
Clustering Test Cases to Achieve Effective & Scalable
Prioritisation Incorporating Expert Knowledge

Shin Yoo & Mark Harman
King’s College London, Centre for Research on

Evolution, Search & Testing (CREST)
Strand, London
WC2R 2LS, UK

Paolo Tonella & Angelo Susi
FBK-IRST

Via Sommarive, 18
38050 Povo, Trento, ITALY

ABSTRACT

Pair-wise comparison has been successfully utilised in order to pri-
oritise test cases by exploiting the rich, valuable and unique knowl-
edge of the tester. However, the prohibitively large cost of the pair-
wise comparison method prevents it from being applied to large test
suites. In this paper, we introduce a cluster-based test case prioriti-
sation technique. By clustering test cases, based on their dynamic
runtime behaviour, we can reduce the required number of pair-wise
comparisons significantly. The approach is evaluated on seven test
suites ranging in size from 154 to 1,061 test cases. We present an
empirical study that shows that the resulting prioritisation is more
effective than existing coverage-based prioritisation techniques in
terms of rate of fault detection. Perhaps surprisingly, the paper also
demonstrates that clustering (even without human input) can out-
perform unclustered coverage-based technologies, and discusses an
automated process that can be used to determine whether the appli-
cation of the proposed approach would yield improvement.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Algorithms

Keywords: Test case prioritisation, AHP, Clustering

1. INTRODUCTION
Test case prioritisation seeks to find an efficient ordering of test

case execution for regression testing. The most ideal ordering of
test case execution is one that reveals faults earliest. Since the na-
ture and location of actual faults are generally not known in ad-
vance, test case prioritisation techniques have to rely on available
surrogates for prioritisation criteria. Structural coverage, require-
ment priority and mutation score have all previously been utilised
as criteria for test case prioritisation [3, 6, 18]. However, there is
no single prioritisation criterion whose results dominate the others.
One potentially powerful way to enhance a prioritisation crite-

rion is to utilise domain expert judgement by asking the human
tester to compare the importance of different test cases. A com-
petent human tester can provide rich domain knowledge about the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$5.00.

System Under Test (SUT), including knowledge about logical ef-
fects of recent changes and rationale behind the existing test cases.
Human guidance may also be required in order to take account of
the many implicit, unstated reasons that the tester may have for
favouring one test case over another. If this human guidance is not
accounted for, the tester may reject the proposed order suggested
by a prioritisation algorithm.
Prioritisation involving human judgement is not new. The Op-

erations Research community has developed techniques including
the Analytic Hierarchy Process (AHP) algorithm [17] that help de-
cision makers to prioritise tasks. However, prioritisation techniques
that involve humans present scalability challenges. A human tester
can provide consistent and meaningful answers to only a limited
number of questions, before fatigue starts to degrade performance.
Previous empirical studies show that the largest number of pair-
wise comparisons a human can make consistently is approximately
100 [1]. Unfortunately, useful test suites often contain many test
cases, potentially requiring considerably more than 100 compar-
isons.
To address this problem, this paper uses clustering algorithms

to reduce the cost of human-interactive prioritisation. In our ap-
proach, the human tester prioritises, not the individual test cases,
but clusters of ‘similar’ test cases. With a very simple clustering
technique, such as agglomerative hierarchical clustering, it is pos-
sible to generate an arbitrary number of clusters. This allows for
control of the number of comparisons presented to the human tester.
The reduced number of required comparisons makes it feasible to
apply expert-guided prioritisation techniques to much larger data
sets. The paper presents results on the scalability potential of this
clustering approach.
The AHP-based prioritisation technique is empirically compared

to coverage-based prioritisation techniques using the APFD (Aver-
age Percentage of Fault Detection) metric. In order to model vari-
ous possible human behaviours, we introduce an error model. This
allows us to empirically explore the robustness of our approach in
the presence of varying degrees of human ‘bias’ (giving guidance
that draws the algorithm away from fault finding test cases). The
results show that AHP-based prioritisation is robust; it can outper-
form coverage-based prioritisation even when the human tester pro-
vides misleading answers to comparison questions.
The primary contributions of this paper are as follows:

1. The paper presents a novel use of clustering in test case pri-
oritisation. The use of clustering enables us to apply the in-
teractive prioritisation technique, AHP.

2. The paper presents a novel prioritisation technique which
is based on AHP. Although AHP has been widely adopted
by the Requirements Engineering community, its application

in test case management is new. The results of the empiri-
cal study show that AHP-based prioritisation can outperform
coverage-based prioritisation.

3. The paper presents a more realistic model of human behaviour
by introducing an error model. Using the error model, we
analyse the threshold consistency level required for human
testers. The results show that our approach is robust. As the
paper demonstrates, the technique can also provide guide-
lines on whether AHP-based prioritisation is appropriate for
a testing project or not.

4. The paper presents an automated process that can determine
whether the cluster-based prioritisation approach will be ef-
fective against a specific pair of SUT and test suite. Using
this automated process, the human tester can decide whether
committing human effort would be worthwhile for a particu-
lar testing task.

The rest of the paper is organised as follows. Section 2 intro-
duces the cluster-based prioritisation technique used in the paper.
Section 3 describes the Analytic Hierarchy Process and analyses
the impact on cost that clustering can bring about. Section 4 ex-
plains the details of the empirical study, the results of which are
presented in Section 5. Section 6 presents related work and Sec-
tion 7 concludes.

