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ABSTRACT

This paper introduces the Species per Path (SpP) approach
to search-based software test data generation. The approach
transforms the program under test into a version in which
multiple paths to the search target are factored out. Test
data are then sought for each individual path by dedicated
‘species’ operating in parallel.

The factoring out of paths results in several individual
search landscapes, with feasible paths giving rise to land-
scapes that are shown to be more conducive to test data
discovery than the original overall landscape. The paper
presents the results of two empirical studies that validate
and verify the approach. The validation study supports the
claim that the approach is widely applicable and practical.
The verification study shows that the SpP approach is likely
to improve search efficiency and success rate over the stan-
dard evolutionary approach to test data generation.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Verification

Keywords: Automated test data generation, evolutionary
testing, testability transformation

1. INTRODUCTION
Because generating test data by hand is tedious, expen-

sive and error-prone, automated test data generation has
remained a topic of interest for the past three decades. Sev-
eral techniques have been proposed, including symbolic ex-
ecution [6, 13], constraint solving [7, 19] and search-based
approaches [16], also known as search-based testing.

A variety of search techniques have been proposed for
structural test data generation: local search in the form of
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the alternating variable method [8, 15], simulated annealing
[23, 24] and evolutionary algorithms [12, 20, 26]. This paper
concentrates on the application of evolutionary algorithms,
although the results are also generally applicable to other
search methods.

Instead of attempting to ascertain test data from the static
form of a program, search-based methods explore the input
domain of a program by executing it and observing the re-
sults. The program is instrumented in order to feed informa-
tion back to the search method, which helps guide it to the
location of the test data. The information takes the form
of a fitness function, which is computed using cues such as
the values of variables appearing in branch predicates, or
the branches executed through the program by some input
data.

This paper exposes and addresses the path problem for
search-based test data generators. The path problem occurs
when the input domain for the program is largely dominated
by paths through the program which cannot lead to execu-
tion of the target, potentially suffocating the fitness function
and preventing the search from receiving adequate guidance
to the required test data. The problem is experienced for
the example program in Figure 1a and the coverage of the
target T . Figure 1c shows a search ‘landscape’, a helpful vi-
sualization of the fitness function. The landscape is plotted
in three dimensions, with two of the dimensions showing the
values of the two input variables (a and b), with the third
indicating the value of fitness for each pair of values. The
landscape reveals that it will not be easy for the search to
find test data for T . There is only a single input vector which
causes it to be executed, and the fitness landscape around
it is flat. The lack of variation in fitness values leaves the
search with no clues with respect to direction in which it
should proceed, resulting in a high likelihood of failure to
find the test data.

This paper proposes the Species per Path (SpP) solution
to the problem. The initial stage of the SpP approach is a
program transformation which factors out several paths to
the target. The search effort is then distributed amongst the
paths, with several ‘species’ working in parallel, each dedi-
cated to finding test data for an individual path. Whether
the path problem is prevalent to a greater or lesser degree
in a test object, the SpP approach is likely to improve both
search efficiency and search success rate. This is because
the transformation allows each species to exploit additional
fitness guidance tailored to each path.



CFG
Node
(s) void example1(double a, double b)

{
(1) if (a != 0) {
(2) b = 2;

}

(3) if (b != 0) {
(4) a = 2;

}

(5) if (a == 0 && b == 0) {
// T

}
}

void example1_transformed(double a, double b)
{

if (a != 0) {
b=2;
if (b != 0) {

a=2;
if (a==0 && b==0) {

// T1

}
} else if (a==0 && b==0) {

// T2

}
} else if (b != 0) {

a=2;
if (a==0 && b==0) {

// T3

}
} else if (a==0 && b==0) {

// T4

}
}

(a) Program Fragment (b) Transformed program
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Figure 1: An example program fragment (a), its transformation (b), and the difference in fitness landscapes
(c) and (d) and fitness computation (e) and (f). The landscape of T (c) in the original program is flat,
providing the search with no direction to the location of the required test data. However, the SpP approach
allows the search to explore the landscape of T4 (d), which has a downward sloping surface providing the
search with clear guidance as to the whereabouts of the necessary input data. This extra information is a
result of extra guidance being included in the fitness function for T4. The fitness computation for T is only
dependent on one conditional (e), whereas the fitness computation for T4 in the transformed version takes
into account all the conditionals corresponding to a specific path in the original program



Figure 1b shows the transformed program in which the
four paths to T have been separated out. The effect this
has on the landscape is visually evident in Figure 1d, which
depicts the search landscape for target T4, using fitness in-
formation corresponding to a feasible path in the original
program. The plateau is replaced with a directional surface
that is significantly easier to search, even using a simple
search technique such as gradient descent.

