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Abstract A system built in terms of autonomous software agents may require
even greater correctness assurance than one that is merely reacting to the im-
mediate control of its users. Agents make substantial decisions for themselves, so
thorough testing is an important consideration. However, autonomy also makes
testing harder; by their nature, autonomous agents may react in different ways to
the same inputs over time, because, for instance they have changeable goals and
knowledge. For this reason, we argue that testing of autonomous agents requires
a procedure that caters for a wide range of test case contexts, and that can search
for the most demanding of these test cases, even when they are not apparent to
the agents’ developers.

In this paper, we address this problem, introducing and evaluating an approach
to testing autonomous agents that uses evolutionary optimisation to generate de-
manding test cases. We propose a methodology to derive objective (fitness) func-
tions that drive evolutionary algorithms, and evaluate the overall approach with
two simulated autonomous agents. The obtained results show that our approach
is effective in finding good test cases automatically.
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1 Introduction

The concept of autonomy, as indicated by the origins of the word itself, where auto

refers to self and nomos means law, refers to self-governance or freedom from ex-
ternal influence or authority. Such autonomy is key to establishing software agents
as a distinctive class of computational system, and is also an enabling technol-
ogy for building open, dynamic, and complex systems. Concerns about autonomy
have appeared since the advent of artificial intelligence, because intelligent entities
should be able, at least to some degree, to autonomously decide which actions to
take. More recently, however, several different aspects related to agent autonomy,
such as how to design and implement agents with different degrees and kinds of
autonomy, have been discussed with greater intensity, such as by Hexmoor et al.
[17].

As software agents with built-in autonomy are increasingly taking over control
and management activities, such as in automated vehicles or e-commerce systems,
testing these systems to make sure that they behave appropriately becomes crucial.
The testing of traditional software systems, which have reactive (or input-output)
style behaviour, is known to be non-trivial, but the testing of autonomous agents
is even more challenging, because they have their own reasons for engaging in
particular proactive behaviour. Thus, while a user might have certain concrete
expectations of the behaviour of an agent, autonomy means that the agent’s actual
behaviour may differ from these yet remain appropriate; the same test input can
give different results for different executions.

As an illustration of the issues involved in testing autonomous when compared
to non-autonomous components, consider the following example. A component
providing non–lossy compression functionality is tested according to two criteria:
(1) the output of the compress function is smaller than the input targeted by the
component (e.g., picture); (2) the output of the compress function, when given as
input to the decompress function, returns the original input. In this simple non-
autonomous testing example, the tester may not know the compression algorithm
used by the component, and does not know the exact data that will be generated
as output from the compress function. However, it can be expected that the output
will remain the same for a given input over time; that is, the run-time context in

which the tests are performed does not change the test outcome.
By comparison, the same tests can be applied by a client asking an autonomous

agent to compress data, but there may be run-time variation in the actual be-
haviour of the agent. The agent may have its own internal goals and knowledge,
both of which may change over time, and these can affect the result returned, if
any. For example, the agent could choose different compression algorithms based
on the resources available, or delegate the task to different subordinates over time,
depending on which it currently considers to provide the best service. To prop-
erly test the autonomous agent thus requires more than the single test on the
predictable component: it requires the same tests to be applied to the agent in a
range of contexts. Ensuring that the range of contexts (in this example, the range
of algorithms or subordinates available and chosen) tested against is adequate to
declare the agent correctly functioning is, therefore, a hard but important task.

Existing work on agent testing dealing with agent autonomy (for example,
Bot́ıa et al [4] and Rodrigues et al. [27]), mainly use passive approaches, such as
monitoring agent interactions and constraint enforcement. For Bot́ıa et al, agent in-
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teractions are observed to detect interaction problems such as missed communica-
tion. By contrast, Rodrigues et al. propose to exploit social conventions (i.e., norms
or rules that prescribe permissions, obligations, and/or prohibitions of agents) in
an open multiagent system for integration testing. During test execution these
constraints will be checked, and violations reported.

In the context of agent autonomy, however, focussing only on violations (re-
lated to constraints, norms, and the like) is seldom sufficient. Confidence in the
autonomous behaviour of an agent must be adequately established. We need to
make sure that those autonomous agents under test are dependable. In addition,
autonomous agents should be able to operate in open environments where different
and even unpredictable circumstances may arise. Testing must also deal with this
aspect.

In response to these concerns, in this paper we specify an evolutionary testing
approach, guided by stakeholder quality criteria, to test autonomous agents. We
describe the general testing procedure, evaluate it with a case study, and anal-
yse the benefit it brings. Our approach can be outlined as follows. Stakeholder
requirements related to autonomy (i.e. requirements that an autonomous agent may
satisfy differently depending on its context) are transformed into quality functions.
We then evolve increasingly demanding test cases using the quality functions as
fitness measures, where the lower the quality the agent produces, the tougher we
can infer the test case is, and the more likely the test case is to survive and be
selected in the reproduction of test cases as the evolution progresses. By evolving
steadily tougher test cases, we test the agent in a range of contexts, including those
in which it is most vulnerable to poor performance. Since autonomous agents can
behave differently under the same setting, statistical evaluation methods may be
needed to properly evaluate each test case, for example, when the expected quality
must be achieved with a high average probability.

It is worth noting that our technique focuses on the test case generation prob-
lem. The technique requires that the agents under test can run in an environment,
therefore, we can apply it in late phases of software testing, e.g. integration, sys-
tem, acceptance, or regression.

There are two primary motivations for our approach. First, we believe that
quality functions — derived from requirements related to autonomy — can be
used to evaluate autonomous agents as a means of building confidence in their
behaviour, because meeting such requirements contributes to agent dependability.
It is worth noting that our aim is to evaluate the exhibited performance of au-
tonomous agents, not the mechanism underlying autonomy itself. Second, because
it is automated, the use of evolutionary algorithms can result in thorough testing
at low cost; a large numbers of challenging circumstances, generated by evolution,
can be used to test agents, seeking to expose faults. That can complements other
forms of testing, such as manual test case generation, which is often tiresome,
error-prone and expensive. behaviour.

In our previous work [24], we have applied evolutionary testing guided by a
single objective function to a simulation of a cleaning agent, where the objective
function dictated the fitness of the agents and was based on the requirements-
derived quality functions. In this paper, we implement and evaluate evolutionary
testing guided by multiple objective functions simultaneously. We aim to study the
effectiveness of multi-objective evolutionary testing, under the observation that in
reality undesirable behaviour arises only when agents (be they human or machine)
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are in tremendously difficult situations involving multiple factors. For example, a
server ceases to operate quickly when it is suffering from overwhelming computa-
tion and denial-of-service attacks; similarly, humans may engage in illegal activities
when they are under excessive work, family, financial and other pressures simulta-
neously. The results from our experiments with two different agents show that test
cases found by multi-objective evolutionary testing, under some constraints, are
indeed more effective than those found by single-objective evolutionary testing.