2. CLUSTERINGBASEDPRIORITISATION

2.1 Motivation
A pair-wise comparison approach for prioritisation requiresO(n2)

comparisons. While redundancy may make pair-wise comparison
very robust, the high cost has prevented it from being applied to test
case prioritisation. For example, AHP has been well studied in the
Requirements Engineering field. The maximum number of com-
parisons a human can make consistently is approximately 100 [1];
above this threshold, inconsistency grows significantly, leading to
reduced effectiveness.
In order to require less than 100 pair-wise comparisons, the test

suite could contain no more than 14 test cases. Considering the
scale of real world testing projects, the scalability issue presents
a significant challenge. For example, suppose there are 1,000 test
cases to prioritise; the total number of required pair-wise compar-
isons would be 499,500. It is clearly unrealistic to expect a human
tester to provide reliable responses for such a large number of com-
parisons.
This paper aims to reduce the number of comparisons required

for the pair-wise comparison approach through the use of cluster-
ing. Instead of prioritising individual test cases, clusters of test
cases are prioritised using techniques such as AHP. From the pri-
oritised clusters, the ordering between individual test cases is then
generated.

2.2 Clustering Criterion
The clustering process partitions objects into different subsets so

that objects in each group share common properties. The clustering
criterion determines which properties are used to measure the com-
monality. When considering test case prioritisation, the ideal clus-
tering criterion would be the similarity between the faults detected
by each test case. However, this information is inherently unavail-
able before the testing task is finished. Therefore, it is necessary
to find a surrogate for this, in the same way as existing coverage-
based prioritisation techniques turn to surrogates for fault-detection
capabilities.

In this paper we utilise dynamic execution traces of each test
case as a surrogate for the similarity between features tested. Ex-
ecution of each test case is represented by a binary string. Each
bit corresponds to a statement in the source code. If the statement
has been executed by the test case, the digit is 1; otherwise it is 0.
The similarity between two test cases is measured by the distance
between two binary strings using Hamming distance.

2.3 Clustering Method
We use a simple agglomerative hierarchical clustering technique.

Its pseudo-code is described in Algorithm 1 below:

Algorithm 1: Agglomerative Hierarchical Clustering

Input: A set of n test cases, T
Output: A dendrogram, D, representing the clusters
(1) Form n clusters, each with one test case
(2) C ← {}
(3) Add clusters to C
(4) Insert n clusters as leaf node into D
(5) while there is more than one cluster
(6) Find a pair of clusters with minimum distance
(7) Merge the pair into a new cluster, cnew
(8) Remove the pair of test cases from C

(9) Add cnew to C
(10) Insert cnew as a parent node of the pair into D
(11) return D

The resulting dendrogram is a tree structure that represents the
arrangement of clusters. Figure 1 shows an example dendrogram.
It is possible to generate k clusters for any k in [1, n] by cutting the
tree at different heights.

Figure 1: An example dendrogram from agglomerative hierar-

chical clustering. Cutting the tree at different height produces
different number of clusters.

2.4 Interleaved Clusters Prioritisation
Prioritisation of a clustered test suite is a different problem from

the traditional test case prioritisation problem. Two separate lay-
ers of prioritisation are required in order to prioritise a clustered
test suite. Intra-cluster prioritisation is prioritisation of test cases
that belong to the same cluster, whereas inter-cluster prioritisation
is prioritisation of clusters. This paper introduces the Interleaved
Clusters Prioritisation (ICP) process that uses both layers of priori-
tisation.
It would be more advantageous to interleave clusters of test cases

than to execute an entire cluster before executing the next. The lat-
ter approach would result in repeatedly executing similar parts of

SUT before the prioritisation technique chooses the next cluster; if
these test cases reveal similar sets of faults, the rate of fault detec-
tion would be less than ideal because the prioritisation technique
will reveal a similar set of faults repeatedly. The former approach
will avoid this by switching clusters whenever it chooses the next
test case.
In ICP, intra-cluster prioritisation is performed first. Based on the

results of intra-cluster prioritisation, each cluster is assigned a test
case that represents the cluster. Using these representatives, ICP
performs inter-cluster prioritisation. The final step is to interleave
prioritised clusters using the results of both intra- and inter-cluster
prioritisation.
More formally, suppose a test suite TS is clustered into k clus-

ters,C1, . . . ,Ck. After intra-cluster prioritisation, we obtain ordered
sets of test cases, OC1, . . . ,OCk. Let OCi(j) be the jth test case in
cluster OCi. Each ordered set OCi is then represented by OCi(1) in
the inter-cluster prioritisation, which will produce OOC, an ordered
set of OCi(1 ≤ i ≤ k). Let OOCi be the ith cluster in OOC. The
interleaving process is described in pseudo-code in Algorithm 2.

Algorithm 2: Interleaved Clusters Prioritisation

Input: An ordered set of k ordered clusters, OOC
Output: An ordered set of test cases, OTC
(1) OTC =<>
(2) i← 1
(3) while OOC is not empty
(4) Append OOCi(1) to OTC
(5) Remove OOCi(1) from OOCi

(6) if OOCi is empty then Remove OOCi from OOC

(7) i← (i + 1) mod k
(8) return OOC

For example, given OOC =<< t3, t1 >,< t4, t2 >, < t5 >>, the re-
sult of Algorithm 2 will be a sequence of test cases, < t3, t4, t5, t1, t2 >.
Note that ICP does not presume any specific choice of prioritisa-
tion technique. Any existing test case prioritisation technique can
be used for either intra-cluster or inter-cluster prioritisation.

Figure 2: Plot of average number of pair-wise comparisons re-

quired for k cluster-based prioritisation of 100 test cases.

2.5 Cost of Pair-wise Comparisons
Since pair-wise comparisons require human intervention, the cost

of any pair-wise comparison approach largely depends on the num-
ber of comparisons required. When the pair-wise comparison ap-
proach is used both for intra- and inter-cluster prioritisation, the
number of comparisons required for ICP is the sum of the cost of

intra-cluster prioritisation and inter-cluster prioritisation. Given a
test suite of size n clustered into k clusters, each cluster contains
n
k
test cases on average. The average number of comparisons for

intra-cluster prioritisation is k · 1
2
n

k
(n
k
− 1). The number of com-

parisons of inter-cluster prioritisation is computed simply as k(k−1)
2
.