The primary contributions of this paper are the following:

1. The paper shows how the natural evolutionary metaphor
of ‘species’ can be exploited to improve test data gen-
eration, by considering the paths to some target node
to define inherently separate ‘species of test data’.

2. The approach is justified both by a theoretical argu-
ment and by the results of an empirical study into its
practical effectiveness for improving test data genera-
tion.

3. The paper also reports the results of a separate em-
pirical study on a large set of open source programs,
concerned with the validity of the approach; its appli-
cability and algorithmic practicability.

The rest of this paper is organized as follows. Section 2 in-
troduces the background behind the evolutionary test data
generation approach, and some important basic concepts.
Section 3 discusses the path problem in more detail, whilst
Section 4 presents the proposed Species per Path solution.
Section 5 presents experimental results to support the claims
concerning the effectiveness of the approach with three stud-
ies, one of which is taken from production code. Section 6
presents the results of an additional empirical study to val-
idate the approach by showing that the method is widely
applicable. Section 7 presents related work and Section 8
concludes with closing comments and future work.

2. BACKGROUND
This section presents an overview of the background to

the SpP approach, including search-based test data gener-
ation, evolutionary algorithms, and computation of the fit-
ness function for the coverage of individual structural tar-
gets. Before this, however, some basic concepts are re-
viewed.

2.1 Basic Concepts
A control flow graph (CFG) of a program is a directed

graph G = (N, E, s, e) where N is a set of nodes, E is a set
of edges, and s and e are unique entry and exit nodes to
the graph. Each node n ∈ N corresponds to a statement
in the program, with each edge e = (ni, nj) ∈ E repre-
senting a transfer of control from node ni to nj . Nodes
corresponding to decision statements (for example an if or
while statement) are referred to as branching nodes. In the
example of Figure 2, nodes 1, 2 and 3 are all branching
nodes. Outgoing edges from these nodes are referred to as
branches. The branch executed when the condition at the
branching node is true is referred to as the true branch. Con-
versely, the branch executed when the condition is false is
referred to as the false branch. The predicate determining
whether a branch is taken is referred to as a branch predi-
cate. The branch predicate of the true branch from branch-
ing node 1 in the program of Figure 2 is ‘a >= b’. The false

branch predicate is ‘a < b’. A path through a CFG is a
sequence of nodes P = 〈n1, n2, . . . nm〉 such that for each
i, 1 ≤ i < m, (ni, ni+1) ∈ E.

Control dependence [9] is used to describe the reliance of
a node’s execution on the outcome at previous branching
nodes. For a program node i with two exits (for example,
an if statement), program node j is control dependent on i

if one exit from i always results in j being executed, while
the other exit may not result in j being executed. In Fig-
ure 2, node 2 is control dependent on node 1, and node 3 is
control dependent on node 2. Node 3 is not directly control
dependent on node 1. However, node 3 is transitively con-
trol dependent on node 1. For structured programs, control
dependence reflects the program’s nesting structure.

2.2 SearchBased Test Data Generation
Evolutionary algorithms [28] combine characteristics of

genetic algorithms and evolution strategies, using simulated
evolution as the model of a search method, employing op-
erations inspired by genetics and natural selection. Evolu-
tionary algorithms maintain a population of candidate so-
lutions referred to as individuals. Individuals are iteratively
recombined and mutated in order to evolve successive gen-
erations of potential solutions. The aim is to generate ‘fit-
ter’ individuals within subsequent generations (i.e., better
candidate solutions). This is performed by a recombination
operator, which forms offspring from the components of two
parents selected from the current population. The new off-
spring form part of the new generation of candidate solu-
tions. Mutation performs low probability random changes
to solutions, introducing new genetic information into the
search. At the end of each generation, each solution is eval-
uated for its fitness, using a problem-specific fitness func-
tion. Using fitness values, the evolutionary search decides
whether individuals should survive into the next generation
or be discarded.