The remainder of the paper is structured as follows. Section 2 gives background
notions about evolutionary testing and presents a motivating example. Section 3
introduces our approach, and Section 4 discusses our experiments and results ob-
tained. Section 5 presents future work and Section 6 concludes.

2 Related work and motivating example

2.1 Background and related work

Agent autonomy can be classified into: non-social autonomy, or autonomy from
the environment; and social autonomy, or autonomy as independence from or in
collaboration with other autonomous agents [8]. In relation to non-social auton-
omy, agents need to be able to act proactively in an environment, on the basis of
their local and contingent information. In relation to social autonomy, autonomy
can be seen as self-sufficiency; that is, agents operate completely autonomously
without any help or resources from other agents. Alternatively, autonomy can be
found in collaboration in the sense of how autonomous it is when it operates in col-
laboration with others. In both cases, the agent behaviour cannot be completely
determined based on current environmental settings due to internal constraints
or representations produced by design, evolution, or learning, as well as the fact
that agents do not simply receive inputs but perceive, interpret their environment
and act in a goal-oriented way [8]. Autonomy, on the one hand, helps software
agents deal with complex and open environments where changes (including those
unknown at design time) can occur. On the other hand, it makes testing software
agents a very challenging task.

Evolutionary testing [21,30] is inspired by evolutionary theory in biology, which
emphasises natural selection, inheritance, and variability. In this view, individuals
that are fitter have a higher chance of surviving and producing offspring, with
favourable characteristics of individuals being inherited. In evolutionary testing,
each test case is typically encoded as an individual in a population of candidate
test cases. Then, in order to guide the evolution towards better test suites (sets
of test cases), a fitness measure is defined as a heuristic approximation of the dis-

tance of these tests from achieving the testing goal (e.g., covering all statements
or all branches in the program), where this distance should be minimised. Test
cases with better fitness values have a higher chance of being selected for survival
and reproduction. Moreover, mutation is applied to test cases during reproduc-
tion, thereby enhancing diversity, an important consideration in all evolutionary
processes.

The key step in evolutionary testing is the transformation from testing objec-
tive to search problem. Specifically, through the fitness measure; different testing
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objectives give rise to different fitness definitions. For example, if the testing ob-
jective is to exercise code inside an if block, one can define a fitness function that
gives lower values (considered as better) to test cases that are closer to making
the conditions of the if statement true; the lowest (best) value is given to the
test cases that make the conditions true, so that the code inside the if block is
executed. Once a fitness measure has been defined, different optimisation search
techniques, such as local search, genetic algorithms, or particle swarms [21] can be
used to generate test cases aimed at optimising the fitness measure of the test
cases.

The use of evolutionary search techniques for the automatic generation of test
data has been receiving increasing interest from many researchers, reflecting a
growing trend towards Search Based Software Engineering (SBSE) [16]. The SBSE
approach is also bridging the technology transfer divide to industry. For example,
Bühler and Wegener [7] applied evolutionary functional testing in two automatic
systems: automatic parking and brake assistant systems for Daimler’s Mercedes
class cars. The systems investigated are automatic, not autonomous, but the results
of evolutionary functional testing, which outperforms random and manual testing,
show the potential of this technique.

More directly relevant to this work, Nguyen et al. [23] described the combina-
tion of evolutionary and mutation testing for testing autonomous software agents.
For Nguyen et al., fitness is defined to be the mutant score, i.e. the number of
mutants killed, where a mutant is a modified version of the original agent under
test containing a single deliberately seeded fault. A mutant is said to be killed by
a test input if the input causes the mutant to exhibit different behaviour to the
original. Nguyen et al. approach the problem of testing for autonomy indirectly,
by using constraints and the fact that while software agents are free to evolve,
their behaviour must obey the norms and rules that govern the operation of the
system in which agents are situated, or the constraints imposed on the behaviour.
Test cases that kill more mutants are likely to reveal faults in the original agents,
hence they have better fitness values.

Fulfilment (or violation) of norms and satisfaction (or otherwise) of require-
ments are directly comparable, as both define what should occur. However, both
the aims and the approach taken here differ fundamentally from that of norm mon-
itoring. Systems that detect the violation of norms provide tests (that just happen
to occur at run-time) on agents: whenever a norm may be fulfilled or violated, this
is determined and reported. However, the norm-monitoring approach does not at-
tempt to rigorously test the agents involved. The only ‘tests’ performed are due to
states of the system that happen to come about; the main concern is to check ac-
tual satisfaction of requirements (compliance with norms) at run-time. However,
unless rigorous testing has occurred beforehand, the use of this approach alone
could lead to a catastrophic violation, which would be detected but only dealt
with after it has occurred (when it is too late). Our approach, on the other hand,
attempts to cover a range of test cases in preparation for the agents under test to
operate in a running system. The need for quality and variety of test cases is the
most significant factor influencing our approach, as opposed to compliance in any
single instance.

In the agent-oriented software engineering literature, a variety of research tack-
ling different aspects of agent testing has been proposed. Coelho et al. [9] proposed
a framework for unit testing of multi-agent systems based on the use of Mock
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Agents. Their work focuses on testing the roles of agents at the agent level. Mock
agents that simulate real agents in communicating with the agent under test are
implemented manually, each corresponding to one agent role. Sharing this inspira-
tion from JUnit [14], Tiryaki et al. [29] proposed a test-driven multi-agent system
development approach that supports iterative and incremental multi-agent system
construction. A testing framework called SUnit, which is built on top of JUnit
and Seagent [12], was developed to support the approach, allowing the writing of
tests for agent behaviour and interactions between agents. Lam and Barber[19]
proposed a semi-automated process for comprehending software agent behaviour.
Their approach imitates what a human user, such as a tester, does in software
comprehension: building and refining a knowledge base about the behaviour of
agents, and using it to verify and explain the behaviour of agents at runtime.
The ACLAnalyser [4] tool analyses runs on the JADE [28] platform, intercepting
all messages exchanged among agents and storing them in a relational database.
This approach exploits clustering techniques to build agent interaction graphs that
support the detection of missed communication between agents that are expected
to interact, unbalanced execution configurations, and overhead data exchanged
between agents.

As software agent development emerges, testing software agents is receiving
increased research attention. The above work focuses on agent interactions, which
is reasonable, because agents communicate primarily through message passing.
However, none of this previous work explicitly tackles agent autonomy, which is
the objective of this paper.