Therefore, the average total cost of pair-wise ICP for a test suite of

size n and k clusters, C(n, k), is k(k−1)
2
+ k ·

n
k
(n
k
−1)
2

.
For all positive n, there exists a specific value of k that minimises

C(n, k). Figure 2 illustrates C(n, k) when n = 100 and 1 ≤ k ≤
n. The maximum cost, with no clustering, is 4,950 comparisons.
With clustering, the minimum cost is 381 when k = 17. While the
reduction is by an order of magnitude, the minimum cost of 381 is
still too expensive for a human tester to consider.
To further reduce the cost, ICP used in the paper is hybridised so

that intra-cluster prioritisation uses the traditional coverage-based
greedy prioritisation algorithm. The human tester is only involved
with inter-cluster prioritisation. The cost of hybrid approach is,
therefore, only the number of comparisons required for inter-cluster
prioritisation, which is C(n, k) = k(k−1)

2
. To ensure that fewer than

100 comparisons are required, we use hybrid-ICP with k = 14
throughout the paper, which results in 91 comparisons.

2.6 Suitability Test
ICP is most effective when the result of clustering is semantically

significant, i.e. test cases that execute similar parts of SUT belong
to the same cluster. As k decreases, the semantic significance of
clustering is also diminished, since eventually the clustering algo-
rithm will start to place semantically different test cases in the same
cluster. Therefore, hybrid ICP with k = 14 may not work well with
every test suite/SUT combination.
Since any form of human involvement in test case prioritisation

is a significant commitment, applying hybrid ICP to a combina-
tion of test suite and SUT that is not suitable would be a waste of
resources. A decision is required as to whether it is worth apply-
ing the hybrid ICP. To support this decision making process, we
propose an automated suitability test that does not require human
judgement. The test is an automated ICP, fully based on structural
coverage. Both intra- and inter-cluster prioritisation is performed
based on structural coverage. It also uses fault detection informa-
tion using faults that belong to the AR (Already Revealed) fault
set. If the result of the test is not worse than traditional coverage-
based prioritisation techniques, it would confirm that clustering is
not detrimental to the performance of ICP, in which case replacing
inter-cluster prioritisation with the pair-wise comparison approach
is likely to have a positive impact on the rate of fault detection with
the unknown faults that belong to the TBR (To Be Revealed) fault
set.

3. ANALYTIC HIERARCHY PROCESS

3.1 Definition
In order to prioritise n items, AHP requires all possible pair-wise

comparisons between n items. Comparisons are represented using
the scale of preference described in Table 1.
Note that the preference relation is not necessarily transitive. The

decision maker is entitled to give answers such as A $ B, B $ C and
C $ A. In other words, pik is not necessarily equal to pi j · pjk. This
lack of transitivity in the preference relation allows AHP to cope
with inconsistencies given by the decision maker. However, these
inconsistencies are mitigated by the high redundancy available due
to multiple comparisons. By definition, the scale is a ratio-based
measurement. That is, given pi j, pji is defined as

1
pi j
.

pi j Preference

1 i is equally preferable to j
3 i is slightly preferable over j
5 i is strongly preferable over j
7 i is very strongly preferable over j
9 i is extremely preferable over j

Table 1: Scale of preference used in the comparison matrix of

AHP

Figure 3: Hierarchy between comparison criteria for AHP

The result of comparisons are combined in an n by n matrix, M.
Naturally, M(i, i) = 1(1 ≤ i ≤ n). For the rest:

∀i(1 ≤ i ≤ n)∀ j(1 ≤ j ≤ n ∧ i ! j),M(i, j) = pi j

The priority weighting vector E is the eigenvector of a matrix
M′, which is calculated from M by normalising over the columns.
E is calculated by taking the average across rows of M′:

M′(i, j) =
M(i, j)

∑
1≤k≤n M(i, k)

Ei =

∑
1≤k≤n M(k, i)

n

It is also possible to construct a hierarchy of multiple criteria [17].
To illustrate how this hierarchical AHP is achieved, suppose that
AHP is used to select the programming language that will be used
to implement a system. Management cares about expected com-
pletion time, performance of implemented system and program-
mers’ skill in each language. If the candidate languages are {Java,
C, Python}, then the hierarchy of criteria is as in Figure 3. First,
programming languages are evaluated against each criterion in the
middle level. This produces a set of priority weighting vectors,
V . Second, the criteria in the middle level are prioritised, i.e.,
the relative importance between completion time, performance and
skill level is determined using AHP. This produces another prior-
ity weighting vector, E. The final weighting vector is calculated by
calculating the weighted sum of the vectors in V; for each criterion,
the weight is given by E.

3.2 User Model
The approach proposed in this paper will be evaluated with re-

spect to an ‘ideal user model’ and more ‘realistic user’ model that
simulates human errors. The ideal user provides comparisons that
are consistent with the real fault detection capability of test cases.
While this may be over-optimistic, it provides an upper limit on the
effectiveness of cluster-based test case prioritisation using AHP.
Since AHP allows the user to compare two entities with degrees

of preference rather than simple binary relations, the ideal user

model needs to consider how to quantitatively differentiate the rel-
ative importance of test cases. Previous work using human input
for test case prioritisation only required binary relations, which are
obtained by checking which test case detects more faults than the
other. We derive varying degrees of relative importance by check-
ing how much difference there is between the number of faults de-
tected by two test cases.
Suppose two test cases tA and tB are being compared. Let nA be

the number of faults detected by tA, and nB by tB. The ‘ideal’ user
model used in the paper sets the scale of preference between tA and
tB, pAB, as shown in Table 2.

