
Coverage and Fault Detection of the Output-Uniqueness
Test Selection Criteria

Nadia Alshahwan and Mark Harman
CREST Centre

University College London, Malet Place, London, WC1E 6BT, U.K.
{nadia.alshahwan,mark.harman}@ucl.ac.uk

ABSTRACT
This paper studies the whitebox coverage and fault detection
achieved by Output Uniqueness, a newly proposed blackbox
test criterion, using 6 web applications. We find that out-
put uniqueness exhibits average correlation coefficients of
0.85, 0.83 and 0.97 with statement, branch and path cov-
erage respectively. More interestingly, output uniqueness
finds 92% of the real faults found by branch coverage (and
a further 47% that remained undetected by such whitebox
techniques). These results suggest that output uniqueness
may provide a useful surrogate when whitebox techniques
are inapplicable and an effective complement where they
are.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Software Testing, Blackbox testing, Whitebox testing, Web
applications

1. INTRODUCTION
This paper studies the blackbox test selection criterion

output uniqueness, which was introduced in our recent NIER
paper [5]. Output uniqueness is a purely blackbox technique
that maximises differences between observed outputs. In the
paper we report on the degree to which output uniqueness
can complement whitebox criteria and act as viable surro-
gate. Specifically, we study the correlations of seven defini-
tions of uniqueness with more well-established, whitebox cri-
teria: statement, branch and path coverage. We also study
and compare fault detection capability for output unique-
ness and these structural whitebox coverage criteria.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

We study output uniqueness for 6 web applications. We
chose to study web applications because of their structurally
rich output, which supports investigation of many different
definitions of ‘uniqueness’. Our definitions range from the
almost implausibly permissive (differences in all but the last
line are ignored) to the least permissive possible (every char-
acter counts). In-between these extremes, we study a hier-
archy of subsuming definitions of uniqueness.

Our study is partly motivated by the many previous stud-
ies [6, 16, 25, 29] that have reported that achieving high
structural whitebox coverage may leave many faults un-
detected. This previous work indicates the need for ad-
ditional (and perhaps complementary) notions of test ad-
equacy and coverage. Our results do, indeed, indicate that
output uniqueness finds many of the faults found by white-
box coverage and also complements whitebox techniques by
finding many faults that it leaves undetected.

The key insight that underpins the notion of output unique-
ness is that two test cases that yield different kinds of output
may likely traverse two different paths. Moreover, in systems
with rich and structured outputs (such as, but not limited
to, web applications), we expect faults to be more likely to
propagate to the output and thereby produce a different out-
put. Clearly, these observations depend on the definition of
‘output difference’ (which we define more rigorously later).

We use seven different definitions of output difference to
select those test inputs that yield unique outputs (outputs
that no other test input produces). Four of these definitions
appear in our previous NIER paper. In the present paper we
introduce Three new definitions and investigate our conjec-
ture that output unique test suites would be likely to achieve
high structural coverage, even though they were created with
no knowledge of structure. We also investigate the conjec-
ture that output unique test suites would likely enjoy high
fault finding potential.

The results of our empirical study provide evidence to
support these two conjectures. Specifically, we observe av-
erage Spearman rank correlations of 0.85, 0.83 and 0.97 re-
spectively for statement, branch and path coverage with our
strictest criterion and strong correlations for less strict cri-
teria. This suggests that output uniqueness, though it is
purely blackbox, is closely correlated to whitebox coverage.

We also report on the faults found by both output unique-
ness and by whitebox techniques. Our results reveal that
output uniqueness is good at finding real faults in the sys-
tems to which it is applied, consistently finding 92% of the
faults found by branch coverage and a further 47% of addi-
tional faults that were not found by branch coverage.

The primary contributions of the paper are as follows:

1. An empirical investigation of the correlation between
output uniqueness and structural coverage of test suites
on six real-world web applications.

2. An empirical investigation of the correlation between
output uniqueness and fault detection capabilities of
test suites.

3. An empirical investigation of the consistency of output
uniqueness criteria in finding faults and their comple-
mentarity to branch coverage.

The findings of these studies indicate that output unique-
ness can be used as both a surrogate and a complement to
whitebox techniques. This offers hope to testers working
in situations where whitebox techniques are difficult to ap-
ply. For example, where non-functional properties are to be
tested, such as execution time, insertion of the instrumen-
tation needed by whitebox testing will disrupt the prop-
erty that is under test [1]. For test engineers tasked with
testing third party code, the source may not be available
and so whitebox techniques would be inapplicable. Output
uniqueness may provide a useful surrogate in these situa-
tions as well as being a supplementary technique in cases
where whitebox testing is applicable.

In the rest of this paper, Section 2 presents our proposed
output uniqueness criteria, whilst Section 3 presents the em-
pirical studies together with a discussion of their results, ac-
tionable findings and threats to validity. Section 4 presents
related work and Section 5 concludes.

2. OUTPUT UNIQUENESS CRITERIA
To utilise output uniqueness as a selection criterion, we

first need to define what constitutes a unique output. The
authors’ NIER paper [5] introduced the concept of Output
Uniqueness (OU), presenting four different OU criteria (OU-
All, OU-Text, OU-Struct and OU-Seq). In this section we
briefly review these four criteria, to make the paper self con-
tained, and introduce three new criteria, yielding a family
of seven OU criteria for blackbox testing.

2.1 Web Application Output
Web output consists of the HTML code (H) and content

(C): The content (C) is the textual data visible to the user.
The HTML code (H) defines the structure and appearance
of the page as well as elements, such as Forms and links.

The HTML code consists of nested HTML tags (T) that
define the element type (e.g. table, input). Each tag t ∈ T
has a set of attributes (A). For example, a tag t of type in-
put could have attributes avalue and atype. An application’s
client-side output page is defined as a tuple O = 〈C,H〉,
where the HTML code H is a set T of tags t and each tag
in T is associated with a set A of attributes a.

2.2 OU Definitions
The client-side output in Figure 1(a) is taken from one

of the applications studied in the paper (Schoolmate) and
simplified for readability. This code will be used to illustrate
those parts of the output that are considered significant for
the purposes of defining each output uniqueness criterion.