Finally, Núñez et al. [25] introduced a formal framework to specify the be-
haviour of autonomous e-commerce agents. The desired behaviour of the agents
under test is specified by means of a formalism, called utility state machine, that
embodies users’ preferences in its states. The operational traces of the agents un-
der test are checked against these specifications in order to detect problems. Our
work differs from Núñez et al. in that we investigate how to generate effective test
cases based on the exhibited performance of the agents under test, not on their
specification.

2.2 Motivating example

Throughout this paper we use an example, which we refer to as the cleaner agent

example, to illustrate our testing methodology. Here, a cleaner agent (robot) is in
charge of cleaning a square area at an airport, in which there can be obstacles,
wastebins, waste, and charging stations located randomly or intentionally. In this
environment, the agent needs to perform the following tasks autonomously.

– Locate important objects by exploring the environment.
– Look for waste and bring it to the nearest bin.
– Maintain battery life, with sufficient re-charging.
– Avoid obstacles by changing course when necessary.
– Exhibit alacrity by finding the shortest path to reach a specific location, while

avoiding obstacles on the way.
– Exhibit safety by stopping gracefully if movement becomes impossible or if the

battery level is too low.
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Moreover, as user requirements, the agent must also exhibit good performance in
terms of robustness and efficiency, by avoiding collision, consuming as little energy
as possible, and collecting as much waste as possible.

These are the basic features of the cleaner agent. In addition, the agent can
have global or local knowledge about the environment. In the former case, the
agent is up-to-date with all changes, and there is no need for the exploratory task,
while in the latter, the agent must sense and update its knowledge whenever it
moves. Having global or local knowledge can thus influence the behaviour of the
agent; we will discuss this further in our experiments.

3 Evolutionary testing of software agents

3.1 Evaluating software agents

Autonomous software agents differ from traditional software in that they have
their own goals and operate in a self-motivated fashion. As a result, the response
(also known as test output) we receive by stimulating an agent with an input can
be different in different instances, even if the state of the agent (its capabilities)
remains the same in those executions. For example, if an agent acquires different
knowledge due to non-deterministic decision-making, this may result in different
choices given the same subsequent situation (a point illustrated in the experiments
presented later). In this case, a fixed oracle (also known as an evaluation criterion)
to evaluate the output of an agent may have difficulty in dealing with such varied
responses; instead, in testing software agents we need to have a kind of “soft”
oracle. Moreover, in the evaluation of an autonomous agent, we are not only in-
terested in the final results that arise from the behaviour of the agent, but also
in its adaptation and its improvement during its lifetime, because we often expect
agents to perform better (or at least in a constant manner) due to their autonomy,
intelligence, and adaptivity. Therefore, the oracles used to evaluate an agent must
do so based on the agent’s progress over time and not just its fitness at a single
instant.

In this paper, we propose to derive fitness measures from stakeholder require-
ments and use them as evaluation criteria for software agents. During test execu-
tion, agents under test are monitored; fitness values are, then, calculated based on
monitored data and used to evaluate the agents.

3.1.1 Defining evaluation criteria

In requirements engineering, the importance of application domain stakeholder
goals has long been recognised [20,22]. As such, the concept of goal has been
considered central to a number of goal-oriented requirements engineering (GORE)
approaches, such as described by Bresciani et al. [6] and by Dardenne et al. [10]. In
GORE, soft-goals play a key role in representing non-functional or quality require-
ments, such as dependability, availability, and so forth, and thus denote important
criteria for evaluating autonomy, as they allow us to assess the agent without dic-
tating exactly what actions it must have taken. We propose to use stakeholder
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soft-goals as criteria for assessing the quality of autonomous agents, since satis-
fying quality criteria derived from these soft-goals is likely to indicate that the
agents are reliable.

We illustrate this in relation to our motivating example of the cleaner agent.
Figure 1, which adopts the notation proposed in the Tropos methodology [6],
shows the goals of a specific stakeholder, the building manager, who decides to
assign the goal of airport cleanliness to the cleaner agent. In this example, the
agent must operate autonomously, with no human intervention, yet it must also
be robust and efficient, as indicated in the two soft-goals, depicted as cloud shapes.
Applying the proposed approach, these two soft-goals can be used as criteria for
evaluating the quality of the cleaner agent. Thus the agent can be built with a given
level of autonomy, using robustness and efficiency as two key quality criteria for
evaluation. If the cleaner agent can perform tasks autonomously, but is not robust
(for example, if it crashes), it is not ready to be deployed. Note, in addition, that in
this example there are several sub-goals specified for the agent, such as Recharging,
Looking for charging station, Looking for waste, and so on, as shown inside the balloon
of the cleaner agent in Figure 1, in which an analysis of goal decomposition and
goal contribution is provided. Some of these contribute positively to the soft-goals
related to the robustness and efficiency of the agent.

Stakeholder

Robustness

Keep the airport 
clean

Efficiency

Legends Goal
Actor

softgoal dependence

Robustness

+contribution

Keep the airport 
clean

Efficiency

+ +
Maintaining 
battery

Avoiding 
obstacle

Safely stop

Battery loaded

Looking for waste

Looking for 
charging station

Environment 
monitored

Dropping waste

Recharging

decomposition

+

+

Cleaner
Agent

Fig. 1 Example of stakeholders’ soft-goals

In order to assess whether an agent is good enough to be used in practice,
a threshold is defined for each soft goal’s quality function, such that an agent
will not be put into use if any acceptability threshold cannot be reached — it is
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the function of the test oracle to check whether these thresholds are met. Apart
from robustness, we can impose many other requirements related to autonomy on
the cleaner agent: stability, efficiency and safety, for example. Stability demands
that the agent should avoid dropping its goals too frequently. Efficiency requires
the agent to finish cleaning an area after a specific amount of time, or to bring
an amount of waste (for example, 2 Kg) to the wastebins per hour. The safety
requirement demands that the agent must switch to its ‘safe mode’ in undesirable
circumstances, such as when its arms may be malfunctioning. In this paper, we
concentrate on the sub-goals of the robustness soft-goal, maintaing battery and
avoiding obstacle, to illustrate and evaluate our approach.

3.1.2 Analysing output data

In traditional software testing, we can set up some initial state, submit test inputs
and then evaluate the outputs from the software. However, testing autonomous

agents is more complex in that outputs arising from the same inputs can be dif-
ferent for different executions, so that it is important to evaluate not only the
final results but also the adaptation of the agents under test over time. As a con-
sequence, we need to collect sufficient and adequate data to properly evaluate an
agent according to the defined criteria. Insufficient or inadequate test data can
lead to incorrect conclusions.