Condition pAB Description

nA = nB 1 Equal
nA > 0 and nB = 0 7 Very Strongly prefer tA
nA > 0, nB > 0, nA ≥ 3nB 9 Extremely prefer tA
nA > 0, nB > 0, nA ≥ 2nB 7 Very Strongly prefer tA
nA > 0, nB > 0, nA ≥ nB 5 Strongly prefer tA

pBA =
1
pAB

Table 2: Scale of preference for the ideal user model

For a more realistic user model, we introduce a model of human
error. Suppose that test case tA and tB are being compared with the
result of pAB. Let p

′
AB be the result with error. There are eight types

of errors; Table 3 shows all eight types of error.
Errors of type 1 and 2 occur when a human tester claims that

two test cases are equally important, when in fact one of them is
more important than the other. Errors of type 3 and 4 occur when
a human tester claims that a test case is more important than the
other, when in fact it is the opposite. Errors of type 5 and 6 occur
when a human tester claims that a test case is more important than
the other when in fact they are equally important. Finally, errors
of type 7 and 8 occur when a human tester correctly claims the
inequality relation between two test cases, but answers the ratio of
relative importance incorrectly. In order to only include errors that
mean the human judgement is definitely wrong, only errors of type
1 to 6 are considered in the empirical studies.

Type Original Error

1 pAB > 1 p′AB = 1
2 pAB < 1 p′AB = 1
3 pAB > 1 p′AB < 1
4 pAB < 1 p′AB > 1
5 pAB = 1 p′

AB
> 1

6 pAB = 1 p′AB < 1
7 pAB > 1 p′AB > 1 and p

′
AB ! pAB

8 pAB < 1 p′AB < 1 and p
′
AB ! pAB

Table 3: Different types of errors.

In order to avoid any bias, we use the simplest uniformly dis-
tributed error model. Given an error rate e, which is a real number
between 0 and 1, the model provides a correct answer with proba-
bility 1 − e. With probability e, an error is introduced by changing
the result of the comparison to one of alternative results defined by
the types of errors with a uniformly distributed probability.

3.3 Hierarchy
AHP can deal with multiple prioritisation criteria if the user can

specify relative importance between different criteria. In the pro-
posed prioritisation technique, both a single criterion hierarchy model
and multiple criteria hierarchy model are utilised. The single cri-
terion hierarchy model requires only the comparisons from the hu-

man expert. This model allows us to observe how well the proposed
technique performs when expert knowledge is used alone. How-
ever, the model may produce sub-optimal prioritisation because
comparisons only reveal information about the relative quantity of
faults found by test cases, not their location. For example, consider
the test cases shown in Table 4. The ideal human expert will make
pair-wise comparisons t1 ≺ t2, t1 ≺ t3, and t2 ≺ t3. Since these com-
parisons are consistent with each other, the sequence provided by
AHP is < t1, t2, t3 >. However, the optimal ordering is < t1, t3, t2 >
because of the overlap in detected faults between t1 and t2.

Test Case Branch 1 Branch 2 Branch 3 Branch 4
(Fault 1) (Fault 2) (Fault 3) (Fault 4)

t1 x x x
t2 x x
t3 x

Table 4: The optimal sequence is < t1, t3, t2 >. However, perfect
pair-wise comparisons will result in t1 ≺ t2, t1 ≺ t3, and t2 ≺ t3,
which will produce the sub-optimal sequence < t1, t2, t3 >.

To overcome this limitation of AHP, the hierarchical AHP model
utilises two prioritisation criteria: expert knowledge obtained from
pair-wise comparisons and coverage-based prioritisation results. The
user comparisons matrix is obtained using the AHP procedure de-
scribed above. The structural coverage matrix reflects the result of
coverage-based prioritisation. Given a result of statement coverage-
based prioritisation, the coverage matrix is filled by Algorithm 3.
Note that if ti comes before t j in statement coverage-based priori-
tisation, ptit j is set to preference scale of 3, which is weaker than
the values used by the user model as shown in Table 2. This is to
ensure that the comparisons based on statement coverage should
not override the comparisons from the human expert (i.e coverage-
based comparisons are made in weaker terms than comparisons by
the human expert).

Algorithm 3: Coverage Matrix Generator

Input: A set of n test cases, T = {t1, . . . , tn}, and an ordered set
of prioritised positions of each test case in T ,O =< i1, . . . , in >,
such that i j = k means jth test case is tk
Output: An n by n coverage matrix, M
(1) for i = 1 to i ≤ n
(2) M[i][i] = 1.0 //equal
(3) for j = 1 to Oi − 1
(4) M[Oi][j] = 3 // slightly favour ti
(5) for j = Oi + 1 to n − 1
(6) M[Oi][j] =

1
3
//slightly favour t j

When using multiple criteria, AHP requires the human user to
determine the relative importance not only between entities that are
being prioritised (i.e. test cases) but also between criteria them-
selves (i.e. expert knowledge and statement-based prioritisation).
Using Table 1, this paper applies a set of 9 different human-to-
coverage preference values, p[H][C] , {9, . . . , 1, . . . , 19 }. The ICP with
single criterion AHP model will be denoted by ICPS ; ICP with
hierarchical AHP model will be denoted by ICPM.

4. EXPERIMENTAL SET-UP

4.1 Subjects
Table 5 shows the subject programs studied in this paper. They

range from 412 to 122,169 LOC. Each program and its test suite is
taken from Software Infrastructure Repository (SIR) [2].
printtokens and schedule are part of Siemens suite. SIR

contains multiple test suites for these programs; four test suites are

Program Test Suite (Avg.) TS Size LOC

printtokens 4 317.00 726
schedule 4 225.25 412
space 4 158.50 6,199
gzip 1 212 5,680
sed 1 370 14,427
vim 1 975 122,169
bash 1 1061 59,846

Table 5: Subject programs and their test suite size

chosen randomly. space is an Array Description Language (ADL)
interpreter that was developed by European Space Agency. From
SIR, four test suites are chosen randomly. gzip, sed, vim and
bash are widely used Unix programs. Only one test suite is avail-
able for these programs. Coverage data for the subject programs
are generated using gcov, a widely used profiling tool for gcc.