Five of our OU criteria are based on the HTML structure,
while a further two are based on the content. A test suite
is defined as a set of (input, output) pairs. The strictest
structure based definition to consider is:

Definition 1 Output o is OU-All unique with regard to a
test suite T ⇐⇒ ∀ (i, o′) ∈ T o 6= o′.

When a new output page is compared to previously visited
pages, any difference in the page categorises the new output
page as unique. All the HTML code in Figure 1(a) will be
considered for comparison when using OU-All.

This definition could potentially lead, in some cases, to
arbitrarily many unique outputs that do not necessarily en-
hance the test suite’s effectiveness, but considerably increase
oracle costs. For example, an application that displays the
date on the output page could result in a potentially infi-
nite set of unique outputs. A page that displays product
information would have as many unique outputs as there
are products in its database. To overcome this problem out-
put uniqueness can be defined, less strictly, in terms of the
HTML structure of the page (ignoring the textual content).

Definition 2 Output o is OU-Struct unique with regard to
a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and
o′ = 〈C′, H ′〉 H 6= H ′.

Figure 1(b) shows the part of the output page that will be
considered for comparison when using OU-Struct. The text
in the output page is removed and only the HTML structure
is retained and compared to previously observed output to
decide whether the output is new.

This definition eliminates the ‘potentially infinite output’
issue in the text discussed for OU-All. However, the HTML
structure may still yield large test suites, for example, when
the structure embeds context-aware advertisements. We,
therefore, provide a new definition of output uniqueness that
retains input names and considers only input values for fields
of hidden type. This is to eliminate any variations that are
caused by Form options, default values or style settings.

Hidden Form variables are control variables that are em-
bedded by the server-side code in Forms to pass state infor-
mation to the client-side. Their role as conduits for state
information means that hidden Form variables may be ex-
pected to be significant in capturing application behaviour.
Unexpected values held in hidden Form variables can possi-
bly indicate a fault in a previous execution.

Definition 3 Output o is OU-Hidden unique with regard to
a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and o′ =
〈C′, H ′〉 and H and H ′ contain a set of tags T and T ′ and
attributes A and A′ respectively, either T 6= T ′ or ti ∈ T and
t′i ∈ T ′ are equal to ‘input’ and either anamei 6= a′

namei or
atypei and a′

typei are equal to ‘hidden’ and avaluei 6= a′
valuei

.

The subscripts to attributes a denote the type of attribute
being considered. An attribute anamei is an attribute of
type name in the set of attributes A associated with the ith
element in the set of tags T . Figure 1(c) shows that part of
the output that will be considered for OU-Hidden.

Hidden Form variables can also lead to arbitrarily large
unique output sets. For example, suppose the item order
Form for an online store contains a hidden field that holds
the item’s ID. There will be as many OU-Hidden unique
outputs as there are products in the database. Therefore,
it might be useful to consider characteristics of hidden Form

variable values rather than their actual values.
A new definition is, therefore, proposed based on the sub-

types of hidden Form variable values. The subtypes used
in this paper are: positive and negative numbers, strings,
zeros, empty strings and NULL. These subtypes are cho-
sen to be general (not application-specific) in order to avoid
experimenter bias in our empirical studies.

<html>
<head>
<title>SchoolMate

</title>
</head>
<body>
<form action=’index.php’
method=’post’ name=’login’>

Username:
<input type=text name=’user’>
Password:
<input type=password name=’pw’>
<input type=submit value=’Log’>
<input type=hidden name=’page’

value=’1’>
</form>
Powered By

-SchoolMate
</body>
</html>

(a) OU-All

<html>
<head>
<title>

</title>
</head>
<body>
<form action=’index.php’

method=’post’ name=’login’>

<input type=text name=’user’>

<input type=password name=’pw’>
<input type=submit value=’Log’>
<input type=hidden name=’page’

value=’1’>
</form>

</body>
</html>

(b) OU-Struct

<html>
<head>
<title>

</title>
</head>
<body>
<form>

<input name=’user’>

<input name=’pw’>
<input>
<input name=’page’

value=’1’>
</form>

</body>
</html>

(c) OU-Hidden

<html>
<head>
<title>

</title>
</head>
<body>
<form>

<input name=’user’>

<input name=’pw’>
<input>
<input name=’page’

value=num>
</form>

</body>
</html>

(d) OU-Subtypes

<html>
<head>
<title>

</title>
</head>
<body>
<form>

<input>

<input>
<input>
<input>

</form>

</body>
</html>

(e) OU-Seq

Figure 1: Output used by each structure based output uniqueness criteria on a simplified output page from
the Schoolmate application: OU-All considers all the output, OU-Struct considers only HTML structure,
OU-Seq considers HTML tags, but ignores attributes, OU-Hidden ignores all attributes except input names
and hidden fields, OU-Subtypes considers only the type of hidden fields.

However, in practice, the tester might define more specific
subtypes drawn from the domain of the application under
test (or for classes of such applications). This may allow
the tester to better incorporate domain knowledge into the
testing process.

Definition 4 Output o is OU-Subtypes unique with regard
to a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and
o′ = 〈C′, H ′〉 and H and H ′ contain a set of tags T and T ′

and attributes A and A′ respectively, either T 6= T ′ or ti ∈ T
and t′i ∈ T ′ are equal to ‘input’ and either anamei 6= a′

namei

or atypei and a′
typei are equal to ‘hidden’ and the subtype of

avaluei 6= subtype of a′
valuei

.

Figure 1(d) shows the part of the output that will be con-
sidered for OU-Subtypes. The value of the first hidden field
page was replaced by the corresponding subtype ‘num’.

A final structure based definition of output uniqueness can
be proposed where the HTML structure of a page is stripped
of any text or embedded values, including hidden field val-
ues, and only the opening and closing tags are considered:

Definition 5 Output o is OU-Seq unique with regard to
a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and
o′ = 〈C′, H ′〉 and where H and H ′ contain a set of tags T
and T ′ and attributes A and A′ respectively T 6= T ′.

Figure 1(e) shows the part of the output that will be con-
sidered for OU-Seq. All text and attributes from HTML
tags are removed.

The previous five definitions focused on the HTML struc-
ture of an output page. However, the text in the page pro-
duced by the server may also be important. Therefore, a
new definition of output uniqueness is added:

Definition 6 Output o is OU-Text unique with regard to
a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and
o′ = 〈C′, H ′〉 C 6= C′.