To achieve this, we propose to monitor the behaviour of the agents under test
during the test executions. Tentative monitoring can be very expensive, hence
specifying what to monitor and when it needs to be done, prior to test execution
is vital. However, since monitoring software agents is a topic that is beyond the
scope of this paper, we assume that for each type of agent under test there is an
adequate monitoring solution so that sufficient and adequate data is collected for
testing.

Since the responses of an agent to a given input can be different in different
instances, we propose to apply statistical methods to synthesise test output. Each
test case execution must be repeated a number of times, and the statistical data
obtained by monitoring compared to the correspondingly defined criteria, in order
to give a verdict on the behaviour of such software agents. Taking the battery level
of the cleaner agent as an example, in the same environment we may have to run
the agent several (or a large number of) times in order to state whether the agents
maintains its battery properly.

3.2 Evolutionary test case generation

Once evaluation criteria have been defined, following our approach presented
above, we can use them to guide the generation of test cases automatically. The
evolutionary testing methodology consists of the following top level steps:

1. Representing stakeholder soft-goals as quality functions. Relevant soft-goals that
can be used to evaluate agent autonomy are transformed to evaluation criteria.
We name these criteria quality functions; they refer to stakeholder satisfaction
with respect to the agent under test. This transformation is domain specific
and depends on the nature of the soft-goal. For example, a quality function that
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depicts the capability of the cleaner agent to maintain its battery may simply
be a threshold with the constraint that the battery level must be greater than
this threshold. However, this must be balanced against another quality func-
tion that captures the user expectations that efficiency should monotonically
increase as a result of the agent’s learning capability. The threshold constraint
and the monotonic efficiency function are not necessarily always in conflict, but
there may be situations in which satisfying one can make it harder to satisfy
another; these are precisely those occasional interesting situations that make
for challenging test cases.

2. Evolutionary testing. In order to generate varied tests with increasing levels of
difficulty, we advocate the use of meta-heuristic search algorithms that have
been used in other work on search based software engineering [16], and, more
specifically, we advocate the use of evolutionary algorithms. Such algorithms
are typically well-suited to complex multi-objective optimisation. The quality
functions of interest are used as objective functions to guide the search towards
generating more challenging test cases.

1. Generate initial 
population

2. Execution
&

Monitoring

3. Collect data 
and calculate 

fitness
4. Reproduce 

new generation

fitness 
improvement ?

Max number of generations 
reached, or

no improvement
after K generations

Yes, or before max 
number of generations

Fig. 2 Evolutionary testing procedure

The evolutionary testing procedure is presented in Figure 2. Its four steps are
described as follows:

1. Generate initial population. A set of test cases is called a population. Each test
case is an individual in the population, and represents a combination of states
(i.e. values) of environmental inputs. The initial population can be generated
randomly, or taken from existing test cases, created by testers.

2. Execution and monitoring. Test execution involves inserting the agents under
test into the testing environment, made up of environmental inputs, so that
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they can operate (i.e. perform tasks or achieve goals). At the same time, a
monitoring mechanism is needed to observe and record the behaviour of these
agents. Multiple executions may be needed to be performed repeatedly (or in
parallel) in order to provide sufficient data to statistically measure the fitness
values used in the next steps.

3. Collect observed data and calculate fitness values. Cumulative data from all exe-
cutions are used to calculate fitness values of selected test cases. The method
for calculating fitness values depends on the stakeholder soft-goals of interest
and the problem domain. Since these calculated fitness values provide some in-
sight concerning improvement, if no improvement is observed after a specified
number of generations (e.g., K generations), the test procedure stops. Other-
wise Step 4 is invoked. The test process stops also when a maximum number
of generations is reached, this maximum value is specified by the user.

4. Reproduction. Good individuals that have good fitness values are selected, and
then the crossover operation (by which two individuals are combined to gener-
ate two more, inheriting the important material of their parents, as we describe
later) is used to produce new offspring. Finally, mutation (by which some part
of an individual may be changed to introduce some variation) is applied with
a certain probability to some selected offspring. As with natural evolution,
selection is biased in favour of fitter individuals.

When one fitness value (i.e., one soft-goal) is considered, a single-objective
meta-heuristic algorithm is used to generate test cases. When more than one fitness
value is considered, we can use a multi-objective meta-heuristic algorithm to guide
the search for good test cases. For instance, the cleaner agent (see Figure 1) can
be evaluated using the robustness soft-goal or the efficiency soft-goal alone; but it
can also be evaluated using the two soft-goals at the same time.

In the former case, when soft-goals are evaluated separately, this means that we
test the autonomous agents with respect to the soft-goals separately. The expected
outcomes are hard test cases that obstruct the agents under test from reaching
the soft-goal under consideration. In the latter case, when multiple soft-goals are
considered at once, we expect to obtain test cases that satisfy multiple hard-to-find
conditions simultaneously. In the case of the cleaner, for example, we are interested
in searching for test cases that require the agent to consume more power (subject
to efficiency) and that cause it to be vulnerable to obstacles (subject to robustness).
In such hard test cases, the cleaner may exhibit similar failures more quickly and
frequently compared to those test cases that consider a single objective, or we may
find other faults that are otherwise not revealed in the agents under test.

3.3 Encoding test inputs for evolutionary testing

In meta-heuristic (e.g. genetic) search algorithms, each individual is “genetically”
encoded as a chromosome containing a set of genes. A gene is a set of elements,
binary values (0, 1) for example. The task here is to produce successive gener-
ations of populations that give rise to fitter offspring, usually through specific
operations. In this context, crossover for two individuals means that we cut the
two corresponding chromosomes into parts, usually two, and exchange parts of one
chromosome with those of the other to obtain offspring. Mutation means that a
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randomly-selected (or a small number of) gene element(s) of an offspring is forced
to change, for example flipping 0 to 1.

In order to apply genetic search algorithms to generate test inputs, we must
encode these test inputs such that we can easily perform crossover and mutation
on them. Let us, first, examine the possible input space for autonomous agents.

Georgeff and Ingrand [15] present a minimal design of a reference architecture
for BDI agents [5], that has been widely applied to build autonomous agents. In
the architecture, agents perceive the outside world (from the agents’ perspective)
through a set of sensors, and make changes to the world through a set of effectors.
Weyns et al. [31] complement the architectural picture of multiagent systems with
a reference model for the environment, in which agents access the environment
by employing either perception (sense and percept), action (make changes to the
environment), or communication (send and receive messages). Though the two
architectures appear to be slightly mismatched because of the communication
element, they actually fit well with one another as agent communication involves
environmental facilities — incoming (inbox) or outgoing (outbox) buffers — and
receiving a message can be seen as perceiving the inbox, and sending one as placing
it in the outbox. To this end, the outside world, from the perspective of an agent,
consists of environmental artefacts and other agents, which are considered to be
test inputs in testing software agents. Autonomous agents monitor these elements
actively to detect and reply to events or changes in a timely fashion, or they can
receive stimuli from these elements and react proactively.