4.2 Suitability Test Configuration
SIR contains versions with injected faults and the mapping from

test cases to the faults detected by each test case; for gzip, sed,
vim and bash, it contains multiple consecutive versions of the source
code and corresponding fault detection information. Whenever avail-
able, the empirical study for the suitability testing utilises two dis-
tinct, consecutive versions of the program. The faults from the
first version are used as AR (Already Revealed), whereas the faults
from the second version is used as TBR (To Be Revealed). For
printtokens, schedule and space, multiple versions of the source
code are available but there exists a single set of fault detection in-
formation for a single version. For these programs, we randomly
divide the known faults into the AR and TBR sets and re-use the
structural coverage recorded from the source code of the same ver-
sion. Table 6 shows the size of group AR and TBR for each pro-
gram respectively.

Program Size of AR Size of TBR Mult. Ver.

printtokens 3 4 No
schedule 4 5 No
space 18 20 No
gzip 2 3 Yes
sed 6 4 Yes
vim 4 3 Yes
bash 4 9 Yes

Table 6: Subject programs and the size of AR (Already Re-

vealed) and TBR (To Be Revealed) sets

4.3 Evaluation
The results of ICP are compared to the optimal ordering, OP,

and statement coverage-based ordering, SC. The optimal ordering
is obtained by prioritising the test cases based on the fault detec-
tion information. It is impossible to know fault detection record in
advance, and therefore, the optimal ordering is not available in the
real world. Statement coverage-based ordering is obtained by per-
forming additional-statement prioritisation. This method has been
widely studied and known to produce reasonable results [6, 13].
In the first set of empirical studies, we evaluate ICP against OP

and SC using Average Percentage of Fault Detection (APFD) met-
ric [5]. Let T be the test suite containing n test cases and let F be
the set of m faults revealed by T . For ordering T ′, let TFi be the
order of the first test case that reveals the ith fault. APFD value for
T ′ is calculated as following:

APFD = 1 − TF1 + . . . + TFm
nm

+
1

2n

ICP experiments are performed with different values for user er-
ror rates ranging from 0.05 (user is wrong 5 times out of 100 on
average) to 1.0 (user is always wrong) in steps of 0.05.

4.4 Research Questions
This paper considers the following research questions:

RQ1. Effectiveness: Is there any difference in effectiveness be-
tween ICP, optimal ordering and coverage-based prioritisation?

RQ2. Configuration: When the human input is combined with
other prioritisation criteria such as structural coverage, what is the
ideal configuration between human input and other criteria?

In order to answer RQ1 and RQ2, we evaluate two different
hybrid-ICP instances, one with single hierarchy model AHP and
the other with multiple hierarchy model AHP. For RQ1, we mea-
sure the APFD of the produced ordering and compare it to those of
optimal ordering and statement coverage-based prioritisation. For
RQ2, we execute the hybrid ICP with multiple hierarchy model
AHP. The secondary prioritisation criteria is derived from state-
ment coverage-based prioritisation using the algorithm shown in
Section 3.3. We measure APFD of the test case sequences obtained
by using different values of p[H][C] and compare these to those of
optimal ordering and statement coverage-based prioritisaiton. RQ1
and RQ2 are answered in Section 5.1.
The second part of the empirical studies deals with tolerance and

suitability. Since the quality of the results produced by the pro-
posed technique depends directly on the quality of the human user’s
input, it is necessary to study how high the allowable level of error
rate can be while producing results that are better than coverage-
based techniques.

RQ3. Tolerance: What is the highest human error rate that can
be tolerated while yielding performance superior to the coverage-
based techniques?

For suitability study, we apply the automated suitability test to
subject programs and their test suites using the AR faults and see
if the difference between ICP and coverage-based prioritisation is
consistent with the result of effectiveness and efficiency studies.

RQ4. Suitability: How accurately does the automated suitabil-
ity test predict the successful result of ICP?

RQ3 is answered in the second part of the empirical study, by
increasing the error rate and observing the statistics of the results.
RQ4 is answered by performing automated suitability test and com-
paring the results to those of effectiveness and efficiency study.
RQ3 and RQ4 are answered in Section 5.2.

5. RESULTS AND ANALYSIS

5.1 Effectiveness & Configuration
Table 7 shows the APFD values measured from the single-hierarchy

model approach, ICPS . The cells with grey background denote
configurations that outperformed statement coverage-based priori-
tisation in terms of APFD metric. The proposed technique only
outperforms coverage-based techniques with the right combination
of program and test suite. For example, suite 1 and suite 2 of space
show improvement over SC, but suite 3 and suite 4 do not. The
clustering also has detrimental effect on the test suite of bash; the
APFD value produced by ICPS is lower than that of SC. Overall,
out of 16 prioritisation problems, ICPS produces higher APFD than

statement coverage-based prioritisation for 9 cases. Note that these
results assume the human input from the ideal user and, therefore,
the results are deterministic. The increases in APFD range from
0.5% to 21.8% with average increase of 6.5%. This provides an
answer to RQ1.
Table 8 shows the results from the multiple-hierarchy model ap-

proaches, ICPM. Each configuration uses different p[H][C] value
to prioritise the criteria, i.e., comparisons made by human expert
and statement coverage-based prioritisation. One trend observed
in every prioritisation is that higher p[H][C] tends to produce higher
APFD metric values. With a few exceptions, observed APFD val-
ues monotonically decrease as p[H][C] decreases. This implies that
the ideal configuration for the hybrid ICPM approach is to set p[H][C] =
9, i.e. to favour the human judgement extremely. This provides an
answer to RQ2. With p[H][C] = 9, the increases in APFD range
from 0.7% to 22% with average increase of 6.4%.