For the HTML example in Figure 1(a), only the following
parts of the output page will be considered:

SchoolMate

Username:

Password:

Powered By-SchoolMate

OU-Text only considers the text in the output page.

The last line of this text may be useful if, for example, it
flags a failure or denotes the final result of a computation.
Of course, it might also be the case that the last line of
output text is always identical (‘all completed successfully’
or some such). If it turns out to be effective at finding
faults then checking only the last line of text will certainly
simplify the tester’s job should he or she be playing the
role of oracle [22]. We will, therefore, investigate the use
of OU-LastText as a criterion to investigate whether it is
sufficiently discriminating to be used as a useful blackbox
criterion:

Figure 2: Uniqueness criteria strictness hierarchy.
Definition 7 Output o is OU-LastText unique with regard
to a test suite T ⇐⇒ ∀ (i, o′) ∈ T where o = 〈C,H〉 and
o′ = 〈C′, H ′〉 and clast and c′last are the last lines of C and
C′ respectively, clast 6= c′last.

For the HTML example in Figure 1(a) only the last line
‘Powered By-SchoolMate’ would be considered for compar-
ison by the OU-LastText criterion. In this case, such a last
line of text would be an example of a situation in which OU-
LastText is likely to be unhelpful; all HTML output pages
contain the terminating sentence ‘Powered By-SchoolMate’.
However, in other situations the last line may be better at
distinguishing the type of computation performed.

Figure 2 illustrates the strictness hierarchy of our pro-
posed output uniqueness criteria: OU-All is the strictest cri-
terion, while OU-LastText and OU-Seq are the least strict.
Structure based criteria (right branch) and text based cri-
teria (left branch) are orthogonal. The OU relations form a
strictness hierarchy: A → B means that A is stricter than
B. That is, if B reports two outputs as unique, then A will
agree that they are unique, but not necessarily vice versa.

3. EMPIRICAL STUDY
This empirical study is designed to answer the following

four research questions:
RQ1: Structural Coverage Ability: How do the output
uniqueness criteria correlate to whitebox coverage?

This research question investigates how well our output
uniqueness correlates to statement, branch and path cov-
erage criteria. A strong correlation indicates that output
uniqueness criteria can be used as alternative criteria when
these whitebox criteria are found to be inapplicable (e.g.
when code is unavailable).
RQ2: Fault Finding Ability: How do the output unique-
ness criteria correlate to fault finding ability of a test suite?

If a correlation is found in answer to RQ1, then this would
mean that output uniqueness could be used in place of struc-
tural coverage, but whether it should be used depends on its
ability to find faults. Therefore, RQ2 investigates the cor-
relation between output uniqueness criteria and fault find-
ing ability. It also examines how output uniqueness crite-
ria compare to structural coverage criteria in their corre-
lation to fault detection. To determine the usefulness of
output uniqueness criteria, a strong correlation should exist
between the number of unique outputs in a test suite and
the number of faults found by the test suite.
RQ3: Fault Finding Consistency: How does output
uniqueness consistency compare to structural coverage?

If RQ1 demonstrates that output uniqueness is correlated
to whitebox coverage and RQ2 indicates a strong correlation
with fault finding then output uniqueness should be used as
a way to find faults, but there remains a question of how
reliable it will prove to be in practice. That is, how likely
is it that all equally unique test sets will find a given fault.
This ‘consistency’ question is addressed by RQ3.
RQ4: Additional Fault Finding Ability: Can output
uniqueness augment whitebox techniques?

Suppose RQs 1,2 and 3 indicate that correlations exist be-
tween output uniqueness and both whitebox coverage and
consistent fault finding. This would provide evidence that
we could use output uniqueness to achieve structural cov-
erage when whitebox techniques are inapplicable. However,
what if whitebox techniques are applicable; should we still
consider using output uniqueness? RQ4 addresses this ques-
tion. It asks whether output uniqueness criteria are also
complementary to structural coverage criteria; do they find
additional faults missed by whitebox techniques?

3.1 Experimental Design
This section describes the subjects, measures and analysis

tools used in the empirical study.

3.1.1 Subjects
The web applications we used are described in Table 1.

These applications range from 800 LoC to 22K LoC and
have been used by other research on web testing [4, 7].

For each application, we collected all test cases generated
from a tool called SWAT from previous work [4] to form a
pool of test cases. This pool is used for sampling in the ex-
periments performed for the empirical study. Test cases are
collected from those generated for each of the three varia-
tions of the search based algorithms implemented for SWAT.
Every test case is a sequence of one or two requests. That
is, a test case consists of two requests when login is required
for the action in the second request to be performed.

Details about the size and performance of each pool of
test data for each application are provided in Table 2.

Table 1: The web applications used in the study.
PHP PHP

App Name Version Files LoC Description

FAQForge 1.3.2 19 834 FAQ management tool
Schoolmate 1.5.4 63 3,072 School admin system
Webchess 0.9.0 24 2,701 Online chess game
PHPSysInfo 2.5.3 73 9,533 System monitoring tool
Timeclock 1.0.3 62 14,980 Employee time tracker
PHPBB2 2.0.21 78 22,280 Customisable web forum

3.1.2 Measures
Coverage, fault detection and output uniqueness are mea-

sured and evaluated for the empirical study. For coverage:
path, branch and statement coverage are measured. State-
ment coverage and branch coverage are widely used in re-
search to measure and compare the effectiveness of test data
generation approaches [7, 14, 27, 38] and in approaches that
specifically aim to maximise such coverage [15, 26, 34, 39].

Path coverage is a stronger criterion that subsumes both
branch and statement coverage. The ‘all paths’ criterion is
infeasible, because there are usually infinitely many paths.
Nevertheless, we can measure the number of distinct paths
covered by a test suite and thereby measure path coverage.

We use an automated oracle to check for fault revelation.
That is, our oracle automatically reports PHP and SQL ex-
ecution errors parsed from PHP error log files and the out-
put HTML pages of each test case. Only faults that are
caused by a unique code location and have a distinct type
are counted (to avoid double counting of faults). We use an
automated oracle because it is unbiased and is unaffected by
the experimenters’ involvement in the evaluation.

Table 2 reports the size of each test pool, the total num-
ber of faults that can be detected, as well as the maximum
paths, branches and statements covered by the test pool.
The number of distinct outputs measured according to each
output uniqueness criterion is also reported.