In general, we can encode each environmental artefact by means of one gene,
where each property of the artefact is encoded as one part of the gene. A test case,
consisting of a set of all investigated artefacts, is encoded as a chromosome. For
example, to apply evolutionary testing to test the cleaner agent, we consider each
environment as a test case containing a set of objects, such as charging stations
or wastebins. Since each of these objects has a specific location, by changing the
locations of these objects we can obtain new test cases, and we can thus encode an
environment (also known as a test case) as a set of locations. A genetic algorithm
can then be used to search for good sets of locations; that is, to place the objects
in specific locations, so that we can effectively pose demanding challenges to the
cleaner agent.

It is worth noting that this method of encoding test inputs is generic, we
can apply it to different agent systems to identify main elements of test cases,
e.i artefacts and their properties. Then, for each artefact property, its domain-
specific genetic encoding may be required. For example, we can apply the method
to identify test cases composing of a set of objects, each has two properties: location,
size – for testing a concrete agent. After that, we may encode location property
using binary, integer, or real genetic encoding, depending on the domain of the
agent.

4 Experiments

4.1 Testing Scenario

In this section, we further elaborate the cleaner agent example introduced in Sec-
tion 2.2, and build a simulation of a system composed of an artificial environment
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and this cleaner agent to evaluate the proposed approach. We describe, in detail,
the functionality of the agent and the way we use soft-goals to guide test generation
and, ultimately, evaluate the quality of the agent.

The artificial environment is a square area, A, in which there can be obsta-
cles, wastebins, waste, and charging stations located randomly or intentionally.
We define an environmental setting as a particular configuration of A, in which
different numbers of obstacles, wastebins, waste, and charging stations are located
at particular locations. Each such environmental setting comprises a test case,
and different settings pose problems of different levels of difficulty for the cleaner
agent: some might obstruct the movement of the agent or demand the agent to
consume more power, while others might place wastebins in locations that make
it easy for the agent to drop waste collected.

The simulation environment and the cleaner agent are implemented in Jadex
[26], a software framework that facilitates the development of goal-oriented agents
based on the belief-desire-intention (BDI) model. In fact, there is also a cleaner

agent example provided with Jadex middleware, but its functionalities are much
simpler in comparison to our implementation1 in terms of the dynamism of the
environment and the capabilities of the agent.

Our environment can be seen as a container in which there are observable
objects, including obstacles, wastebins, charging stations and items of waste. At
run-time, the properties of these objects (such as location) can change, and new
objects of these kinds can appear in the environment. Figure 3 shows a snapshot
of the environment at run-time. The name of the objects is placed beside it. In this
environment there are one cleaner, two charging stations, one wastebin, a number
of waste and obstacles.

In our experiments, two versions of the cleaner agent were implemented. The
first version, which we refer to as Simple Cleaner or s-Cleaner for short, is pro-
vided with live up-to-date global knowledge about the environment, including the
location of all the objects and their status. As a consequence, s-Cleaner can plan
with global knowledge and does not need to explore the environment. The second
version, which we refer to as Exploring Cleaner or e-Cleaner, is not provided with
such information, and must itself explore the environment to sense other objects
and detect waste. Thus, e-Cleaner may need to re-plan or change its course of
movement when it encounters new objects. Both versions have a number of goals
and associated plans, with goal deliberation based on conditions related to the
current state of the agents (i.e. their location and charge) and the perceived state
of other objects.

The detailed implementation of e-Cleaner as a BDI agent in Jadex can be
summarized as follows. The agent has a set of beliefs regarding its location, profile
(e.g. size, vision), and its knowledge about the surrounding environment. The agent
has four root hard-goals: maintain-battery, avoid-obstacle, cleanup, monitoring; there
are a number of sub goals that help achieving the root goals. In terms of agent
plans, the agent has two plans leastseenwalk and exploremap that determine a place
where to go; plan moveto prepares a trajectory and drives the agent to get to a
target. Plan stopandwaitforchanges is triggered when the agent detects an obstacle;
the agent may, then, wait for some seconds to see if the obstacle moves away and re-
plan after that if continuing its original trajectory may lead to crashes. If a timeout

1 Available at http://selab.fbk.eu/dnguyen/public/cleaner-agent.tgz
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Fig. 3 A screenshot of the simulated environment at runtime

has occurred and no other possible path is found, plan suspendforsafety is triggered
and the agent goes into ‘sleep’ mode. Finally, two other plans loadbattery and
cleanup and their supplementary plans are responsible for recharging the agent’s
battery when it gets low and for cleaning up the discovered waste. Each plan has
a trigger, which is a condition (or a set of conditions) or a reference to goals; the
plan is executed when the required conditions are satisfied or when the referred
goals are triggered. Detailed implementation of agent plans are in Java2 code.

As mentioned in Section 3.1, we choose two soft-goals: robustness and efficiency

to evaluate the quality of the cleaner agents. By analysing robustness, we can
decompose from it two further goals: maintaining-battery and avoiding-obstacles.
These sub-goals, and all other soft goals’ sub-goals, should be taken into account
when evaluating the quality of the cleaner agents. By so doing, each soft-goal can
be used to derive a fitness function, which is then used by evolutionary testing to
guide the generation of test cases.

We apply the evolutionary generation steps introduced in Section 3.2 to gen-
erate test cases. More specifically, the NSGA-II algorithm [11] with its ranking

2 http://www.oracle.com/technetwork/java
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and genetic operations is used in our experiments. The algorithm was proposed by
Kalyanmoy Deb and coleagues, it is a fast elitist multi-objective genetic algorithm
that has been proved to be better in finding widely spread solutions (diversity if
desirable) and offers better convergence to the optimum, in comparison to other
algorithms. The algorithm uses a selection operator that creates a mating pool
by combining the parent and offspring populations, and select the best solutions
from them with respect to fitness and spread. In addition, the NSGA-II algorithm
accepts encoding of real numbers, which fits well with our implementation of the
location of objects in the testing environment.

In what follows, we detail the fitness functions and input encodings used in
our experiments, and present the results obtained for the two agents, s-Cleaner

and e-Cleaner.

