in terms of

the number of states of the FSM [4]. In fact, most of the

UIO sequences seem to be very short, even for larger

FSMs. In comparison, a separating sequence is expected

to be of size n � 1 at most, but it has been observed that

its expected size is of O(log(n)) [47]. Figure 12 shows the

average UIO sequence length for each of the 23 FSMs using

the GA methods and the random search. The graph does not

seem to increase exponentially, but it actually seems to

increase at a rate less than linear. Since most of the larger

FSMs on the graph have state coverage as high as 95%,

indicating that there are not many UIOs left to be found,

it seems that most of the UIOs tend to be very short.

5. CONCLUSIONS

State verification is an important part of conformance testing

for FSMs. UIO sequences are commonly used for state

verification because of their advantages over the other

methods. The problem of generating such sequences however

is known to be NP-hard [16]. While a random algorithm

could be used it does not always produce acceptable

results. GAs have previously been used to generate UIOs

for relative small and completely specified FSMs [18].

In this paper we define the problem of finding UIO

sequences as a search problem. We define a computationally

efficient fitness function of O(l) complexity for an input

sequence of size l that is used to guide a GA. UIOs for

both completely and partially specified FSMs were generated.

Our approach considers partially specified FSMs and

generates UIOs that can also be used for weak conformance

testing without completing the FSM.

We investigated the performance of a GA search for UIOs

for an FSM using this fitness algorithm on a number of real

and some larger randomly generated FSMs and report the

results.

UIOs were computed using GA and random search. The

experiment included two groups of FSMs: a set of 11 real

FSM specifications of small size; and a set of 21 randomly

generated FSMs with up to 360 states. The fitness function

appears to direct the search towards generating UIOs. The

experiments show that the GA outperforms (up to 62% better)

or is at least as good as a random search for UIO sequences. As

the size of the FSMs increased the difference between the

performance of the GA and random UIO generation also

increased.

The results also show that the average UIO size tends to be

small even for larger FSMs. Most of the UIOs found were no

longer than 10 input/output pairs. Searching for UIOs using a

BFS algorithm for some of the larger FSMs considered could

run into billions of input sequence generations in a worst case

scenario (judging from the minimal UIOs we have found for

those FSMs). However BFS could be more efficient than GA

for shorter UIOs. This could suggest that BFS or even random

search can be very useful for generating most of the UIOs,

which are very short. GA search can subsequently be used to

search for longer UIOs which are otherwise computationally

difficult to identify using BFS.
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