The pool of test data for Schoolmate is considerably larger
than that for the other applications (∼ 73k test cases com-
pared to < 23k). PHPSysInfo has the fewest test cases
(1,130). However, these pools were not altered by reducing
the Schoolmate pool or expanding the PHPSysInfo pool. We
refrain from such interference with the test pools to avoid
any possibility of experimenter bias.

In our experiments, each sample from the pool is the sub-
ject of a pairwise comparison of blackbox and whitebox cov-
erage achieved. This is used in a correlation analysis. Be-
cause the measurements are paired, we are always comparing
like-for-like in the inferential statistical analysis.

Although all test cases in the pool are unique, the analysis
shows that, even for the strictest output uniqueness defini-
tion, only a small percentage of test cases produce unique
outputs (ranging from 3-28%). The only exception is PHP-
SysInfo, for which nearly all outputs are unique for both the
OU-All and OU-Text criteria. This is caused by the appli-
cation displaying several data items that are time sensitive
on the output page: Execution time and system up time.

3.1.3 Analysis Tools
Xdebug was used to record statement coverage. Xdebug

cannot be used for branch and path coverage because it does
not produce a trace of statements executed.

Table 2: Test data information and output analysis information: Number of test cases, faults found and total
paths, branches and statements covered by the subject test data for each of the 6 web applications together
with the number of distinct outputs for each of the output uniqueness definitions.

Whitebox Coverage Blackbox OU-
Test Sub Last

App Name Cases Faults Paths Branches Statements All Text Struct Hidden types Seq Text

FAQForge 7,233 67 176 96 516 1,287 1,175 1,049 896 78 55 7
Schoolmate 72,674 201 333 570 2,973 1,982 638 1,489 1,464 326 271 248
Webchess 9,377 98 209 460 2,097 1,608 408 1,556 1,316 151 38 15
PHPSysInfo 1,130 6 341 476 4,841 1,047 1,047 707 14 14 14 884
Timeclock 10,671 186 439 831 5,386 3,014 782 2,638 249 111 80 89
PHPBB2 22,379 79 2,030 1,337 7,807 5,617 1,602 4,138 513 92 82 27

Therefore, the applications’ code was instrumented to pro-
duce execution traces that can be used to measure branch
and path coverage. This instrumentation affects neither or-
der nor frequency of execution. A test harness was developed
to execute test cases and analyse the output. Statistical
analysis and data visualisation was performed using R1.

3.2 Experiments and Discussion
This section describes the experimental methodology and

discusses the results obtained for each of the analyses we
performed, answering each of the four research questions
and describing actionable findings and threats to validity.

3.2.1 RQ1: Structural Coverage Ability
To investigate the correlation between structural cover-

age criteria and output uniqueness criteria, we randomly
created N test suites from the test pool of each application.
Each individual test suite is composed of between 10 and
500 randomly selected test cases from the pool of all test
cases generated by the web testing tool SWAT.

For each test suite we measured statement, branch and
path coverage as well as the number of unique outputs based
on all output uniqueness criteria. We then calculated Spear-
man’s rank correlation coefficient between each of the three
whitebox coverage measures and the number of unique out-
puts for each of the seven output uniqueness definitions.

Spearman’s rank correlation coefficient was chosen to as-
sess correlation because it is a non-parametric statistical test
and, therefore, makes assumptions about neither the distri-
bution of faults found, nor coverage nor output uniqueness.
We repeat the experiment 30 times for each application.

This gives us 30 different measurements of the Spearman
rank correlation, which we will depict using box plots. These
box plots give an indication of the variance in correlations
observed and, thereby, an assessment of the reliability of
conclusions that can be drawn about the true overall corre-
lation (over all possible test suites).

Figure 3 illustrates the overall ‘nested’ structure of the
evaluation experiments. In total 18,600 test suites were sam-
pled for each application (111,600 test suites in total). This
provides us with a large set of experimental data on which
to base robust conclusions regarding the research questions.

We first established a suitable choice for the parameter
N to the experimental approach outlined in Figure 3. This
parameter determines the number of test suites used in each
computation of a Spearman rank correlation. If N is insuf-
ficiently large then there would be too great a variation in
correlation values observed. Such a large variance would in-

1http://www.r-project.org/

Figure 3: Framework of the experiments performed
for the study. The overall framework was repeated
with three values for N : 20, 100 and 500. The nested
repetition required by inferential statistical analysis
meant that we considered 111,600 test suites in to-
tal, over all experiments.
hibit our ability to draw firm conclusions regarding the true
correlation over all possible test suites.

We experimented with N = 20, N = 100 and N = 500,
examining the correlation between output uniqueness and
whitebox coverage. Once the value N = 500 was reached
it had become clear that there was little variation in cor-
relation coefficients over all three whitebox criteria and so
N = 500 was selected as the final choice for N .

Space does not permit us to show results for all criteria.
However, Figure 4 illustrates the way in which increasing N
effectively reduces the ‘error bars’ on the median correlation
coefficient for one of the three: branch coverage. The re-
sults for statement and path coverage are similar. As can
be seen from Figure 4, the variance in correlation coefficients
observed is unacceptably large for N = 20, but it is consid-
erably narrowed at N = 500.

We will use this value of N to answer RQ1 (and the sub-
sequent RQs). Figure 5 presents the results of correlation
analysis. Each of the six rows of box plots in Figure 5 re-
lates to one of the six applications, while each of the three
columns relates to one of the three whitebox criteria: state-
ment, branch and path coverage. In each row and column of
Figure 5 we find a subfigure depicting seven boxplots. These
seven boxplots report the correlation between the seven out-
put uniqueness criteria and the whitebox criterion for that
column and the web application for that row.

For all six applications, the results clearly reveal a strong
correlation between six of the output uniqueness criteria (all
except OU-LastText) and all three whitebox coverage cri-
teria. Path coverage exhibits the strongest correlation in
general.

(a) 20 suites (b) 100 suites (c) 500 suites

Figure 4: Effect of test suite set size (N) on correlation coefficient variance for N = 20, 100, 500 over 30 different
experiments for Schoolmate. Results for the other five web applications are similar.