4.2 Fitness functions

As described above, we have decomposed the robustness soft-goal into two sub-
goals, avoiding obstacles and maintaining battery. In this section, we define fitness
functions for these two goals.

The agent consumes battery power whenever it moves, picks up and drops
waste; whenever the battery level dips below 20%, the agent moves to the nearest
charging station to recharge the battery. In relation to battery power consumption,
therefore, fitness is inversely proportional to the total power consumption of the
agent throughout its lifetime, as follows:

fpower = 1/Total power consumption

The more power the agent consumes, the lower fpower will be. This will also be
better from a testing perspective, since the test case forces the agent to consume
more, potentially leading to fault revelation.

In relation to the avoiding obstacles soft-goal, the fitness function, fobs, is sim-
ilarly inversely proportional to the number of obstacles encountered during the
lifetime of the agent. Encountering an obstacle means that it is close to the agent
in the agent’s direction of movement. The larger the number of obstacles encoun-
tered, the better fobs will be for testing purposes.

fobs = 1/Number of obstacles encountered

In preliminary work [24], we investigated the generation of test cases under which
the agent is most vulnerable to obstacles by searching, based on the fitness func-
tion derived from the avoiding obstacle soft-goal, for environments in which the
agent has a high chance of colliding with obstacles. In this paper we take that
preliminary work further, extending it to consider both soft-goals, avoiding obsta-

cle and maintaining battery, simultaneously. The search objective is to find test
environments in which the cleaner agent is not only vulnerable to obstacles but
also to consuming large amounts of battery power so that it may fail to maintain a
sufficiently high battery level. In other words, we search for testing environments,
subject to minimising both fitness functions, fpower and fobs.
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4.3 Test input encoding

A test case consists of obstacles, wastebins, waste, and charging stations. In our
experiments, we control the quantity of these objects by fixing them a priori so
that the test generation algorithm focuses only on the locations of the objects and
coverges faster. To apply our approach, we can relax this constraint and consider
also object quantities as other variables for the evolutionary algorithm to find.
We have done serveral pilot experiments with different object quatities and the
results are, to some extent, similar to those reported in this paper. It is important,
however, to notice that as the number of objects increases, the time for the test
generation technique to find good test cases also increases.

In our experiments, there are two wastebins and two charging stations, while
the numbers of obstacles and items of waste are higher (the precise quantity of
these objects is discussed later in this paper). Consequently, one test case differs
from others in the locations of the objects, and we must encode these locations to
represent test cases in a suitable form for the evolutionary search algorithm.

We apply a real number encoding to specify the locations of objects. This
allows an object to be placed anywhere in the environment. In this scheme, the
location of an object consists of two coordinates x, y, where 0 ≤ x ≤ Width and
0 ≤ y ≤ Length. In turn, Width and Length of the area to be cleaned are normalised
to be 1. A test case, then, is encoded straightforwardly as a vector of real numbers
as follows:

TC =< x1, y1, x2, y2, . . . , xN , yN >

where (xi, yi) is the location of object i, and N is the number of objects of all
types. The goal of the evolutionary testing we propose is thus to search for test
cases (TCs), such that fpower and fobs are optimal.

4.4 Experiments and results

During the development of the cleaner agents, before applying our evolution-based
testing, we logged all the detected faults. In so doing, we discovered one subtle
fault, which was found after many long human observations of the behaviour of the
agents, that relates to the two goals of maintaining-battery and avoiding-obstacles.
These two goals can be active at the same time, but when the battery level drops
to too low a level, the agents favour the maintaining-battery goal regardless of the
avoiding-obstacles goal, causing them to collide with obstacles if these appear on
the paths of the agents. Figure 4 is an excerpt of agent code that contains the
fault, lines 7-10: when the battery level of the agent is less than 3 percent, the
goal avoiding-obstacles is inhibited by the goal maintaining-battery. This fault can
be revealed under two simultaneous conditions: the battery of the agents drops to

too low a level (specifically, 3%) so that the avoiding obstacle goal is ignored; and
there must be nearby obstacles in the path of the agents.

In the following experiments we use the fault to evaluate the effectiveness of
our proposed approach, evolutionary testing. We use the detection of the fault,
and the value of the fitness functions introduced in the previous section, as a
benchmark to assess our approach.
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Fig. 4 Excerpt of agent code that contains a fault, lines 7-10. When the battery level of the
agent is less than 3 percent, the goal avoiding-obstacles is inhibited.

Regarding the parameters used with NSGA-II, we choose for all experiments
the following values:

Population size 30
Max number of generation 100
Mutation probability 3%
Crossover probability 90%

4.4.1 Results with s-Cleaner

Using the NSGA-II algorithm [11], we performed evolutionary testing on s-Cleaner

with three different fitness combinations: (i) fpower alone, (ii) fobs alone, and (iii)
both fpower and fobs. In the first and second case only one fitness function is used
to guide the evolutionary generation of test cases, but in the third case, both fit-
ness functions are used. In this respect, the third case, which combines the two
fitness functions, is a multi-objective optimisation problem.

As described above, since s-Cleaner has global knowledge of the environment,
it requires no exploration or sensing. Instead, at run-time, the agent decides what
to do based on its battery level, number of items of waste collected, and number
of items of waste that are not yet collected. Moreover, since the locations of all
obstacles are known, s-Cleaner can plan its trajectory to avoid these obstacles. As
a result, no collision should be expected. These experiments were therefore used
to evaluate our evolutionary testing technique in terms of fitness values, in terms
of how they are improved over time by the approach.

We performed these experiments with different settings of the environment in
terms of quantity and types of object. For example, in one setting (which provides
a clear perspective on the results), the quantity of the objects of each type in the
environment is fixed — 4 obstacles, 4 waste items, 2 charging stations, and 2 waste-
bins — and the locations of the charging stations and wastebins are predefined.
The starting location of the agent is at the bottom-left corner of the environment.
(Other experimental settings for which we repeated the experiment gave similar
results.) In this chosen setting, the aim of the evolutionary testing is thus to place
items of waste and obstacles so that the fitness values reach their optima.

Figure 5 shows the improvement of fitness values over generations. At each
generation we calculated the average fitness values of all individuals to see how
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the whole population evolves. In the sub-figures, the x axis represents time in
terms of generations, while the y axis represents the averages of the fitness values.
Overall we see that the average of fitness values in both sub-figures become smaller
and smaller over time. This means that the fitness functions fobs and fpower get
better results over time or, alternatively, that the generated test cases are better
and better in that they cause s-Cleaner to consume more power and increase
the probability of encountering obstacles. When we ran the evolutionary testing
guided solely by one fitness function — that is, by either fobs or fpower — only
one set of values improves, regardless of the other. Thus, the generated test cases
satisfy only one condition at a time: either causing s-Cleaner to consume more

power or increasing the probability of encountering obstacles.
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Fig. 5 The simultaneous improvement of fitness functions by multiple objective ET.