In applying evolutionary algorithms to structural test data
generation, the ‘individuals’ of the search are input vectors.
The fitness function is derived from the context of the cur-
rent structure of interest in the program. The fitness func-
tion is to be minimized by the search: thus lower numerical
values represent ‘fitter’ input vectors that are closer to ex-
ecuting the target structure. When a zero fitness value has
been found, the required test data has also been found.

The fitness function is made up of two components – the
approach level and the branch distance. The approach level
measures how close an input vector was to executing the
current structure of interest, on the basis of how near the
execution path was to reaching it in the program’s control
flow graph. Central to the metric is the notion of a criti-
cal branching node. A critical branching node is simply a
branching node with an exit that, if taken, causes the target
to be missed. In other words, the set of critical branching
nodes is the set of nodes on which the target structure is
control dependent (either directly or transitively). In Fig-
ure 2, nodes 1, 2 and 3 are all critical branching nodes with
respect to the target. The approach level for an individual,
as seen in Figure 2, is the number of critical branching nodes
left unencountered by the execution path taken through the
program.

At the point at which control flow diverges away from the
target, the branch distance is calculated. The branch dis-
tance reflects how ‘close’ the alternative branch from the last



CFG Node
(s) void example(int a, int b, int c, int d)

{

(1) if (a >= b)

{

(2) if (b <= c)

{

(3) if (c == d)

{

// T

...

 

true 

true 

if a >= b 

if b <= c 

T 

TARGET MISSED 
Approach Level = 1 

Branch Distance = norm(b – c) 

TARGET MISSED 
Approach Level = 2 

Branch Distance = norm(b-a) 
false 

false 

true 
if c == d 

false 

TARGET MISSED 
Approach Level = 0 

Branch Distance = norm(abs(c- d)) 

Figure 2: Calculating the fitness function for
evolutionary testing

critical branching node was to being taken. A raw distance
is computed using the values of the variables or constants
involved in the branching condition. For example, if the
false branch were taken from node 3 in Figure 2, the raw
distance for the alternative true branch is computed using
the formula abs(c - d). The closer the values of c and d,
the smaller the distance value, and the closer the branch is
to being executed as true. A full list of formulas for dif-
ferent types of branch predicate can be found in Tracey et
al.[24]. The raw distance value is then normalized (Equa-
tion 1 below) and added to the approach level to make up
the complete fitness value (Equation 2 below).

branch distance = norm(raw dist) (1)

fitness = approach level + branch distance (2)

The fitness function derived for a target is only concerned
with the branching nodes which absolutely must be executed
in a certain way in order for the target to be reached in the
control flow graph. It is not concerned with the specifics
of the complete path taken to the target – this discovery is
usually left as part of the search.

3. THE PATH PROBLEM
The test data generation problem involves finding test

data to execute some path p that ends with the target T . As
described in the last section, the path p does not have to be
selected by the tester for search-based testing, it is sought
as part of the search process.

Let P be the set of feasible paths which execute a tar-
get T . The path problem occurs when the total number of
input vectors executing each path in P account for only a
small proportion of the overall input domain. In such in-
stances, paths in P are unlikely to be executed by random
chance. Furthermore, the search may not be equipped with
adequate guidance to find test data to execute any p ∈ P .
This is because the fitness function is concerned only with
a subset of branching nodes that exist within each p – the
set of critical branching nodes. Whilst critical branching

nodes determine whether T will be reached in the control
flow structure of the program, other branching nodes may
also exist within p that control assignments to variables that
are also responsible for determining whether T will be exe-
cuted or not. However, it is not possible to know which of
these branching nodes should be included for the purposes
of computing the fitness function, since P is not known a
priori (finding P is in general undecidable), and neither is
the exact sequence of nodes in each p.