We observed that the correlations are less strong for PHP-
SysInfo for the three criteria OU-Hidden, OU-Subtypes and
OU-Seq. However, recall that for these three criteria, our
test pool contained few distinct outputs (only 14 in total;
an order of magnitude fewer than for other criteria). For all
other web applications and all of the other output unique-
ness criteria for PHPSysInfo, the correlations are strong.

In summary, the answer to RQ1 is that output
uniqueness criteria were strongly correlated to struc-
tural coverage.

3.2.2 RQ2: Fault Finding Ability
To investigate the correlation between fault finding ability

of a test suite and structural coverage and output uniqueness
criteria, Spearman’s rank correlation coefficient was calcu-
lated between the number of distinct faults found and each
of the output uniqueness criteria, structural coverage crite-
ria and test suite size for each set of test suites.

Figure 6 reports the results of this analysis in six subfig-
ures; one for each web application studied. We report the
correlation between faults found and test suite size in each
subfigure because we know size is correlated with fault find-
ing. Therefore, correlation values for size provide a useful
comparator for the other correlations observed.

The results show that for 5 of the 6 applications and all
output uniqueness criteria except OU-LastText, a strong
correlation exists between output uniqueness and fault find-
ing ability. Output uniqueness is typically as strongly or
more strongly correlated to fault finding than test suite size.
This correlation is also at least as strong as those observed
between fault finding and structural coverage.

In summary, the answer to RQ2 is that output
uniqueness criteria were strongly correlated to fault
finding and performed at least as well as whitebox
criteria at fault finding.

3.2.3 RQ3: Fault Finding Consistency
To investigate the reliability of output uniqueness crite-

ria, we analyse the consistency of fault finding for each out-
put uniqueness definition. If all test cases that produce the
same output always find the same faults, these faults are
very likely to be detected by any test suite that satisfies the
output uniqueness criteria. The analysis is also applied to
structural coverage to facilitate comparison.

Table 3 reports the results of the analysis. The last five
columns of the figure can be ignored for now, since these
address RQ4 and will be discussed in the next section.

The first column is the web application for which results
are reported in the remaining columns. The second column
reports the total number of faults found over all techniques.
The third and fourth columns report the number of faults
found consistently and inconsistently by branch coverage,
according to our definitions of consistency explained below.

A fault is found consistently by branch coverage if
there exists a branch where all tests that cover the branch
reveal the fault, and it is found inconsistently, if no such
branch exists. These results from the third and fourth col-
umn (branch coverage consistency) can be compared with
the corresponding results for each of the seven output unique-
ness criteria. The sixth and seventh columns report the
numbers of faults found consistently and inconsistently by
our output uniqueness criteria.

A fault is found consistently by an output unique-
ness criterion OU, if there exists an output o that is unique
according to OU and all test cases that produce o reveal the
fault. It is found inconsistently if it is found by some OU
test suites but no such o exists.

The results show that, for all applications except PH-
PBB2, at least one output uniqueness criterion finds more
faults consistently than branch coverage. Indeed, for all ap-
plications, test suites that satisfy OU-All, OU-Text and OU-
Struct criteria find more faults consistently than branch cov-
erage. The number of faults found consistently by output
uniqueness decreases as the criteria become less strict.

These results confirm that the more strict criteria can be
effective as test adequacy criteria when structural coverage
cannot be measured. Indeed, OU-All consistently finds 92%
of the faults consistently found by branch coverage.

In summary, the answer to RQ3 is that for several
output uniqueness criteria, fault finding ability was
at least as consistent as it was for whitebox criteria.

3.2.4 RQ4: Additional Fault Finding Ability
The last five columns of Table 3 address the complemen-

tarity of output uniqueness. The columns headed ‘∪’ and
‘∩’ show, respectively, the union and intersection of faults
found consistently by branch coverage and faults found con-
sistently by output uniqueness. The column headed ‘B−O’
reports faults found consistently by branch coverage but not
by output uniqueness, while the column headed ‘O−B’ re-
ports faults found consistently by output uniqueness but not
branch coverage. Finally, the column headed ‘F−(∪)’ shows
the faults that are found by either technique, but which are
not found consistently by either.

(a) FaqForge statement cov (b) FaqForge branch cov (c) FaqForge path cov

(d) Schoolmate statement cov (e) Schoolmate branch cov (f) Schoolmate path cov

(g) Webchess statement cov (h) Webchess branch cov (i) Webchess path cov

(j) PHPSysInfo statement cov (k) PHPSysInfo branch cov (l) PHPSysInfo path cov

(m) Timeclock statement cov (n) Timeclock branch cov (o) Timeclock path cov

(p) PHPBB2 statement cov (q) PHPBB2 branch cov (r) PHPBB2 path cov

Figure 5: Variations in Spearman’s rank correlation coefficient between structural coverage and output
uniqueness for 500 test suites of a random size between 10 and 500 test cases over 30 different experiments.

(a) FaqForge (b) Schoolmate (c) Webchess

(d) PHPSysinfo (e) Timeclock (f) PHPBB2

Figure 6: Variations in Spearman’s rank correlation coefficient between fault finding and structural and output
criteria for 500 test suites of a random size between 10 and 500 test cases over 30 different experiments for the
6 applications. Output uniqueness criteria exhibit strong correlation to fault finding, comparing favourably
to both the correlations for size of test suite and those for the three whitebox coverage criteria.

The results provide evidence to support the claim that
output uniqueness and branch coverage are complementary.
We also investigated complementarity for both statement
and path coverage. Though space does not permit us to
present the results here in the same level of detail as for
branch coverage2, we can report that results for statement
coverage are similar to those for branch coverage. We can
also report that, even for path coverage, for 4 of the 6 appli-
cations, the faults found consistently by output uniqueness
criteria are complementary to those found by path coverage.

Perhaps, most important for the impact of output unique-
ness, we observe, over all programs studied, that our OU-All
blackbox text suites consistently found 47% of the additional
faults not found by branch coverage.

In summary, the answer to RQ4 is that output
uniqueness proved to be complementary to whitebox
criteria; it found many faults that whitebox tech-
niques left undetected.

3.3 Future Work and Actionable Findings
In this section we briefly describe directions for future

research and actionable findings. The evidence we present
in this paper derives from experiments with six real-world
web applications; we have not presented evidence concerning
non-web-based applications. Furthermore, some of our out-
put uniqueness criteria are specifically defined for the web,
drawing inspiration from the structure inherent in HTML
output. Results for these criteria are clearly not applica-
ble to other (non-web-based) testing scenarios. A natural
next step would be to investigate whether similarly strong
correlations to coverage and fault detection are enjoyed by
output uniqueness with non-web-based applications.