Figure 6 illustrates three test cases found by evolutionary testing. Figure 6(a)
and 6(b) are test cases found by single-objective evolutionary testing guided by
fobs and fpower, respectively. In Figure 6(a), obstacles (large filled circles) and
waste items (small filled dots) are placed very close to each other, and they are
also nearby two charging stations (squares) and the first wastebin (unfilled circle);
in this setting, our execution trace showed that the agent encountered obstacles in
almost every trajectory, indicating that the probability of crashing into an obstacle
was high. In Figure 6(b), the waste items are placed in the far corners from the
starting point of the agent, requiring the agent to consume more power to fulfil
its cleaning goal. The locations of the obstacles are somewhat random. In Figure
6(c), the waste items are placed in the far corners, and the obstacles are placed on
the paths the agent traverses to collect or drop waste, and to recharge its battery.
In this way, the agent consumes a very high level of power and has a very high
chance of colliding with obstacles.

In summary, the results obtained from this set of experiments provide evidence
to support the claim that multi-objective evolutionary testing can search for test
cases that satisfy multiple testing purposes, creating multiple conditions in which
subtle faults can be revealed. The introduced fault manifests itself only when the
battery level is very low and at that moment the agent encounters an obstacle.
Thus, effective testing needs to synthesise separate stress conditions to automat-
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(a) Single fobs objective

(b) Single fpower objective

(c) Both fobs and fpower objectives

Legend

obstacle

waste

charging 
station

wastebin

(d) Legend

Fig. 6 Examples of test cases found using single and multiple objective ET. The meaning
of the objects in these figures is identical to those in Figure 3. However, we make a new
presentation to better visualise the test cases.
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ically identify such fault revealing conjunctions of circumstances. This is why we
believe that the agent testing problem naturally maps onto a multi-objective search
based optimisation problem in the manner that we advocate herein. The chance of
detecting the same fault when only one of these conditions holds regardless of the
other (considering only a single objective) is lower because the probability that
both conditions hold at the same time is naturally lower, too.

4.4.2 Results with e-Cleaner

In the previous results we have shown the capability of multi-objective evolutionary
testing in searching for test cases that satisfy multiple conditions simultaneously.
This is encouraging because these test cases have a good chance of finding subtle
faults. In this section we investigate the application of multi-objective evolutionary
testing on e-Cleaner. Since the e-Cleaner has only local knowledge of the area it
explores, it may need to re-plan when discovering new objects such as obstacles in
its way, unexpected items of waste, charging stations, and so on. Moreover, because
the agent has no knowledge of its environment when it starts, it must make random
choices about where to explore. As a consequence, given the same test case, the
agent acquires different knowledge and so can make different decisions in different
runs, resulting in different behaviour. For each generated test case, therefore, we
must repeat its execution several times in order to gather sufficient output data
in order to correctly assess the quality of the test case.

In our experiments, each test case was executed repeatedly five times to mea-
sure the objectives fobs and fpower. Each execution lasted 45 seconds3 so that the
agent has enough time to discover the environment and perform its tasks. Trial
experiments revealed that with five executions and 45 seconds for each, the results
of a test case converge and represent the overall result of the test case. To reduce
testing time, five identical testing platforms were set up to undertake parallel ex-
ecutions. Similar to the experiments performed with s-cleaner, we also predefined
the quantity of the objects in the environment, with 10 obstacles, 6 waste items, 2
charging stations at fixed locations, and 2 wastebins at fixed locations. We believe
that these numbers are reasonable since these proportions of obstacles to waste-
bins provide evolutionary testing with adequate means to obstruct the movement
of the agent. Within 45 seconds the agent can collect around 6 items of waste but
must also recharge its battery once or twice.

In the same setting (that is, with the same number of objects of each type, and
with the same initial populations), we executed single-objective evolutionary test-
ing guided by fobs and fpower individually, and then multi-objective evolutionary
testing guided by both objectives. We compared the performance of these cases in
terms of the number of instances in which the testing method caused the cleaner
agent to collide with obstacles, where more collisions provide a better test case.

To illustrate how multi-objective evolutionary testing driven by fobs and fpower

improves test cases over time, consider Figure 7, which shows two samples of the
population at the 1stgeneration and at the 70thgeneration. The figure depicts a plot
of 1/fobs and 1/fpower, so the larger the values, the better the population. In the
1stgeneration (Figure 7(a)), the population is located in the lower-left area, while

3 Execution time of the simulation should not be regarded as representative of execution
time of a real cleaning robot, which is expected to be much longer for comparable behaviour.
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in the 70thgeneration (Figure 7(b)), the population has improved significantly to
the top-right area, where the fitness values are better.
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Fig. 7 Improvement of test cases over generations (note that values increase as they represent
the inverse of the fitness functions that decrease)

Figure 8 shows the number of collisions over time. We use box-plots4 to rep-
resent the statistical measure of collisions of every 20 consecutive generations, the
1stto the 20th, the 21stto the 40th, and so on. This provides an indication of the
trend of the number of collisions over time. Looking at the plots in Figures 8(a)
and 8(b), we can observe that the number of collisions caused by test cases found
by fobs alone (Figure 8(a)) is high and stays relatively constant over time, while
in the case of fpower (Figure 8(b)), this is very small and without a clear pattern.
This can be explained by the fact that the fault is sensitive to the placement of
obstacles; when evolutionary testing was guided by fobs alone, it found test cases
that facilitate obstacle encounters, and since the agent consumes power in any
case, encountering more obstacles will increase the number of collisions. In con-
trast, when evolutionary testing was guided by fpower alone, it favoured test cases
that led the agent to consume power regardless of obstacle encounters, so that the
probability of the agent colliding with obstacles is low.