The path problem exists in the example of Figure 1a where
there are four potential paths ending in T . However, three
of them are infeasible, and the feasible path 〈s, 1, 3, 5, T 〉 is
only executed by a single input vector. The fitness func-
tion only utilizes fitness information at node 5, since this is
the only critical branching node that T is dependent upon.
The search is unaware that the false branches must be taken
from nodes 1 and 3, in order to avoid the fatal assignments
at node 2 and 4 respectively. The search landscape is flat
(Figure 1c), giving no guidance to the search. This is be-
cause for each infeasible path it is impossible for node 5 to
be reached without the variable a having the value 2, at
which point the short-circuit evaluation determines that the
entire condition is false.

4. THE SPECIES PER PATH SOLUTION
The foundation of the SpP approach is the division of

search effort across several parallel sub-populations or ‘species’
assigned to the task of finding test data for each individual
path. To this end

• Each species uses a fitness function tailored for that
path, and so the search can receive full guidance with
respect to each branching node within it.

• No path is favored above another path simply because
it is executed by more of the input domain.

The SpP approach is likely to increase the chances of
successful test data generation. Resources are guaranteed
to feasible paths, and species allocated to these paths are
equipped with a higher level of search guidance than is avail-
able to the conventional approach. Species allocated to in-
feasible paths simply fail to produce a result. These claims
are confirmed by the results of the verification study, de-
scribed in Section 5.

To facilitate the division of labour amongst species, pro-
gram transformation and program slicing are used. Nei-
ther is strictly necessary because the paths can be identified
without transformation, and slicing only serves to improve
efficiency. However, by transforming the program, which
factors out paths to the target, the standard evolutionary
testing approach becomes applicable directly to the trans-
formed program. Furthermore, the transformation allows
the original fitness function, as described in Section 2.2, to
be applied. The transformation separates out the loop-free
paths from node i to node j by bushing the program’s Ab-
stract Syntax Tree (AST) [10]. In essence, this transfor-
mation moves code from after the conditional into the con-
sequent and alternative branches of the conditional. Post
transformation, a slice [3, 22, 27], is used to remove compo-
nents (statements) from the transformed program that have
no effect on the target.

An example transformation can be seen from the program
of Figure 1a to that of Figure 1b. In the transformed version



CFG
Node
(s) void example2(double in1, double in2)

{
(1) double a = 0;
(2) double b = 0;

(3) if (in1 == 0) {
(4) a = 20;
(5) b = in2 * 2;

}

(6) if (in2 == 0) {
(7) a = in1 * 3;
(8) b = 100;

}

(9) if (a >= 20 && b >= 20) {
(10) // T

}
}

void example2_transformed(double in1, double in2)

{
double a = 0;
double b = 0;

if (in1 == 0) {
a = 20;
b = in2 * 2;
if (in2 == 0) {

a = in1 * 3;
b = 100;
if (a >= 20 && b >= 20) {

// T1

}
} else if (a >= 20 && b >= 20) {

// T2

}
} else if (in2 == 0) {

a = in1 * 3;
b = 100;
if (a >= 20 && b >= 20) {

// T3

}
} else if (a >= 20 && b >= 20) {

// T4

}
}

(a) Original Program (b) Transformed Program
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(c) Original Landscape (for T ) (d) Landscape for T1
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Figure 3: The path problem. T1 and
T4 are infeasible – no part of their
surface touches zero on the vertical
axis. T2 and T3 are feasible, and al-
though the surfaces contain ridges
and local optima, the basin of attrac-
tion present in both their landscapes
is considerably greater than the land-
scape of T , leading to higher search
efficiency and success rate.
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there are four copies of the target corresponding to the four
paths to T . Three of these copies, T1, T2 and T3, turn out
to be infeasible. T4 is feasible. Figures 1e and 1f compare
fitness computation for T and T4 respectively. Whereas the
initial two conditions at nodes 1 and 3 are ignored for T in
the original program, they become critical branching nodes
for T4 in the transformed version, and are therefore used in
the fitness computation. The fact that both of these con-
ditions have to be evaluated as false is crucial information
which guarantees feasibility of the target.

The effect on the fitness landscape is seen by comparing
that for T in the original program and that of T4 in the
transformed version. The landscape for T is flat (Figure 1c),
providing no guidance to the search whatsoever. However
landscape for T4 (Figure 1d) makes things significantly easier
for the search, providing clear direction as to the where the
required test data exists in the input domain.