2Full results available in PhD thesis[3]

Some of our output uniqueness criteria are specifically
web-orientated. However, we also observed that our purely
text-based output uniqueness criterion, OU-Text, enjoyed a
high correlation with whitebox criteria. Though our em-
pirical results are currently confined to web applications,
OU-Text is, in principle, applicable to any application that
produces text output. This suggests future work to inves-
tigate whether OU-Text (and related, more general, output
uniqueness criteria) might be useful in non-web-based appli-
cation testing scenarios.

Future work will also develop new blackbox test genera-
tion techniques that aim to maximise output diversity. The
test cases generated by such new techniques may be ex-
pected, based on our findings, to achieve high whitebox cov-
erage and high fault finding effectiveness.

Developing such techniques is not trivial; one possible ap-
proach is to dynamically learn the effect of changing each
input (or combination of inputs) on the output to focus test
generation efforts on inputs that, when changed, yield in-
teresting outputs. Progress or ‘coverage’ of the produced
test cases could be measured by estimating the number of
possible outputs using statistical estimation techniques.

Output uniqueness may also have a contribution to make
by reducing the impact of the Oracle Problem [21, 22, 40].
Where the human tester has to play the role of oracle, output
uniqueness will help in two ways: it can reduce the number
of test cases to be considered through selection and priori-
tisation, and it may ensure that those tests that the human
does consider will have highly distinct outputs, potentially
making them easier to check manually.

We believe our findings also include several actionable
findings for testing practitioners. Blackbox testing tech-
niques are common in software testing practice [8, 9].

Table 3: Consistency and complementarity of fault
finding ability. For each application we report: All
faults (F), faults found by branch coverage (B),
faults found by output uniqueness (O), consistently
found (C), inconsistently found (I) and those found
by either technique (∪) and by both (∩)

B O B− O− F−
App Name F C I OU- C I ∪ ∩ O B (∪)

FAQForge 67 37 30

All 55 12 58 34 3 21 9
Text 51 16 57 31 6 20 10
Struct 55 12 58 34 3 21 9
Hidden 52 15 55 34 3 18 12
Subtypes 48 19 54 31 6 17 13
Seq 48 19 54 31 6 17 13
LastText 13 54 37 13 24 0 30

Schoolmate 201 102 99

All 162 39 176 88 14 74 25
Text 134 67 154 82 20 52 47
Struct 148 53 168 82 20 66 33
Hidden 139 62 163 78 24 61 38
Subtypes 105 96 145 62 40 43 56
Seq 84 117 135 51 51 33 66
LastText 14 187 103 13 89 1 98

Webchess 98 44 54

All 77 21 77 44 0 33 21
Text 56 42 58 42 2 14 40
Struct 71 27 77 38 6 33 21
Hidden 64 34 75 33 11 31 23
Subtypes 59 39 70 33 11 26 28
Seq 17 81 46 15 29 2 52
LastText 19 79 45 18 26 1 53

PHPSysInfo 6 4 2

All 6 0 6 4 0 2 0
Text 6 0 6 4 0 2 0
Struct 5 1 6 3 1 2 0
Hidden 3 3 4 3 1 0 2
Subtypes 3 3 4 3 1 0 2
Seq 3 3 4 3 1 0 2
LastText 2 4 6 0 4 2 0

Timeclock 186 136 50

All 139 47 163 112 24 27 23
Text 125 61 149 112 24 13 37
Struct 90 96 163 63 73 27 23
Hidden 55 131 139 52 84 3 47
Subtypes 51 135 138 49 87 2 48
Seq 50 136 138 48 88 2 48
LastText 27 159 136 27 109 0 50

PHPBB2 79 74 9

All 70 9 74 66 4 4 5
Text 55 24 74 51 19 4 5
Struct 61 18 74 57 13 4 5
Hidden 48 31 74 44 26 4 5
Subtypes 45 34 74 41 29 4 5
Seq 43 36 74 39 31 4 5
LastText 12 67 71 11 59 1 8

Our findings offer the potential for practitioners to further
leverage existing blackbox techniques and tools to achieve
whitebox testing criteria. A web application tester could
generate pools of test cases using existing blackbox tools
and techniques and subsequently select subsets guided by
the output uniqueness criteria. Our findings also indicate
that subsets so-selected will find additional faults not found
by whitebox techniques.

Our findings can be used to improve the efficiency of exist-
ing test practices. Output uniqueness can be used to guide
the necessary selection and prioritisation processes [42] that
arise when the practice of executing all available test cases
is infeasible due to the large number of test cases. Di Nardo
et al. [12] suggested that novel prioritisation/selection ap-
proaches are required since relying on coverage alone is un-
likely to provide significant improvements.

3.4 Threats to Validity
Internal threats: Internal threats to validity are factors

that affect the dependent variables and are not controlled
in the experiments. The test suites selected were all gener-
ated randomly in the same manner. The choice of test suite
size might have an effect on results however a random size
between 10 and 500 was chosen, because test suites smaller
than 10 might not display a diversity in coverage and num-
ber of distinct outputs and 500 is larger than the largest test
suite size that was originally produced by the testing tool.
External threats: External threats to validity are threats
that limit the ability to generalise results. There are three
main threats to external validity: the choice of applications
studied, the fault oracle used and the source of test cases in
the test pools.

We studied six applications. An empirical study of more
applications is needed before being able to generalise re-
sults. However, the selected applications represent different
domains and are used by real users. They also have diverse
sizes and architectures.

The faults measured to assess effectiveness are faults that
can be detected automatically. To generalise results to other
types of fault, an investigation of how these automatically
detectable faults relate to other types of faults is needed
or some other oracle must be found. However, the faults
reported and used in this study are real faults, not seeded
faults, and they are checked using a fully automated oracle,
freeing the study from experimenter bias in the selection of
faults studied.
Construct threats: Construct threats are related to the
measures used in the experiments and their ability to cap-
ture what they are measuring. Fault finding ability was
selected to measure the effectiveness of test suites and the
different criteria as it is the aim of any testing process. Path,
branch and statement coverage were selected to represent
structural coverage because branch and statement coverage
are widely used in the industry and research while path
coverage is the strongest structural coverage criteria and
thereby subsumes other structural and dataflow criteria not
measured in the study.