5.2 Tolerance & Suitability
Now we turn to the second set of research questions. Regard-

ing the tolerance study and RQ3, Figure 4 and Figure 5 show how
APFD values from ICPS and ICPS deteriorate as error rate in-
creases from 0.05 to 1.0. Comparing Figure 4 and Figure 5 with
Table 7 and Table 8, test suites for which ICP does not achieve im-
provement tend to be less resistant to increasing error rate. On the
other hand, test suites for which ICP is capable of making improve-
ment over statement coverage-based prioritisation tend to produce
more robust APFD values as the error rate increases. The test suite
for gzip is capable of producing higher APFD values than state-
ment coverage with error rates up to 0.45. Surprisingly, test suites
for schedule, sed, vim, and two test suites for space are capable
of producing higher APFD values than statement coverage with er-
ror rates up to 1.0, i.e. under the situation when the human expert
always makes incorrect comparisons.
Figure 6 provides an explanation to this seemingly counter-intuitive

phenomenon. Figure 6 contains following three boxplots. In each
subplot, Random shows APFD of random ordering of test cases
with no clustering; RCRP (Random Clustering Random Prioritisa-
tion) shows APFD of randomised ICP with random clustering with
k = 14 and HCRP (Hierarchical Clustering Random Prioritisation)
shows APFD of randomised ICP with hierarchical clustering. The
solid horizontal line represents APFD value of the optimal order-
ing; the dotted horizontal line represents APFD value of the state-
ment coverage-based prioritisation. There exists a common trend
between all programs for which ICP produced successful improve-
ment. For these programs, either the mean of HCRP or the upper
quartile observation of the box plot is higher than the APFD of
statement coverage-based prioritisation. It can be concluded that
the clustering with k = 14 works for the prioritisation of these
programs and their test suites. Note that all the prioritisation is
performed randomly for HCRP. Our conjecture is that, for these
programs, any prioritisation technique that performs better than a
purely random approach will eventually make an improvement over
statement coverage-based prioritisation.
Table 9 confirms this conjecture, and provides an answer for

RQ4. It compares the result of the suitability test for faults in
AR and TBR sets of each program with the optimal ordering and
the statement coverage-based prioritisation. Hierarchical Cluster-
ing/Statement Prioritisation (HCSP) represents the ICP with state-
ment coverage prioritisation both for intra- and inter-cluster stage,
combined with hierarchical agglomerative clustering of k = 14. No
Clustering/Statement Prioritisation (NCSP) represents traditional
statement coverage-based prioritisation. Note that both configu-
rations are deterministic and can be automated. For the faults in
the AR set, both NCSP and HCSP are executed. If the result of

Subject printtokens schedule space gzip sed vim bash

Test Suite 1 2 3 4 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.997 0.995 0.991 0.995 0.993 0.993 0.983 0.985 0.985 0.982 0.996 0.997 0.998 0.999
ICPS 0.806 0.974 0.967 0.868 0.824 0.917 0.952 0.913 0.948 0.933 0.930 0.927 0.996 0.905 0.903 0.144
SC 0.930 0.992 0.972 0.960 0.806 0.865 0.782 0.844 0.899 0.863 0.948 0.947 0.980 0.876 0.899 0.210

Table 7: APFD values obtained from ICPS and ideal user model compared to those of the optimal ordering and the statement

coverage-based prioritisation. Cells with grey background represent the fact that ICPS outperformed statement coverage-based

prioritisation in terms of APFD.

Subject printtokens schedule space gzip sed vim bash

Test Suite 1 2 3 4 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.997 0.995 0.991 0.995 0.993 0.993 0.983 0.9852 0.985 0.982 0.996 0.997 0.998 0.999

9 0.807 0.974 0.967 0.871 0.825 0.916 0.954 0.912 0.946 0.938 0.931 0.927 0.996 0.905 0.905 0.144
7 0.807 0.974 0.967 0.871 0.825 0.916 0.954 0.912 0.946 0.939 0.931 0.926 0.996 0.905 0.905 0.144
5 0.807 0.974 0.967 0.871 0.825 0.915 0.954 0.912 0.947 0.939 0.931 0.926 0.996 0.905 0.905 0.144

ICPM 3 0.807 0.974 0.966 0.871 0.825 0.914 0.952 0.912 0.946 0.940 0.931 0.926 0.996 0.905 0.905 0.144
p[H][C] 1 0.807 0.974 0.966 0.871 0.824 0.915 0.951 0.912 0.946 0.939 0.930 0.923 0.996 0.905 0.904 0.144

1/3 0.808 0.973 0.966 0.870 0.823 0.905 0.945 0.909 0.943 0.937 0.929 0.920 0.991 0.902 0.904 0.144
1/5 0.807 0.973 0.966 0.870 0.820 0.903 0.943 0.907 0.943 0.936 0.928 0.920 0.988 0.902 0.904 0.144
1/7 0.807 0.973 0.966 0.870 0.821 0.901 0.941 0.906 0.943 0.936 0.928 0.919 0.987 0.902 0.904 0.144
1/9 0.806 0.973 0.966 0.870 0.821 0.901 0.941 0.904 0.943 0.935 0.928 0.919 0.985 0.902 0.904 0.144

SC 0.930 0.992 0.972 0.960 0.806 0.865 0.782 0.844 0.899 0.863 0.948 0.947 0.980 0.876 0.899 0.210

Table 8: APFD values obtained from ICPM with different p[H][C] values and ideal user model, ranging from ‘extremely favours human
expert’s judgement (9)’ to ‘extremely favours coverage-based prioritisation (1

9
)’.

HCSP is equal to or higher than that of NCSP, the specific pair of
SUT and test suite is said to pass the suitability test. A pass means
that the hierarchical clustering has a positive impact on statement
coverage-based prioritisation. Therefore, we expect that replac-
ing statement coverage-based prioritisation with techniques such
as AHP will only improve the prioritisation of any SUT and test
suite that passed suitability test. This expectation is then checked
using the TBR set of faults. If ICPM produces higher APFD than
NCSP for a pair of (SUT, test suite) that passed suitability test, it
can be said that the test produced a correct prediction. Since the
aim of the suitability test is to avoid wasting human effort, false
positive tests presents higher risk than false negative tests.
The results in Table 9 indicate the passed tests with grey back-

ground. For all 8 tests that passed, the subsequent experiments with
faults in the TBR set confirm the result of suitability test. That is,
ICPM produces higher APFD than statement coverage-based pri-
oritisation. There are two false negative results, marked with (*).
Suite 2 of schedule and vim do not pass the suitability test, but
ICP does produce higher APFD than NCSP. There is no false pos-
itive test result. The remaining 6 pairs of program/test suite do not
pass the suitability test, and the subsequent experiments with faults
in the TBR set confirm the correctness of the suitability test. In
summary, RQ4 is answered positively with 14 correct predictions
(8 pass, 6 fail) out of 16 cases. The remaining two cases are com-
paratively harmless false negatives.