A second example is presented in Figure 3. Figure 3a
shows the original program. The target T is only executed
by a path which takes the true branch from branching nodes
3 or 6 – branching nodes which are key but not critical for
T in the original program. These nodes are only executed
as true by a small number of input vectors. The resultant
search landscape largely consists of plateaux (Figure 3c).

Figure 3b shows the transformed version of the program,
which has been bushed to expose four paths, and conse-
quently includes four copies of the target. The four land-
scapes corresponding to T1 to T4 are depicted in Figures 3d
through to 3g respectively. All of these landscapes have cer-
tain features in common with the original landscape. This
is because the fitness function for T combines the results of
the computation along each path over the areas of the input
domain for which those individual paths are executed. The
SpP approach separates this information out into the land-
scape for each species, adding further information to guide
the search to the execution of each individual path. Tar-
gets T2 and T4 are on feasible paths. This is evident from
their search landscapes, since part of their respective sur-
faces touch zero on the vertical axes. Landscapes T1 and T3

are on infeasible paths – no part of the landscape touches
the zero on the vertical axis – meaning there is no value in
the input space which executes the target branch. A search
in either of the two infeasible landscapes is doomed to fail.
However, searching the two feasible landscapes not only al-
lows for successful discovery of test data, but a higher likeli-
hood of success than if the original search landscape were to
be used. Again, this is due to the extra fitness information
which comes from the inclusion of extra branching nodes in
the fitness function. Although the feasible landscapes pro-
duced by the SpP approach do contain areas of ridges and
local optima, the basin of attraction to the global optimum
is considerably larger.

5. EMPIRICAL VERIFICATION
Experiments were performed using the standard evolu-

tionary approach and the SpP method with three programs:
the examples from Figures 1 and 3 and a third example,
called space, taken from production code. Although the first
two examples are small (in terms of code size), the complex-
ity of any search-based algorithm is a function of the search
space, not the program size. Therefore, the important deter-
minant of problem difficulty for search–based testing is the

size of the input domain. As is described in the following
sections, input domain sizes for all three test objects ranged
from the order of 108 to 1014 possible input vectors.

The evolutionary searches were performed with the pub-
licly available Genetic and Evolutionary Algorithm Toolbox
(GEATbx) [21]. A detailed explanation of each of the search
parameters is beyond the scope of this paper, however they
are fully documented at the GEATbx web-site [21], and are
recorded here to allow replication of the experiments. Real-
valued encodings were used to represent the input vectors,
linear ranking was utilized with a selection pressure of 1.7.
The generation gap was set at 0.8. Individuals were re-
combined using discrete recombination, and mutated using
real-valued mutation. Finally, each evolutionary search was
terminated after 200 generations if test data was not found.

5.1 Example 1
The standard evolutionary approach described in Section

2.2 was applied to the original version of the program shown
in Figure 1a using 240 individuals per generation. The SpP
approach was applied to the transformed version shown in
Figure 1b. With four targets, four species were allocated -
one per target. 60 individuals were used per species, and
therefore both different approaches used the same number
of individuals overall per generation. The ranges of the in-
put variables a and b were set to -1000.0 to 1000.0, with a
precision of 0.1, giving an input domain (search space) size
of approximately 4 × 108.

Figure 4a plots the search progress for the experiment.
For the two approaches, the graph shows the best fitness
obtained so far in the search for a particular generation, av-
eraged over the ten repetitions of the experiment. This value
is then normalized to allow for a direct comparison between
the two methods. Due to the undirectional landscape of the
target T , the original method fails to make any progress at
all; thus the horizontal line at the top of the figure. In con-
trast, the SpP approach is more successful. The progress of
each species is plotted in Figure 4b. Species 3 makes the
best start, but since T3 is infeasible, it hits a ‘dead end’ be-
fore the 30th generation. Species 1 and 2 also correspond
to infeasible paths, and fail to make any progress. However,
Species 4, corresponding to T4, makes steady progress to the
required test data. T4 corresponds to a feasible path. The
species is equipped with more fitness information than is
available to the original approach, and was able to find test
data in 9 out of the 10 repetitions. In one run, however, the
species failed to reach the target within the 200 generations
limit, which is why the average best fitness line for Species
4 gets close but does not actually touch zero.