4. RELATED WORK
The concept of output uniqueness draws on a rich intel-

lectual history in the development of software testing that
can be traced back to the test selection criteria proposed
by Goodenough and Gerhart [20], and refined by Weyuker
and Ostrand [41] and Richardson and Clarke [36]. Output
uniqueness is closer, conceptually, to the idea of revealing
subdomains introduced by Weyuker and Ostrand, because
it is entirely a blackbox approach, whereas the equivalence
partitioning method of Richardson and Clarke involves both
black and whitebox techniques. Ostrand and Balcer [30] also
developed the concept of revealing subdomains by introduc-
ing the category partition method, in which a specification
is analysed in order to partition the input space into cate-
gories.

All of these approaches share the common motivation that
the input space can be partitioned into equivalence classes,
each of which capture a sub-computation. For Richardson
and Clark, an equivalence class is an undecidable (but prac-
tically approximatable) combination of the whitebox path
domain and the blackbox specification domain.

For Ostrand, Weyuker and Balcer, an equivalence class s
has the purely blackbox, yet also undecidable, property that
an element x of s leads to a correct output iff all elements of
s lead to correct output. Though unachievable in practice,
this has remained theoretically interesting and appealing,
because it reduces program verification to a potentially enu-
merable set of tests; an idea that has resonated in work that
combines verification and testing [17, 23, 24].

Output uniqueness shares a similar motivation: to con-
sider tests which, in some sense, yield different outputs as
being preferable to those that yield, in some sense, the same
output. However, previous techniques focused on the input
space, seeking input sets for which computation is similar
according to a semantic abstraction. Output uniqueness fo-
cuses on the output space, seeking outputs that are different
according to some syntactic abstraction. In this paper, we
introduced seven such syntactic abstractions (pertinent to
web applications), though many other abstractions (and for
many other systems) are clearly possible and could be ex-
plored in future work.

Our focus on syntactic output differences also makes the
underlying decision procedure decidable, though there may
be no upper bound on the number of distinct outputs pos-
sible for some systems. Unlike other test adequacy criteria,
such as branch coverage, which have an upper bound for
all programs (though whether maximum coverage has been
achieved remains undecidable), a program with conceptu-
ally infinitely many outputs, has no upper bound on output
uniqueness.

Many studies [6, 16, 25, 29] have investigated the effective-
ness of structural and dataflow test adequacy criteria. Such
studies investigate whether these criteria independently in-
fluence fault finding ability or whether any increased effec-
tiveness is a side effect of the larger test suite sizes required
to satisfy the criteria. Previous studies have provided some
evidence that structural and dataflow coverage does influ-
ence fault detection effectiveness. However, results have also
showed that those criteria are not the only factor that affects
fault detection. In this paper we provide further evidence
supporting the findings of these studies, proposing and re-
porting on a new family of blackbox criteria that are based
on output and are complementary to whitebox coverage in
finding faults.

Dynamic Symbolic Execution [7, 19, 38] and Search Based
approaches [2, 28] are two widely studied whitebox testing
approaches that have been applied to web applications [4,
7]. Both approaches aim to maximise structural coverage
of the application under test. Structural coverage criteria
have been also used in test selection, prioritisation and min-
imisation [42]. The output uniqueness criteria presented in
this paper are proposed as a surrogate for these approaches
when whitebox approaches are not applicable.

Web application output has been used to understand the
application’s interface [13], automate the oracle [37] or help
crawlers in automatically completing online Forms [35]. This
previous work has not studied output uniqueness. For ex-
ample, Elbaum et al. [13], in their interface identification
approach, examined the output to infer properties about
the inputs of the application to understand relationships be-
tween input fields. Our work is concerned with analysis of
output to maximise differences (output uniqueness). The
two approaches might be combined in future work to design
an output uniqueness test generation approach.

In feedback directed random testing (RANDOOP) [31,
32, 33], the feedback from executing test sequences, such as
exceptions and violations, is used to exclude sequences that
cause errors from the generation process. We propose to use
the feedback from executing test cases to diversify output,
excluding test cases that produce already seen output in
favour of those that maximise ‘output novelty’ (uniqueness).

Yuan and Memon [43, 44] observed the effect of execut-
ing test sequences on the state to identify interacting states
as a means of generating tests for Graphical User Interface
(GUI) testing. These states are then used to generate new
sequences that are effective in finding new faults. Their ap-
proach focuses on test sequences and their interactions while
we propose to diversify the output of the entire test suite.

Adaptive Random Testing (ART) [10, 11] aims to diver-
sify the inputs in test cases while our approach focuses on
diversifying the output. In our empirical study, all test cases
were unique, i.e., the combination of input values in each
test case does not appear in any other test case used. How-
ever, we did not calculate any similarity measures between
input values as is suggested by ART. Therefore, the two ap-
proaches might be complementary and further investigations
are needed to establish the relationship between these two
approaches.

Many random test data generation tools are available:
Web crawling tools for web applications are available both
commercially and as research prototypes [18]. These tools
are able to generate a large number of test cases. Our pro-
posed OU criteria can be used as a post-processing step to
select a subset of the test cases generated by these tools.
According to the findings we present in this paper, it would
be reasonable to hope that the test cases thus selected will
tend to favour structural coverage and fault finding ability.

Our previous NIER paper [5] was the first paper to pro-
pose the idea of output uniqueness, introducing four output
uniqueness criteria. In this paper we extend these four with
three additional criteria and report results of an empirical
study that demonstrate that output uniqueness can be used
as both surrogate for whitebox testing and also as a consis-
tent fault finding supplement.

5. CONCLUSION
In this paper we have demonstrated that the new blackbox

testing criterion, output uniqueness, can be used to achieve
high levels of structural (whitebox) test coverage for web
applications. Specifically, we present evidence from an em-
pirical study on six real-world web applications that indi-
cates high levels of correlation between output uniqueness
and statement, branch and path coverage.