5.3 Limitations & Threats to Validity
Threats to internal validity concern the factors that might have

affected the performance the proposed technique. The accuracy
of execution trace data and fault detection data can have a signif-
icant impact on the performance. To address this, the execution
traces were obtained using a widely used and well known com-
pile/profiling tool, gcc and gcov. Fault detection data were ob-
tained from SIR [2].
Threats to external validity concern the conditions that limit gen-

eralisation of the results. The novelty of the proposed technique

lies in the combination of clustering and pair-wise comparisons.
This paper uses the agglomerative hierarchical clustering for the
former and AHP for the latter, but other combinations of tech-
niques may produce different results. Different combinations of
techniques should be studied in order to address this concern. The
representativeness of the test suites and subject programs is another
primary concern. However, the paper studies programs with sizes
ranging from 412 LoC to over 100KLoc. When multiple test suites
are available, four different test suites were randomly chosen to
avoid any bias based on the choice of test suites.

6. RELATED WORK
Test case prioritisation techniques aim to improve the efficiency

of regression testing by prioritising test cases so that earliest fault
detection is possible. Since fault detection information is not known
in advance, test case prioritisation techniques tend to use surrogates
as their criteria. Structural coverage is an often used surrogate for
fault detection capability [6, 7, 11, 12, 14, 15, 16, 20].
Rothermel et al. performed empirical studies of several differ-

ent prioritisation techniques [15, 16]. The authors consider di-
verse surrogates such as branch-total, branch-additional, statement-
total, statement-additional, Fault-Exposing Potential (FEP)-total,
and FEP-additional. The ‘total’ approaches correspond to the nor-
mal greedy algorithm, whereas ‘additional’ approaches correspond
to the additional greedy algorithm. The authors report that there is
no single criterion that dominates others in terms of rate of fault
detection. Elbaum et al. extended the additional greedy approach
of Rothermel et al. by incorporating the fault criticality and the cost
of executing test cases [7].
The use of clustering in test case prioritisation is not entirely

new. Leon et al. prioritised test cases by forming clusters of their
execution profile [10] and showed that their approach can outper-
form coverage-based prioritisation. However, this work differs in
its aim (to reduce the cost of human based pair-wise comparison)
and the choice of dissimilarity metric for clustering (hamming dis-
tance compared to Euclidean distance of Leon et al.).

Figure 4: Boxplots of APFD values of ICPS configuration with error rate ranging from 0.05 to 1.0 in steps of 0.05 on the x-axis.

The y-axis shows the observed APFD metric values. For each error rate value, experiments are repeated 30 times to cater for

the randomness in the error model. The horizontal dotted line shows the APFD value of statement coverage-based prioritisation.

Surprisingly, for the test suites for which ICPS showed an improvement in Table 7, the mean APFD values tend to stay above this

dotted line, even when the error rate is above 0.5. In fact, with the exception of schedule1 and gzip, even the error rate of 1.0
produces successful results for the test suites for which ICPS showed an improvement in Table 7.

AHP has been widely adopted in various software engineering
fields where the only meaningful prioritisation criteria is often the
human preference. Karlsson et al. applied AHP to requirement
prioritisation and empirically compared AHP with several different
techniques [9]. Finnie et al. applied AHP to project management
and prioritised productivity factors in software development [8].

Douligeris et al. applied AHP to evaluate the Quality-of-Service
(QoS) in telecommunication networks [4].
Previous work in the test case management field studied how hu-

man involvement can improve the quality of test case prioritisation.
Tonella et al. have successfully applied the Case-Base Ranking
(CBR) machine learning technique to test case prioritisation [19].

Figure 5: Boxplots of APFD values of ICPM configuration with error rate ranging from 0.05 to 1.0 in steps of 0.05 on the x-axis. The

y-axis shows the observed APFD metric values. The trend observed in Figure 4 continues. However, it can also be observed that the

secondary prioritisation criteria (statement coverage) compliments human input. APFD values show smaller variances compared to

Figure 4 and, in some cases, more tolerance in the presence of human error, for example, the case with test suite 1 of schedule.

CBR tries to learn the ordering between the test cases from the ad-
ditional information it is given such as structural coverage. During
the process, CBR presents the human tester with a pair of test cases
and asks which one is more important. It combines the human in-
put with the information originally available, and produces an or-
dering of test cases. The empirical results show that prioritisation
using CBR can outperform the existing coverage-based prioritisa-
tion techniques.

While this paper starts from the same assumption (that human
involvement can improve test case prioritisation), there are several
significant differences from this previous work. First, this paper in-
troduces clustering to deal with the high cost of AHP. Without the
reduction in effort, the cost of AHP has been considered inhibitive.
Second, this paper introduces the error rate in the user model, and
thereby provides more realistic observation of the performance of
the technique. Finally, the paper introduces an automated assess-

Figure 6: Boxplots of random prioritisation results. On the x-axis, ‘Random’ represents random prioritisation with no clustering;

‘RCRP’ represents random clustering and random ICP; ‘HCRP’ represents hierarchical clustering and random ICP. The y-axis

shows the observed APFD metric values. For programs for which ICP performed well in Section 5.1, HCRP partially outperforms

statement coverage-based prioritisation (represented by the dotted lines) even with random prioritisation.

ment technique that determines whether human effort will be justi-
fied by the expected results.