Finally in Figure 8(c), we observe an increased trend in the number of colli-
sions. At the beginning this number is relatively low, perhaps because evolution-
ary testing must find test cases that compromise power consumption and obstacle
avoidance. However, after some generations, multi-objective evolutionary testing
performs better than single-objective evolutionary testing guided by fpower, and
equivalently to single-objective evolutionary testing guided by fobs. This leads
us to conclude that multi-objective evolutionary testing can find test cases that
satisfy multiple conditions simultaneously, even though its effectiveness may not

4 A box-plot of a set of values depicts an effective visual representation of both central
tendency and dispersion. It simultaneously shows the 25th, 50th (median), and 75th percentile
values, along with the minimum and maximum values (called “whiskers”). The “box” of the
box plot shows the middle or “most typical” 50% of the values, while the whiskers of the box
plot show the more extreme values. The length of the whiskers indicates visually how extreme
the outliers are.
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(a) Single fobs objective (b) Single fpower objective

(c) Both fobs and fpower objectives

Fig. 8 Plots of statistical crash count per test execution (aka platform) over time, the red
horizontal bars are median values

always be better than well-chosen single-objective evolutionary testing. However,
we do have a degree of guarantee that tough test cases can be found if they exist.
If we had chosen only fpower in this experiment, we would have missed the oppor-
tunity to challenge the cleaner agent. In addition, we observe that the maximum
number of collisions caused by multi-objective evolutionary testing is eventually
higher than the maximum number of collisions caused by single fobs, and always
higher than the number caused by fpower alone.

5 Future Work

There is a compelling case for much future research on SBSE for Agent Oriented
Software Engineering. On the one hand agents’ autonomous properties make their
behaviour less predictable than traditional Software Engineering systems and this
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leads to emergent behaviour. This emergent property is one for which evolution-
ary optimisation algorithms are ideally suited; such algorithms seek to capture,
control and exploit emergent behaviour to seek innovative solutions that may ini-
tially seem counter intuitive, yet which ultimately prove to be both optimal and
valuable. One the other hand, the underlying model of computation used by multi-
objective evolutionary computation is surprisingly similar to that used for Agent
Oriented Software Engineering; both draw on the emergent properties of ensembles
of individuals that work as a population to achieve an overall goal.

Future work will extend our techniques to test multiple agents. For example,
we can define a fitness function related to power consumption as a sum of the
power consumption of all the agents under test. There has been exciting recent
work by White [32] on multi-objective SBSE for balancing functionality and power
consumption on which this future research on search based agent testing might
draw. As a result, evolutionary testing can also search for test cases that cause
the agents, in total, to consume more energy, and this may lead to successful fault
detection here, too. Following White [32], we may also seek to evolve agents that
consume lower power and to explore the trade off between this objective and the
other constraints and objectives set out for the agent’s expected performance.

In this paper we focus on robustness of agent operation as an objective to be
tested through search based optimisation. However, the approach we advocate is
very general, based, as it is, on the very generic nature of SBSE. In almost any
agent testing situation, there will be objectives and constraints that the agent must
respect. It will often be possible to translate these into fitness functions. Having
done so, the full power of search based optimisation can be brought to bear on
the problem of developing and testing agents. Using the fitness functions to guide
automated search, SBSE can be used both to optimise agent performance and,
as we do here, to search for challenging environments that test agent behaviour
against these objectives and constraints of interest.

It will also be interesting, in future work, to combine the search based optimisa-
tion of the agent’s own BDI code with the search based optimisation of challenging
test cases, using competitive co-evolution, an approach which has been proposed
for several other applications of SBSE such as testing [1,18] and fault fixing [2,
3]. Future work may use co-evolution to drive an ‘arms race’ that co-evolves ever
better BDI agent code and, at the same time, even more demanding sets of test
cases that test their behaviour thoroughly.

6 Conclusion

Autonomous software agents are goal-directed and self-motivated. Their behaviours
are seldom determined from external perspectives. As a result, defining test cases
to assess the quality of autonomous agents is challenging.

In this paper, we have proposed a systematic way of evaluating the quality
of autonomous agents. First, stakeholder requirements are represented as quality
measures. Autonomous agents need to meet a threshold under these measures in
order to be accepted as ready for use by the stakeholders. Fitness functions, that
represent testing objectives, are defined based on the quality functions, and guide
our evolutionary test generation technique to generate test cases automatically.
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The longer the time for evolution is, the more challenging the evolved test cases
are. Thus the autonomous agent is tested more and more extensively.

Fitness functions can be used individually, which guide the generation of test
cases towards optimising a particular objective to bring the agents under test to a
hard condition where faults might be revealed. On the other hand, they can be used
together to put the agents under test into multiple hard conditions simultaneously,
in which subtle faults can be revealed. These applications are complementary to
each other; the final objective is to find as many faults and possible.

The significance of the test results presented in this paper is that evolutionary
testing, following our approach, can test agents in a greater range of contexts than
standard tests, thereby accounting for their autonomy to act differently in each
such context. Testing an autonomous agent using a more traditional approach
can only be effective if the range of contexts that influence the agent’s behaviour
is sufficiently limited that the developer can predict them all. However, when
considering systems of any substantial complexity, of which a multi-agent system
is certainly included, such a limited range is unlikely to occur. We can therefore
argue that automated, search-based testing is essential to ensure complex system
robustness and, as our tests show, evolutionary testing is an excellent candidate.

Multi-objective evolutionary testing can be guided by multiple fitness func-
tions, including conflicting ones for which optimising one may constrain others
(for example, maximising customer satisfaction and minimising expense). Multi-
objective search techniques can find a broad range of test cases: some of them
support of a particular fitness, while the others balance different ones. The former
cases can be similar or comparable to those that can be found using single-objective
techniques, while in the latter, the test cases may satisfy some balance conditions
that lead to finding other faults. Therefore, multi-objective evolutionary testing
has an advantage over single-objective evolutionary testing in terms of test execu-
tion (one multi-objective execution instead of multiple single-objective executions)
and effectiveness.

When we have only partial or no control over the testing environment, for
example when there is a third party agent participating in the test step, monitoring
and statistical evaluation of the observed data can be used in testing. Evolutionary
testing can actively search for the configurations of the part over which we have
control, and because this part is affected during test execution by the rest of the
system, an appropriate statistical evaluation may tell the whole picture. In the
future, we will extend our experiments to validate that observation. Based on
our results, we believe an evolutionary approach to testing autonomous agents is
appropriate and effective, as it allows the agent to be thoroughly tested across a
range of contexts that may affect its behaviour.

In addition, since our technique focuses on generating good test cases for the
agents under test when they can be deployed on their environments, it can be
applied in late phases of software testing, e.g. integration, system, acceptance,
or regression. In regression testing, for example, we are interested in looking for
failures or faulty behaviours that have occurred before as well as new ones when
changes happen. (In fact, there are numerous research challenges in regression
testing that have been surveyed in [33,13].) In the context of autonomous software
agent, these issues become event more relevant because autonomous agents might
expose new behaviours over time as results of learning and evolving. Fortunately,
by nature, evolutionary algorithms used by our technique keep good individuals
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(i.e. test cases) with respect to fitness functions during evolution. As a result, test
cases that are likely to be able to reveal faults are kept, and this fits the regression
testing objective. We will further investigate this opportunity in our future work.
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