The success rates of each method are summarized in Ta-
ble 1, along with the number of test data evaluations for
successful and unsuccessful searches. The original method
fails to find test data in every run, but the SpP succeeds
90% of the time.

5.2 Example 2
The setup for Example 2 (Figure 3) was largely the same

as that for Example 1. For the original version of the pro-
gram, 240 individuals were used per generation. Again, with
four paths factored out in the transformed version of the pro-
gram, the SpP approach used four different species compris-
ing 60 individuals each, and thus a total of 240 individuals
per generation. Input ranges were -1000.0 to 1000.0 with a
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Figure 4: Search results for Example 1. (a) Search progress using original and transformed versions of the
program. Progress is plotted by aggregating each species for the transformed version. (b) Progress of each
individual species using the transformed version of the program

Table 1: Results for Example 1 - success rates and
fitness evaluations

Average fitness
evaluations

Success Successful Unsuccessful
Rate Searches Searches

Original 0% n/a 38,448
Transformed 90% 31,039 38,448

precision of 0.1 for both in1 and in2, giving an input domain
size of approximately 4 × 108.

Experiments were repeated 10 times. The success rate
with both original and SpP approaches is shown in Table 2.
Searches using the conventional approach succeeded only
half of the time. Searches always succeed using the SpP
approach. The table also records the number of fitness (test
data) evaluations for successful and unsuccessful searches
using both approaches. For the SpP approach, the value for
the successful searches is the number of test data evaluations
performed by all species up to the point at which one of the
species found test data to execute the target. The table
shows that the SpP approach required fewer fitness evalua-
tions on average, backing up the claim that even when both
methods are successful, the SpP approach is likely to be
more efficient. Figure 5a shows a progress plot comparing
both approaches. Progress using the original version of the
program is stilted, because of the plateaux in the landscape
for T . Test data is more easily found using the SpP method.
Species 2 and 3 correspond to feasible paths, and these are
the species which are successful in making progress to the
discovery of the required test data (Figure 5b).

5.3 Space Example
The final test object space was taken from EU space agency

production code. There are eight paths to the selected tar-

Table 2: Results for Example 1 - success rates and
fitness evaluations

Average fitness
evaluations

Success Successful Unsuccessful
Rate Searches Searches

Original 50% 11,568 38,448
Transformed 100% 8,584 n/a

get, resulting in eight copies of the target in the transformed
version of the program and eight corresponding species.

For this program, different input ranges and species sizes
were used. Search success using the standard method and
the traditional approach was limited to relatively smaller
input domain sizes, as seen in Table 3. Even at this level,
test data was not generated with 100% reliability. The SpP
approach, however, was almost 100% reliable. Only on two
repetitions of one experiment did the search fail. This was
when the species size was small (30 individuals per species)
in the operation of a relatively large domain (1.2 × 1014).
When comparing successful searches, it is clear that the SpP
method is more efficient, consistently finding test data in
fewer fitness evaluations.

Figure 6 compares search progress with 480 individuals
per generation for both approaches, and an input domain
size of 1.4 × 1013. Figure 6a compares search progress be-
tween the original method and SpP. The original approach
fails to make any progress. The progress of each individual
species are compared in Figure 6b. Of the eight species, only
one corresponds to a feasible path – Species 7 – which finds
test data by the 76th generation at the latest. Species 4 and
6 get very close to a zero fitness value, but since their paths
are infeasible, test data is not found. This can be seen in a
close-up of species progress, depicted in Figure 6c.
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Figure 5: Results for Example 2. (a) Search progress using original and transformed versions of the program.
Progress is plotted by aggregating each species for the transformed version. (b) Progress of each individual
species using the transformed version of the program