7. CONCLUSION & FUTUREWORK
This paper introduced the use of clustering for human interac-

tive test case prioritisation. Human interaction is achieved by using
AHP, which is a widely used decision making tool that has been

previously adopted by the Requirements Engineering community.
Clustering is applied to reduce the number of pair-wise compar-
isons required by AHP, making it scalable to regression testing
problems. The paper introduced a hybrid Interleaved Clusters Pri-
oritisation technique to combine these two techniques. The empir-
ical studies show that the hybrid ICP algorithm can outperform the
traditional coverage-based prioritisation for some programs, even
when the human input is erroneous. The paper also presents an

Subject printtokens schedule space gzip sed vim bash

Test Suite 1 2 3 4 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.998 0.995 0.991 0.995 0.993 0.993 0.983 0.985 0.985 0.982 0.996 0.997 0.998 0.999
NCS P AR 0.936 0.997 0.998 0.965 0.899 0.974 0.922 0.949 0.958 0.957 0.963 0.974 0.817 0.958 0.946 0.804
HCS P AR 0.736 0.976 0.998 0.896 0.984 0.970∗ 0.972 0.986 0.964 0.977 0.941 0.939 0.831 0.959 0.890∗ 0.746
NCS P TBR 0.915 0.993 0.953 0.949 0.831 0.880 0.854 0.883 0.918 0.914 0.962 0.973 0.980 0.876 0.899 0.210
ICPM TBR 0.755 0.954 0.978 0.875 0.994 0.992 0.992 0.992 0.966 0.982 0.956 0.944 0.996 0.905 0.905 0.144

Table 9: Results of the suitability test. NCSP is the traditional statement coverage-based prioritisation. HCSP is ICP with statement

coverage prioritisation for both intra- and inter-cluster prioritisation. If HCSP performs no worse than NCSP, the test passes, i.e.

ICP is expected to outperform NCSP with the faults in the TBR set. Cells with grey background show passed tests with correct

prediction; cells with white background denote failed tests with correct prediction. The second test suite of schedule and the test
suite of vim produce false negative results (denoted by *).

automated suitability test that can accurately predict whether the
hybrid ICP will make a positive improvement to the prioritisation
of a specific pair of SUT and test suite, ensuring that no human ef-
fort is wasted on regression testing scenarios that are inappropriate
for the technique. Future work will consider different clustering
criteria in order to produce closer approximation to the semantics
of fault detection.

8. REFERENCES
[1] P. Avesani, C. Bazzanella, A. Perini, and A. Susi. Facing

scalability issues in requirements prioritization with machine
learning techniques. In Proceedings of the 13th IEEE
International Conference on Requirements Engineering,
pages 297–306, Paris, France, August 2005.

[2] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software
Engineering: An International Journal, 10(4):405–435,
2005.

[3] H. Do and G. Rothermel. On the use of mutation faults in
empirical assessments of test case prioritization techniques.
IEEE Transactions on Software Engineering, 32(9):733–752,
2006.

[4] C. Douligeris and I. Pereira. A telecommunications quality
study using the analytic hierarchy process. IEEE Journal on
Selected Areas in Communications, 12(2):241–250, Feb
1994.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182, Feb
2002.

[6] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In In
Proceedings of the 2nd International Symposium on Software

Testing and Analysis, pages 102–112, Portland, USA, 2000.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities into test
case prioritization. In Proceedings of the 23rd International
Conference on Software Engineering, pages 329–338,
Toronto, Canada, May 2001.

[8] G. R. Finnie, G. Wittig, and D. I. Petkov. Prioritizing
software development productivity factors using the analytic
hierarchy process. The Journal of Systems and Software,
22(2):129–139, August 1993.

[9] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of
methods for prioritizing software requirements. Information
& Software Technology, 39(14-15):939–947, 1998.

[10] D. Leon and A. Podgurski. A comparison of coverage-based
and distribution-based techniques for filtering and

prioritizing test cases. In Proceedings of the IEEE
International Symposium on Software Reliability

Engineering, pages pp. 442–456, 2003.

[11] Z. Li, M. Harman, and R. M. Hierons. Search Algorithms for
Regression Test Case Prioritization. IEEE Transactions on
Software Engineering, 33(4):225–237, 2007.

[12] A. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the
cost-benefits tradeoffs for regression testing techniques. In
Proceedings of the 18th International Conference on

Software Maintenance, pages 230–240, Montreal, Canada,
October 2002.

[13] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and
S. Elbaum. Cost-cognizant test case prioritization. Technical
Report TR-UNL-CSE-2006-0004, Department of Computer
Science and Engineering, University of Nebraska-Lincoln,
March 2006.

[14] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and
B. Davia. The impact of test suite granularity on the
cost-effectiveness of regression testing. In Proceedings of the
24th International Conference on Software Engineering,
pages 130–140, New York, NY, USA, May 2002.

[15] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Proceedings of the
15th International Conference on Software Maintenance,
pages 179–188, Los Alamitos, California, USA, 1999.

[16] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, 2001.

[17] T. Saaty. The Analytic Hierarchy Process, Planning, Piority
Setting, Resource Allocation. McGraw-Hill, New York,
USA, 1980.

[18] H. Srikanth, L. Williams, and J. Osborne. System test case
prioritization of new and regression test cases. In
Proceedings of International Symposium on Empirical

Software Engineering, pages 64–73, November 2005.

[19] P. Tonella, P. Avesani, and A. Susi. Using the case-based
ranking methodology for test case prioritization. In
Proceedings of the 22nd IEEE International Conference on

Software Maintenance, pages 123–133, Dublin, Ireland, July
2006.

[20] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time aware test suite prioritization. In ISSTA ’06:
Proceedings of the 2006 International Symposium on

Software Testing and Analysis, pages 1–12, New York, NY,
USA, 2006. ACM Press.