We have also presented empirical evidence concerning the
faults found by output uniqueness. The findings from this
study allow us to conclude that output uniqueness is a promis-
ing new blackbox testing criterion for web applications. Not
only can it be used as an effective surrogate for whitebox
testing when no source code is available, it also complements
whitebox testing; finding faults that whitebox testing leaves
undetected.

Finally, we have presented evidence concerning the con-
sistency of test cases selected to achieve output uniqueness.
These results indicate that test suites selected to achieve
output uniqueness are more consistent in the faults they
find when compared to those selected for existing whitebox
criteria.

6. REFERENCES
[1] W. Afzal, R. Torkar, and R. Feldt. A systematic

review of search-based testing for non-functional
system properties. Inf. Softw. Technol., 51(6):957–976,
June 2009.

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K.
Panesar-Walawege. A systematic review of the
application and empirical investigation of search-based
test case generation. TSE, 36:742–762, November
2010.

[3] N. Alshahwan. Utilizing Output in Web Application
Server-Side Testing. PhD thesis, UCL (University
College London), 2012.

[4] N. Alshahwan and M. Harman. Automated web
application testing using search based software
engineering. In ASE ’11, pages 3–12, 2011.

[5] N. Alshahwan and M. Harman. Augmenting test
suites effectiveness by increasing output diversity
(NIER track). In ICSE ’12, pages 1345–1348, 2012.

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE TSE,
32(8):608–624, August 2006.

[7] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. D. Ernst. Finding bugs in web
applications using dynamic test generation and
explicit-state model checking. IEEE TSE, 36:474–494,
July 2010.

[8] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, 1990.

[9] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In L. Briand and A. Wolf, editors,
FOSE, 2007.

[10] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse.
Adaptive random testing: The art of test case
diversity. Journal of Systems and Software,
83(1):60–66, January 2010.

[11] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive
random testing. In ASIAN ’04, pages 320–329, 2004.

[12] D. Di Nardo, N. Alshahwan, L. Briand, and
Y. Labiche. Coverage-based test case prioritisation:
An industrial case study. In Proceedings of the 6th
International Conference on Software Testing,
Verification, and Validation (ICST ’13), pages
151–160, 2013.

[13] S. Elbaum, K.-R. Chilakamarri, M. F. II, and
G. Rothermel. Web application characterization
through directed requests. In WODA’06, pages 49–56,
2006.

[14] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM TOSEM,
5(1):63–86, January 1996.

[15] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM TOSEM,
5(1):63–86, Jan. 1996.

[16] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of branch testing and
data flow testing. IEEE TSE, 19(8):774–787, August
1993.

[17] M.-C. Gaudel. Testing can be formal, too. Lecture
Notes in Computer Science, 915:82–96, 1995.

[18] C. Girardi, F. Ricca, and P. Tonella. Web crawlers

compared. International Journal of Web Information
Systems, 2(2):85–94, 2006.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In PLDI ’05,
pages 213–223, 2005.

[20] J. B. Goodenough and S. L. Gerhart. Toward a theory
of test data selection. IEEE Transactions on Software
Engineering, 1(2):156–173, June 1975.

[21] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and
S. Yoo. Optimizing for the number of tests generated
in search based test data generation with an
application to the oracle cost problem. In SBST’10,
2010.

[22] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software
testing. Technical Report Research Memoranda
CS-13-01, Department of Computer Science,
University of Sheffield, 2013.

[23] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman,
K. Kapoor, P. Krause, G. Luettgen, T. Simons,
S. Vilkomir, M. Woodward, and H. Zedan. Using
formal methods to support testing. ACM Computing
Surveys, 41(2), Feb. 2009. Article 9.

[24] M. Holcombe. What are X-machines? Formal Asp.
Comput, 12(6):418–422, 2000.

[25] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In ICSE’94,
pages 191–200, 1994.

[26] S. Khor and P. Grogono. Using a genetic algorithm
and formal concept analysis to generate branch
coverage test data automatically. In ASE ’04, pages
346–349, 2004.

[27] K. Lakhotia, P. McMinn, and M. Harman. An
empirical investigation into branch coverage for C
programs using CUTE and AUSTIN. Journal of
Systems and Software, 83:2379–2391, December 2010.

[28] P. McMinn. Search-based software test data
generation: a survey. STVR, 14(2):105–156, June
2004.

[29] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In ISSTA ’09,
pages 57–68, 2009.

[30] T. J. Ostrand and M. J. Balcer. The
category-partition method for specifying and
generating functional tests. Communications of the
ACM, 31(6):676–686, June 1988.

[31] C. Pacheco and M. D. Ernst. Randoop:
feedback-directed random testing for java. In
OOPSLA ’07, pages 815–816, 2007.

[32] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors
in .NET with feedback-directed random testing. In
ISSTA ’08, pages 87–96, 2008.

[33] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE
’07, pages 75–84, 2007.

[34] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner,
M. Grechanik, K. Taneja, C. Fu, and Q. Xie. Carfast:
achieving higher statement coverage faster. In FSE
’12, pages 35:1–35:11, 2012.

[35] S. Raghavan and H. Garcia-Molina. Crawling the

hidden web. In VLDB ’01, pages 129–138, 2001.

[36] D. J. Richardson and L. A. Clarke. A partition
analysis method to increase program reliability. In
Proceedings of the 5th International Conference on
Software Engineering, pages 244–253. IEEE Computer
Society Press, Mar. 1981.

[37] S. Sampath, R. C. Bryce, G. Viswanath,
V. Kandimalla, and A. G. Koru. Prioritizing
user-session-based test cases for web applications
testing. In ICST ’08, pages 141–150, 2008.

[38] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In ESEC/FSE-13 ’05, pages
263–272, 2005.

[39] M. L. Soffa, A. P. Mathur, and N. Gupta. Generating
test data for branch coverage. In ASE ’00, pages
219–227, 2000.

[40] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, Nov. 1982.

[41] E. J. Weyuker and T. J. Ostrand. Theories of program
testing and the the application of revealing
subdomains. IEEE Transactions on Software
Engineering, 6(3):236–246, May 1980.

[42] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey.
Journal of Software Testing, Verification and
Reliability, 22(2):67–120, 2012.

[43] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In ICSE ’07, pages
396–405, 2007.

[44] X. Yuan and A. M. Memon. Generating event
sequence-based test cases using GUI runtime state
feedback. IEEE TSE, 36(1):81–95, January 2010.