Table 3: Detailed results for space

240 individuals per generation (30 per species)
Average fitness

Input evaluations
domain Success Successful Unsuccessful

size Rate searches searches
1.4 × 108 Original 10% 32,885 38,448

Transformed 100% 16,765 n/a
1.4 × 1010 Original 0% n/a 38,448

Transformed 100% 21,575 n/a
1.4 × 1013 Original 0% n/a 38,448

Transformed 100% 20,756 n/a
1.2 × 1014 Original 0% n/a 38,448

Transformed 80% 21,694 38,448

480 individuals per generation (60 per species)
1.4 × 108 Original 60% 15,830 76,896

Transformed 100% 18,612 n/a
1.4 × 1010 Original 0% n/a 76,896

Transformed 100% 19,048 n/a
1.4 × 1013 Original 0% n/a 76,896

Transformed 100% 32,096 n/a
1.2 × 1014 Original 0% n/a 76,896

Transformed 100% 27,252 n/a

720 individuals per generation (90 per species)
1.4 × 108 Original 80% 37,821 115,344

Transformed 100% 16,832 n/a
1.4 × 1010 Original 70% 49,763 115,344

Transformed 100% 26,468 n/a
1.4 × 1013 Original 0% n/a 115,344

Transformed 100% 27,043 n/a
1.2 × 1014 Original 0% n/a 115,344

Transformed 100% 37,544 n/a

6. EMPIRICAL VALIDATION
This section validates the approach by showing that the

transformation is widely applicable and that bushing will
not lead to a prohibitively expensive explosion in the num-
ber of paths that must be considered. The results are pre-
sented in Table 4. The first two columns of the table in-
clude the number of predicates and the number of predicate–
containing blocks. A block is a section of code in between
loops or inside a single loop. The remaining columns pro-
vide statistics on chain lengths, which include the number of
predicates per block, the longest chain length, and the count
and percentage of short chains. A short chain is one of four
or fewer predicates. When expanded by bushing, such a
chain will give rise to no more than 16 paths, making the
SpP approach viable. The percentage of short chains, is the
number of if chains that contain four or fewer predicates.

Figure 7 shows the lengths of all chains having one or
more predicate for the program espresso, which is typical of
the programs studied. In this example, only 21 of the 878
blocks contain chains of five or more predicates. The graph
is clipped at length 10 (the y-axis), which effects only the
last chain of fourteen predicates.

It is clear that most predicate chains (on average 98% as
seen in the last row of Table 4) are short enough for the
bushing technique to be effective. Furthermore, the average
chain length of 1.5 predicates indicates that on average no
more than four paths and thus four species need be consid-
ered.

7. RELATED WORK
Many techniques have been proposed to automate the gen-

eration of software test data. Methods based on static analy-
sis of the program’s source code, such as symbolic execution
[6, 13] and constraint solving [7, 19], have been limited by
the dynamic nature of software – for example the presence
of unbounded loops and dynamic memory referencing, such
as the use of pointers. For these reasons, the application of
search techniques, such as evolutionary algorithms, to search
a program’s input domain for test data has been a topic of
interest for many researchers in recent years.
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Figure 6: Results for space. (a) Search progress us-
ing original and transformed versions of the pro-
gram. Progress is plotted by aggregating each
species for the transformed version. (b) Progress of
each individual species using the transformed ver-
sion of the program. (c) Close-up for Species 4, 6
and 7

Table 4: Lengths of inter-loop non-nested predicate
chains. The final column shows the percentage of
short chains (those with less than 5 predicates)

Predi-
Predi- No. cates Short
cate of per Max. Chains

Program Count Blocks Block Length (%)
a2ps 3343 2118 1.6 37 96%
acct 544 352 1.5 11 97%
barcode 430 249 1.7 15 95%
bc 465 337 1.4 26 98%
byacc 820 542 1.5 10 97%
cadp 675 472 1.4 5 99%
compress 140 85 1.6 4 100%
cook-cook 3366 2274 1.5 40 98%
copia 91 60 1.5 3 100%
csurf-packages 1855 1613 1.2 8 99%
ctags 1250 950 1.3 8 99%
cvs 9688 5474 1.8 23 94%
diffutils 1554 1060 1.5 19 98%
ed 1191 870 1.4 27 99%
empire 8041 5804 1.4 18 98%
epwic 631 424 1.5 10 98%
espresso 1223 878 1.4 14 97%
findutils 1283 929 1.4 19 99%
flex2-4-7 816 487 1.7 30 97%
flex2-5-4 1063 645 1.6 32 97%
ftpd 2519 1547 1.6 146 99%
gcc.cpp 936 592 1.6 14 97%
gnubg-0.0 77 46 1.7 3 100%
gnuchess 1358 872 1.6 12 97%
gnugo 3018 2052 1.5 16 97%
go 79 48 1.6 3 100%
ijpeg 1260 858 1.5 11 98%
indent-1.10.0 925 466 2.0 55 93%
li 436 338 1.3 4 100%
named 9707 6787 1.4 62 97%
ntpd 2755 1843 1.5 24 96%
oracolo2 736 591 1.2 6 99%
prepro 717 585 1.2 6 99%
replace 55 45 1.2 6 97%
sendmail-8.7.5 4776 2654 1.8 51 94%
snns-batchman 6164 4832 1.3 24 99%
space 816 658 1.2 6 99%
spice 7418 4951 1.5 25 97%
termutils 356 233 1.5 8 98%
tile-forth-2.1 266 202 1.3 5 99%
time-1.7 131 80 1.6 5 98%
userv-0.95.0 987 681 1.4 13 96%
wdiff.0.5 255 169 1.5 13 98%
which 171 111 1.5 4 100%
wpst 934 843 1.1 4 100%
Sum 85,321 57,707
Average 1,896 1,282 1.5 20 98%



Figure 7: Sorted chain lengths for espresso

This paper addresses the problem where search-based ap-
proaches do not have sufficient fitness information to find
feasible paths to execute a target. This problem occurs when
such paths occupy a small proportion of the program’s in-
put domain, and thus it is an example of the high domain to
range ratio problem described by Voas and Miller [25] as a
source of poor testability. High domain to range ratio is not
necessarily a problem for search-based methods if adequate
guidance is provided to the search. This is the principle
behind the SpP approach.

For techniques like symbolic execution and constraint solv-
ing, as well as some early search-based approaches [18, 14,
29], the tester must select a path. The goal-oriented ap-
proach [15] was the first search-based technique to remove
this requirement, but was also the first to suffer from the
path problem described in this paper. The chaining ap-
proach [8] alleviates the path problem by attempting to find
program nodes on which the target is data-dependent and
which must be executed in the path to the target. These are
explored in a series of chains. However no program transfor-
mation takes place, paths are not isolated, and thus the fit-
ness function could potentially encounter ‘noise’ from other
paths. Evolutionary-chaining hybrids [17] have the disad-
vantage that an entirely new search must be attempted for
each chain.

Other problems in search-based test data generation can
be thought of as specific cases of the path problem. For
example, the flag problem [2, 4, 10] is caused by a path being
taken which does not set the flag to some required value.
Other problems with enumerations and deceptive landscapes
[17] can also be cast in terms of the path problem, and thus
the SpP approach is likely to be successful for programs with
these features.

The SpP approach uses program transformation to im-
prove test data generation, also known as testability trans-
formation [10]. Testability transformations have also been
employed to tackle some of the problems mentioned above,
including flags [1] and unstructured programs [11].

8. CONCLUSIONS AND FUTURE WORK
This paper introduces the Species per Path approach for

search-based test data generation. The SpP approach is
shown to generate test data more reliably and efficiently by
splitting the search effort up into species. Each species con-
centrates on finding test data to execute a specific path to

the target. This helps circumvent the path problem, which
is identified in this paper as a problem for search-based au-
tomated test data generators. The factoring out of paths by
a testability transformation provides each species with more
fitness information than would otherwise be available to the
standard evolutionary method.

These claims are supported by a verification empirical
study that compares the original method with the SpP ap-
proach using three examples, including one taken from pro-
duction code. A second empirical study concerning a wide
class of real world programs provides evidence to support
the claim that the approach is also widely applicable.

Further work will extend the approach to use conditioned
slicing [5] to remove paths which can be statically deter-
mined to be infeasible, thereby freeing up a species which
would otherwise be fruitlessly occupied. Additional exper-
imentation will be conducted to explore the possibility of
competition between species as a mechanism for further im-
proving the efficiency of the approach and exploiting the
species metaphor.
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